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Abstract

In this paper, using the electronic charge densities, we assign a Riemannian
manifold to any molecular system. Since we have many important quantities on
a Riemannian Manifold, we may define them for molecular systems. A concept of
distance on the configuration space of a molecule is defined. We also give a lower
bound for the min square error of an unbiased estimator of molecular configurations.

1 Introduction

Mathematical modeling is applied to formulate the concepts related to theoretical chem-

istry such as molecular structures. Shannon information theory [1,2], Fisher information

theory [3,4], theory of dynamical systems [5] and catastrophe theory [6] are some branches

of mathematics that are applied in modeling of theoretical chemistry.

Collard and Hall [7] applied scalar functions and their corresponding gradient systems

to introduce molecular structures. In this case, the electron density functions are the

scalar functions. Then, Bader et al. [8–10] applied the formulation of Collard and Hall in

quantum theory of atoms in molecules (abbreviated in QTAIM).

This paper is an attempt to apply information geometry techniques [11] in modeling

the molecular structures. We assign a Riemannian manifold to any molecular system.

We may apply the tools in Riemannian geometry to define some geometric concepts for
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molecular structures. For instance, we define a metric on the nuclear configuration space

of a molecule which is based on the information theoretical aspects of the electron charge

densities of a molecule rather than the dynamical aspects [12].

2 Electron charge density and configuration space

To understand the connection between electron charge density and a parameterization

space, one needs to consider Schrödinger equation. As a quantum system, each state of

a molecular system is described by a state function Ψ in a Hilbert space. This function

satisfies the Schrödinger equation

{Ĥ − E}Ψ = 0

where

Ĥ =

(
− ~2

2m

) N∑
i=1

∇2
i +

(
− ~2

2M

) L∑
j=1

∇2
j + V̂en + Vee + Vnn (2.1)

is the Hamilton operator, V = V̂en+Vee+Vnn the total potential operator, m, N the mass

and number of electrons respectively, M, L the mass and number of nuclei respectively,

and E the total energy of the system.

Since the exact solution of the Schrödinger equation may not be given in general, the

solution of this equation is given using approximation methods. In Born-Oppenheimer

approximation, nuclei are considered as static charges. In this case, the terms of kinetic

energy of nuclei are ignored in the Hamiltonian of the molecular system, so (2.1) reduces

to

Ĥe =

(
− ~2

2m

) N∑
i=1

∇2
i + V̂en + Vee, (2.2)

which is called the electron Schrödinger equation. This process leads to the parameteriza-

tion of the states of the molecular system. Indeed, the eigenvalue problem corresponding

to the operator (2.2), is as follows:

{Ĥe − Ee}Ψ(x1, x2, · · · , xn, ξ) = 0. (2.3)

Therefore, the electron charge density also depends on the parameter ξ, where ξ stands

for the position or geometry of nuclei in Born-Oppenheimer approximation. The electron

charge density is defined as follows:

ρξ(r) = N
∑
spin

∫
space

Ψ∗(x1, x2, · · · , xn, ξ)δ(r − r1)Ψ(x1, x2, · · · , xn, ξ)dr1 · · · drN (2.4)
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where δ is the Dirac function and xi = (ri, si) (i = 1, 2, · · · , N) is the space-spin coordi-

nate. So, any molecule corresponds to a family of electron charge densities {ρξ}ξ which

may be used to define the concept of molecular structure [8, 10].

3 Molecular manifold

Let M be a molecular system. By the previous discussions, let Θ ⊂ Rn be the space

of all nuclear configurations of the molecular system M , and S = {ρξ}ξ∈Θ be the family

of all electron charge densities of M defined in (2.4). In other words, for any ξ ∈ Θ,

ρξ : Ω ⊂ Rn → [0, 1] is a probability distribution function and

S = {ρξ = ρ(r, ξ) : ξ = (ξ1, ξ2, · · · , ξn) ∈ Θ}.

Note that, the mapping ξ 7−→ ρξ is an injection. It is also assumed that ρξ (ξ =

(ξ1, ξ2, · · · , ξn)) is smooth with respect to the components ξi (i = 1, 2, · · · , n), i. e.,

the function ξ 7−→ ρξ is C∞. Let also Θ ⊂ Rn be an open set. So, all the terms of the

form
∂ρξ
∂ξi

and
∂2ρξ
∂ξi∂ξj

are well-defined on Θ and we have∫
Ω

∂ρξ
∂ξi

(r)dr =
∂

∂ξi

∫
Ω

ρξ(r)dr =
∂

∂ξi
(1) = 0.

The mapping φ : S → Rn defined by φ(ρξ) = ξ gives a coordinate system φ = [ξi]

on S which makes it a manifold with one single local chart. On the other hand, if

ψ : Θ → ψ(Θ) ⊂ Rn is another C∞-diffeomorphism, then η = ψ(ξ) is another coordinate

system for S, and indeed S = {ρψ−1(η)}η∈ψ(Θ). Based on the previous discussions, S is

a C∞-manifold, where each parameterization of S is indeed a coordinate system. S is

called the molecular manifold of M . Now, we define a Riemannian metric on S = {ρξ}ξ
corresponding to the molecule M . The Fisher information matrix G(ξ) = [gij(ξ)]n×n

(ξ ∈ Θ) is defined by

gij(ξ) =

∫
Ω

ρξ(r)
∂l

∂ξi
(r)

∂l

∂ξj
(r)dr (3.1)

where l = lξ(r) = log ρξ(r) [11].

The functions gij : Θ → R ∞ are C∞. Note that, using the correspondence ξ 7−→ ρξ,

each gij may be considered as a function defined on S. We have:

1. G(ξ) is a symmetric matrix, since

∀ξ ∈ Θ gij(ξ) = gji(ξ) (i, j = 1, 2, · · · , n).
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2. G(ξ) is semi positive-definite, since, for every given V = (v1, v2, · · · , vn)t we have:

V tG(ξ)V =
∑
i,j

vivjgij(ξ) =

∫
Ω

(
n∑
i=1

vi
∂l

∂ξi
(r)

)2

dr ≥ 0.

Now, the inner product < ·, · > on the tangent space TS is defined as follows:

gij =< ∂i, ∂j > (3.2)

where ∂i =
∂
∂ξi

. Clearly, the Riemannian metric g =< ·, · > is uniquely determined by

(3.2). So, (S, g) is a Riemannian manifold corresponding to the molecule M .

A natural question one may ask is: what is the advantage of looking at a molecule as

a Riemannian manifold? The answer refers to the structural potentials that Riemannain

manifolds own. On a Riemannian manifold, we have a differential structure, an inner

product, an induced metric and geodesics as well as many other useful concepts such

as connections, curvature and torsion tensors and so on. All these geometric concepts

may be injected into the theory of molecular systems to enrich this part of theoretical

chemistry. As an example, we apply the inner product defined in (3.2) to introduce a

distance between nuclear configurations of a molecule.

3.1 Fisher distance

Let S = {ρξ}ξ∈Θ be the molecular manifold corresponding to a molecule M . For any

C1-curve γ : [0, 1] → S, the length of γ is given by

L(γ) :=

∫ 1

0

√∑
i,j

gij γ̇iγ̇jdt. (3.3)

Now, let ξ, η ∈ Θ be two nuclear configurations ofM . The set of all C1 curves γ : [0, 1] →

S such that γ(0) = ρξ and γ(1) = ρη is denoted by ∆ξη. The Fisher distance between ξ

and η is defined as

dF (ξ, η) := inf{L(γ) : γ ∈ ∆ξη}. (3.4)

Figure 1. Molecular manifold and curves between two points on it
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Clearly dF : Θ×Θ → [0,+∞) is a metric on the space of nuclear configurations of M ,

i. e.,

1. dF (ξ, η) ≥ 0 for all ξ, η ∈ Θ, and dF (ξ, η) = 0 if and only if ξ = η.

2. dF (ξ, η) = dF (η, ξ) for all ξ, η ∈ Θ.

3. dF (ξ, η) ≤ dF (ξ, ζ) + dF (ζ, η) for all ξ, η, ζ ∈ Θ.

Formula (3.4) is not suitable for practical and computational aspects, since the infimum

is taken over an infinite (even more on an uncountable) set. To resolve this difficulty, we

need to have some suitable connection on S.

3.2 Christoffel symbols and connection of a molecule

Let S = {ρξ}ξ∈Θ be the molecular manifold corresponding to a molecule M . For ξ ∈ Θ,

let lξ := log ρξ. The functions Γkij : Θ → R defined by(
Γkij
)
ξ
:=

∫
Ω

ρξ(r)∂klξ

(
∂i∂jlξ +

1

2
∂ilξ∂jlξ

)
dr

are called the Christiffel symbols of the molecule M . Now, the connection ∇ on S is

defined as follows:

< ∇∂i
∂j
, ∂k >= Γkij

where g =< ·, · > is the Fisher metric of the molecule M . Clearly, ∇ is a symmetric

connection. Also,

(∂kgij)ξ = ∂k

(∫
Ω

ρξ(r)∂ilξ∂jlξdr

)
=

∫
Ω

(∂kρξ(r)∂ilξ∂jlξ + ρξ(r)∂k∂ilξ∂jlξ + ρξ(r)∂ilξ∂k∂jlξ) dr

=
(
Γkij
)
ξ
+
(
Γkji
)
ξ
.

Briefly,

∂kgij = Γkij + Γkji. (3.5)

By (3.5) and the equality Γkij = Γkji we will have the following theorem [11]:

Theorem 3.1 ∇ is a Levi-Civita connection with respect to the Fisher metric g =< ·, · >.

By the previous discussions, to determine the distance between two nuclear configurations

ξ, η ∈ Θ of a molecule M , one should solve the following geodesic differential equations:

γ̈k(t) +
n∑

i,j=1

Γkij(γ(t))γ̇
i(t)γ̇j(t) = 0 (1 ≤ k ≤ n). (3.6)
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4 Molecular manifold of hydrogen molecular ion

In this section, we consider the hydrogen molecular ion H+
2 and apply the discussion in

section 3. This molecule is composed of two protons and an electron.

4.1 A one-dimensional molecular manifold

In lights of Born-Oppenheimer approximation, the nuclei of H+
2 are assumed to have

constant distance ξ. So, it suffices to consider the electron Schrödinger equation. The

Hamiltonian of the system is

Ĥe = − ~2

2me

∇2 − e2

4πε0rA
− e2

4πε0rB
+

e2

4πε0ξ

where rA and rB are the distances of the electron from the nuclei A and B respectively.

Figure 2. A configuration of the hydrogen molecular ion.

We consider the following approximate wave function for the electron Schrödinger

equation ĤeΨ = EeΨ:

Ψ = a0
− 3

2π
−1
2

(
ηAe

− rA
a0 + ηBe

− rB
a0

)
where a0 = 0.53Å is the Bohr radius, and ηA and ηB are constant coefficients. Since the

nuclei are the same, we may assume that ηA = ηB = η, so, the electron charge density

function is as follows:

ρ = Ψ2 = a0
−3π−1η2

(
e
− rA

a0 + e
− rB

a0

)2
= a0

−3π−1η2
(
e
− 2rA

a0 + e
− 2rB

a0 + 2e
− rA+rB

a0

)
Now, set the atom A on the origin and the atom B on the positive direction of the y-axis,

so, in Cartesian coordinate

rA =
√
x2 + y2 + z2, rB =

√
x2 + (y − ξ)2 + z2
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Therefore,

ρξ(x, y, z) = a−3
0 π−1η2

(
e
−

√
x2+y2+z2

a0 + e
−

√
x2+(y−ξ)2+z2

a0

)2

(4.1)

Now, we apply the condition
∫
R3 ρξdτ = 1, therefore,

a0
−3π−1η2

(∫
R3

e
− 2rA

a0 dτ +

∫
R3

e
− 2rB

a0 dτ + 2

∫
R3

e
− rA+rB

a0 dτ

)
= 1. (4.2)

By the definition of Bohr radius, we may replace R3 by

D = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 2a0}

in the three integrals in (4.2), so one may write

I1 :=

∫
R3

e
− 2rA

a0 dτ '
∫
D

e
− 2rA

a0 dτ, I2 :=

∫
R3

e
− 2rB

a0 dτ '
∫
D

e
− 2rB

a0 dτ,

I3 :=

∫
R3

e
− rA+rB

a0 dτ '
∫
D

e
− rA+rB

a0 dτ (4.3)

If we set Q(ξ) := I1 + I2 + I3 =
∫
D

(
e
− rA

a0 + e
− rB

a0

)2
dτ then, by (4.2)

η2 =
πa30
Q(ξ)

and the electron charge density of the molecular ion H+
2 is of the form

ρξ = Q(ξ)−1
(
e
− rA

a0 + e
− rB

a0

)2
= Q(ξ)−1

(
e
−

√
x2+y2+z2

a0 + e
−

√
x2+(y−ξ)2+z2

a0

)2

(4.4)

So, in this case, the molecular manifold corresponding to H+
2 is a one-dimensional

manifold with the parameter ξ in the configuration space

Θ = (0, 2a0) = (0, 1.06Å) ⊂ R.

Now, we may calculate the only Fisher coefficient g(ξ) = g11(ξ) and Christoffel coefficient

Γ(ξ) = Γ1
11(ξ) for H

+
2 . A direct calculation results in(

∂ρξ
∂ξ

)2
ρξ

=
Q′(ξ)2Q(ξ)−2

(
e
− rA

a0 + e
− rB

a0

)2
+ 4

a20
e

−2rB
a0

(y−ξ)2
r2B

+ 4
a0
Q′(ξ)y−ξ

rB

(
e
− rA

a0 + e
− rB

a0

)
Q(ξ)

where

rA =
√
x2 + y2 + z2, rB =

√
x2 + (y − ξ)2 + z2.
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Therefore,

g(ξ) =

∫
D

(
∂ρξ
∂ξ

)2
ρξ

dτ =
Q′(ξ)2Q(ξ)−1 + 4

a20
R(ξ) + 4

a0
Q′(ξ)S(ξ)

Q(ξ)

or equivalently,

g(ξ) =

(
Q′(ξ)

Q(ξ)

)2

+
4

a20

R(ξ)

Q(ξ)
+

4

a0

Q′(ξ)S(ξ)

Q(ξ)
(4.5)

where

R(ξ) =

∫
D

(y − ξ)2

r2B
e
− 2rB

a0 dτ (4.6)

and

S(ξ) =

∫
D

y − ξ

rB

(
e
− rA

a0 + e
− rB

a0

)
dτ. (4.7)

Finally,

Γ(ξ) =
1

2

∂

∂ξ
g(ξ) (4.8)

where g(ξ) is given by (4.5).

4.2 Numerical approximations

In the previous subsection, we presented a formula for g(ξ) and Γ(ξ) in terms of the

integrals Q(ξ), R(ξ) and S(ξ). In this subsection, we use some numerical methods to

approximate Q(ξ), R(ξ) and S(ξ). To do this, we first write these integrals in spherical

coordinates. Using the spherical coordinates x = ρ cos θ sinφ, y = ρ sin θ sinφ and z =

ρ cosφ, we will have:

Q(ξ) =

∫ 2π

0

∫ π

0

∫ 2a0

0

(
e
− ρ

a0 + e
−

√
ρ2−2ξρ sin θ sin φ+ξ2

a0

)2

ρ2 sinφdρdφdθ, (4.9)

R(ξ) =

∫ 2π

0

∫ π

0

∫ 2a0

0

(ρ sin θ sinφ− ξ)2ρ2 sinφ

ρ2 − 2ξρ sin θ sinφ+ ξ2
e
− 2

√
ρ2−2ξρ sin θ sin φ+ξ2

a0 dρdφdθ, (4.10)

S(ξ) =

∫ 2π

0

∫ π

0

∫ 2a0

0

(ρ sin θ sinφ− ξ)ρ2 sinφ√
ρ2 − 2ξρ sin θ sinφ+ ξ2

(
e
− ρ

a0 + e
−

√
ρ2−2ξρ sin θ sin φ+ξ2

a0

)
dρdφdθ.

(4.11)

Using numerical methods, one can calculate g and Γ numerically at every point ξ.

Remark 4.1 One should note that, we may calculate the integrals Q(ξ), R(ξ) and S(ξ)

using other coordinate systems such as confocal elliptic coordinates. However we use

MATLAB integral3 function to approxmate these integrals which is accurate upto 10−6

angsrtom.
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To plot the functions g and Γ in figure 3, we calculate these functions at 501 equally

space points as ξi = i2a0
500

for i = 0, · · · , 500 by using integral3 function of MATLAB

software. Using these 501 equally space points and clamped cubic spline interpolation

method, we can find cubic spline approximation gs of g by spline function of MATLAB.

0 0.2 0.4 0.6 0.8 1 1.2
-2

0

2

4

6

8

10

12

14

g

Figure 3. Plots of g and Γ obtained by calculating these functions at 501 equally-space

points.

To solve the differential equation{
γ̈(t) + Γ(γ(t))(γ̇(t))2 = 0
γ(0) = ξ1, γ(1) = ξ2

(4.12)

where 0 ≤ ξ1, ξ2 ≤ 2a0, set z = dγ
dt

then d2γ
dt2

= z dz
dγ
. By this substitution, the differential

equation (4.12) is converted to

z
dz

dγ
+ Γ(γ)z2 = 0 (4.13)

If z = 0 then γ(t) is a constant function. This solution is acceptable only when γ(0) =

γ(1). Now suppose z 6= 0, dividing the differential equation (4.13) by z, we can obtain a

separable differential equation as
dz

dγ
+ Γ(γ)z = 0 (4.14)

This equation has the general solution ln(z) =
∫
−Γ(γ) dγ = −1

2
g(γ) + C1, so we have

dγ

dt
= z = ±eC1e−0.5g(γ) (4.15)

Since exponential function is always positive, the sign of dγ
dt

doesn’t change on interval

[0, 2a0] and γ is an increasing function if positive sign is chosen in (4.15) and decreasing

function if negative sign is chosen. Now, suppose that γ(0) = ξ1 < ξ2 = γ(1) and therefore
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γ is not a decreasing function, so we may choose the positive sign in (4.15) and solve that

equation. We have {
γ(t) = eC1

∫ t
0
e−0.5g(γ(x)) dx+ C2

γ(0) = ξ1 < ξ2 = γ(1)
(4.16)

Applying γ(0) = ξ1 on (4.16) will result in{
γ(t) = eC1

∫ t
0
e−0.5g(γ(x)) dx+ ξ1

γ(0) = ξ1 < ξ2 = γ(1)
(4.17)

To find the function γ from (4.17) approximately, we choose n + 1 equally space points

ti =
i
n
for i = 0, 1, · · · , n, and we have

γ(ti) = eC1

∫ ti

0

e−0.5g(γ(x)) dx+ ξ1, ∀i = 0, 1, · · · , n (4.18)

So we can write

γ(ti) = γ(ti−1) + eC1

∫ ti

ti−1

e−0.5g(γ(x)) dx, ∀i = 1, · · · , n (4.19)

where γ(t0) = ξ1. Using trapezoidal rule of numerical integration, we have∫ ti

ti−1

e−0.5g(γ(x)) dx ≈ 1

2n

(
e−0.5g(γ(ti−1)) + e−0.5g(γ(ti))

)
. (4.20)

Substitution of equation (4.20) in (4.19) leads to

γ(ti) ≈ γ(ti−1) + eC1
1

2n

(
e−0.5g(γ(ti−1)) + e−0.5g(γ(ti))

)
, ∀i = 1, · · · , n (4.21)

Since γ(tn) = γ(1) = ξ2, there are n unknown parameters C1, γ(t1), γ(t2), · · · , γ(tn−1) and

n non-linear equations in (4.21). We set n = 1000 and use fsolve function of MATLAB

to find approximately C1, γ(t1), γ(t2), · · · , γ(tn−1) from n equations in (4.21). Then, we

use five point numerical differentiation method to find γ′(t0), γ
′(t1), · · · , γ′(tn). Using

these points, we approximate the functions γ and γ′ by cubic spline interpolations γs and

γ′s respectively.

Applying (3.3), for the one-dimensional manifold corresponding to the hydrogen molec-

ular ion, the length of the geodesic curve γ(t) where γ(0) = ξ1 and γ(1) = ξ2 is

dF (ξ1, ξ2) =

∫ 1

0

|γ′(t)|
√
g(γ(t))dt. (4.22)

Using the approximations γs, γ
′
s and gs of γ , γ′ and g respectively, one can find dF (ξ1, ξ2)

numerically, for every 0 ≤ ξ1, ξ2 ≤ 2a0.
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Remark 4.2 If ξ1 > ξ2, one can choose the negative sign in differential equation (4.15)

and repeat the mentioned process to find γ.

In figures 4 and 5, the plots and lengths of some γ functions, for ξ1 = 0 and ξ1 = 0.5

respectively, are given (in these figures ξ2 = 0, 0.1, · · · , 1).

In figure 6 we give dF (ξ1, ξ2) for ξ1, ξ2 = 0, 0.1, · · · , 1, 2a0 in a table.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

d
F
(

1
,

2
) denotes the

length 

of   function when

 (0)=
1
 and (2)=

2

d
F

(0,0)=0

d
F

(0,0.1)=0.111

d
F

(0,0.3)=0.386

d
F

(0,0.4)=0.562

d
F

(0,0.5)=0.769

d
F

(0,0.7)=1.272

d
F

(0,0.8)=1.569

d
F

(0,0.9)=1.892

d
F

(0,1)=2.241

d
F

(0,0.2)=0.237

d
F

(0,0.6)=1.005

Figure 4. Plots and lengths of some functions γ for ξ1 = 0 and ξ2 = 0, 0.1, · · · , 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

d
F

(0.5,0)=0.769

d
F

(0.5,0.1)=0.657

d
F

(0.5,0.2)=0.532

d
F

(0.5,0.3)=0.383

d
F

(0.5,0.4)=0.206

d
F

(0.5,0.6)=0.237

d
F

(0.5,0.7)=0.504

d
F

(0.5,0.8)=0.8

d
F

(0.5,0.5)=0

d
F

(0.5,0.9)=1.124

d
F

(0.5,1)=1.472

d
F

(
1
,

2
) denotes the

length

of  function when

(0)=
1
 and (2)=

2

Figure 5. Plots and lengths of some functions γ for ξ1 = 0.5 and ξ2 = 0, 0.1, · · · , 1.
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Figure 6. Table of dF (ξ1, ξ2) for ξ1, ξ2 = 0, 0.1, · · · , 1, 2a0.

5 Estimation error

Suppose that S = {ρξ}ξ∈Θ is an n-dimensional molecular manifold corresponding to a

molecule M . Suppose that a data is randomly generated subject to an electron density

function ρξ in S. Consider the problem of estimating the unknown configuration ξ ∈ Θ

by a function ξ̂ : Ω → Rn which is called an estimator. ξ̂ = (ξ̂1, ξ̂2, · · · , ξ̂n) is called an

unbiased estimator if

Eξ(ξ̂) = ξ ∀ξ ∈ Θ

where

Eξ(ξ̂) =

∫
Ω

ξ̂(r)ρξ(r)dτ.

For a configuration ξ̂ = (ξ̂1, ξ̂2, · · · , ξ̂n) ∈ Θ, the mean square error matrix of an unbiased

estimator ξ̂ is defined by V (ξ) = (vij(ξ))n×n where

vij(ξ) = Eξ

[
(ξ̂i − ξi)(ξ̂i − ξi)

]
.

A better estimation of a nuclear configuration ξ occurs if each vij(ξ) is as small as possible.

Cramer-Rao inequality states that the mean square error can not be as small as we like.
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Equivalently, there is a lower bound for it which is related to the Fisher metric.

Theorem 5.1 (Cramer-Rao inequality [11]) Let ξ̂ be an unbiased estimator and V (ξ) =

(vij(ξ))n×n be the mean square error matrix. Then V (ξ) ≥ G(ξ)−1 in the sense that

V (ξ)−G(ξ)−1 is a positive semi-definite matrix.

Now, we apply the Cramer-Rao inequality for the one-dimensional molecular manifold of

H+
2 . Clearly, in this case, the mean square error matrix has only one array v(ξ) = v11(ξ),

and is given by

v(ξ) = Eξ

[
(ξ̂ − ξ)2

]
and the Cramer-Rao inequality will be as follows:

v(ξ) ≥ g(ξ)−1

where g(ξ) is given by (4.5). Consequently, since g is an increasing function, any

unbiased estimation of a configuration ξ ∈ Θ of the molecule H+
2 has a mean square error

bounded below by

e(ξ) =
Q(ξ)

Q′(ξ)2Q(ξ)−1 + 4
a20
R(ξ) + 4

a0
Q′(ξ)S(ξ)

≥ 1

g(2a0)
= 0.0749.

The graph of e(ξ) is represented in Figure 7.
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Figure 7. Plot of e(ξ).

6 Summary and discussion

In this paper, a mathematical modeling of molecular systems is presented, using informa-

tion geometry techniques. In this regard, we have assigned a Riemannian manifold to a

molecular system which made us capable to define a metric on the nuclear configuration
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space. Numerical methods are also applied to calculate the distance between some con-

figurations of the molecule H+
2 . Finally, using Cramer-Rao inequality, we gave a lower

bound for the mean square error of any unbiased estimator of the nuclear configurations

of H+
2 .
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