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Abstract

A comparative study based on the structure-property regression analysis is performed in order to
test and evaluate the application possibilities of various graph irregularity indices for the prediction of
physico-chemical properties of octane isomers. By restricting attention to single-variable linear
regressions, we investigate the stochastic relationships between 18 preselected irregularity indices and
5 physico-chemical properties of octane isomers. These are: Boiling point (Bp), Standard enthalpy of
vaporization (DHVAP), Acentric factor (AcenFac), Enthalpy of vaporization (HVAP) and Entropy.
The degree of the intercorrelation was evaluated by traditional correlation coefficients. In physico-
chemical applications, it is a widely accepted but theoretically not verified belief is that the use of
graph irregularity indices are not to be efficient in QSPR studies of molecular graphs. Our
observations refute this preconception. Presenting demonstrative counter-examples it is shown that
there exist several irregularity indices by which four octane isomer properties (DHVAP, Entropy,
AcenFac and HVAP) can be predicted with a good accuracy.
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1 Introduction, preliminary considerations

In this study, we are concerned with simple connected graphs G(V, E) denoting by V(G) and
E(G) the set of vertices and edges of G, respectively. For a graph G with n vertices and m
edges, the degree du of a vertex u of G is the number of first neighbors of u, and uv denotes an

edge in G connecting the vertices u and v.

The total number of edges in G with end-vertex degrees i and j is denoted by m;; where we
suppose that 1< i < j < n-1. Using the standard terminology [1,2,3], let A=A(G) be the
adjacency matrix of G. For a graph G, the largest eigenvalue p(G) of A(G) is referred to as the
spectral radius of G. As usual, we denote by P, the path and by S, the star graph.

A graph is said to be regular (R-regular) if all its vertices have the same degree R. A
connected bipartite graph is called semiregular if each vertex in the same part of bipartition
has the same degree. A connected graph G is called harmonic (pseudo-regular) [3,4,5,6], if
there exists a positive constant p(G) such that each vertex u of G has the same average
neighbor degree number identical to p(G). The spectral radius p(G) of a harmonic graph G is
equal to p(G). It is obvious that any connected R-regular graph Gr is a harmonic graph with
p(Gr)=p(Gr)=R. A bipartite graph G called pseudo-semiregular [4] if each vertex in the same
part of bipartition has the same average degree. From these definitions it follows that any

semiregular graph is a bipartite pseudo-semiregular graph.
2 Irregularity indices selected for QSPR studies

Consider a topological invariant formulated as

TI(G) = D f(d,.d,) ,
uveE
where f(x,y) is an appropriately selected function. According to the traditional terminology,
TI(G) belongs to the family of degree-based topological indices [7,8]. It is easy to see that the
graph invariant TI(G) can be rewritten in the following alternative form:
TI(G) = m; f(L.j).
i<j
For simplicity, the parameters m;; will be called the edge-parameters of a graph G. From the
previous considerations it follows that if graphs Ga and Gy are characterized by the same set

of edge parameters m;j, then TI(G.)=TI(Gv) holds for any degree-based topological index TI
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In other words, using an arbitrary degree-based topological index TI, it is impossible to

discriminate between graphs Ga and Gp.

For degree-based topological invariants (indices) the following general definition can be
given: A topological invariant TOP(G) of a connected graph G is said to be degree-based, if
for any two non-isomorphic graphs Ga. and Gy characterized by the same set of edge

parameters {m;;j >0} the equality TOP(G.)=TOP(Gy) holds.

A topological invariant TOP(G) is called an irregularity index of a graph G if TOP(G) > 0
and TOP(G)=0 if and only if G is a regular graph. It is worth noting that the irregularity
indices have found almost no applications for predicting physico-chemical properties of
organic molecules. This is explained by the fact that several researchers are convinced that

discriminating and predicting power of irregularity indices are rather low [9].

In our comparative study for testing purpose we selected the set of 18 octane isomers and
their 5 physico-chemical properties. The graphs of octane isomers depicted in Fig.1 are tree
graphs with 8 vertices and 7 edges. They belong to the family of molecular graphs because

their maximum degree is not larger than four.
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Fig 1. Graphs of octane isomers

The irregularity indices investigated are included in Table 1. Except IRM2(G), all of them
belong to the family of degree-based irregularity indices.
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Table 1. Irregularity indices selected for QSPR studies
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As can be seen, the most indices are constructed from well-known graph invariants [10 - 19].

Topological invariants denoted by Mi(G) and M2(G) are the first and the second Zagreb

indices [7-15], while Ra(G) and RR(G) are identical to the ordinary Randi¢ index and the so-

called reciprocal Randi¢ index [ 20-23]. The graph invariant denoted by F(G) is referred to as

the forgotten topological index [24].

3 Some properties of selected irregulariy indices

Due to their simple computation, the degree-variance VAR(G) and the Albertson index

AL(G) belong to the family of the widely used irregularity indices [25,26,27].

The degree-variance proposed by Bell [25] is formulated as

VAR(G)—Z[du nj [ j

ueV n n

c_ \/MI(G) _2m \/MI(G) L 2m
- n n n n ’
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while the Albertson index is defined by [26]

ALG)= Y|d, —d

v|e

uvek

The majority of irregularity indices listed in Table 1 is characterized in Refs. [9,19, 27]. In
what follows some fundamental properties of irregularity indices and relations between them

are discussed.

i) Analyzing the topological structure of octane isomer graphs we can observe the known
phenomena related to the discrimination ability (discriminativity) and degeneracy of

topological indices [ 28,29,30].

Among octane isomers there exist two pairs of graphs, namely graph pairs (O(3), O(4)) and
(O(11), O(12)) which are characterized by identical edge-parameter sets. For graphs O(3),
0O(4) we have m12=2, m;3=1, mz>=2 and mz3=2, and for graphs O(11), O(12) one obtains that
mi2=2, m;3=2, mp3=2 and m33=1. This observation implies that by using an arbitrary degree-
based topological index TI, the computed values of TI will be the same for graph pairs O(3),
0O(4) and O(11), O(12), respectively. It is worth noting that the diameter of O(11) is equal to
5, while the diameter of O(12) is equal to 4.

In connection with the discriminativity of topological indices, an interesting problem is to
decide whether an arbitrary topological invariant TOP(G) can be considered as a degree-based
topological index or not. In some cases checking our hypothesis can be facilitated by using
the following simple decision rule: If there exist connected graphs G, and G, with identical
set of edge parameters m;j, but TOP(G.) is not equal to TOP(Gsy), then TOP cannot be
considered as a degree-based topological index. This concept is demonstrated by the

following examples.

Lemma 1 Let p, be the average degree of the vertices adjacent to vertex u in G. In [31] it was

proved that for a connected graph G

Y N

n v i<j n
with equality if and only if G is a regular graph.

Consider the irregularity indices IRM1(G) and IRM2(G) defined as



1 2 1 2
IRMI(G) =72(uu —Tm) = Y-

ueV

IRM2(G)= Y.

ueV

d, —u,

From Lemma 1 one obtains that

IRMI(G) = lzmi,{%?)—zm - lzm[“‘”j >0,

i<j J 1 n nig 1
From this identity it follows that IRM1(G) is a degree-based irregularity index.

It is easy to show that the irregularity index IRM2(G) does not belong to the family of degree-
based irregularity indices. Although graphs O(3), O(4) have identical edge-parameter set,
(m12=2, mi3=1, mz>=2 and m23=2) the computed values of index IRM2(G) for the two
octane isomer graphs are different, namely IRM2(0O(3))= 6,3333 and IRM2(0(4))= 7,3333.
We can conclude that IRM2(G) does not belong to the class of degree-based irregularity

indices.

ii) There exists a broad class of connected graph for which the identity p(G) = /M, (G)/m is

fulfilled. These graphs are called Z> graphs, because they are defined on the basis of the
second Zagreb index [32]. It is a fundamental property of Z» graphs is that p*(G)=M2(G)/m is
a positive integer. The harmonic, semiregular and bipartite pseudo-semiregular graphs form
subsets of Z> graphs [32]. From the previous considerations it follows that if G is a Z> graph

then

IR2G) =CS(G) =p(G) - 2m )
n

where CS(G) is the Collatz—Sinogowitz irregularity index [33].

It is worth noting that the topological invariant \/M,(G)/m is a good estimation of the

spectral radius for molecular graphs, where the maximum degree of graph G is not larger than
four [32]. The correspondence between CS(G) and IR2(G) for 18 octane isomer graphs is
illustrated in Fig.2. As can be observed, there exists a strong linear correlation between them

(r =0,987).
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Fig 2. Relation between irregularity indices CS(G) and IR2(G) for 18 octane isomers

An interesting observation is that among 18 octane isomer graphs only the tree O(9) belongs

to the family of Z> graphs. Its spectral radius is equal to 2.

iif) If G is a connected n-vertex graph, then inequality |d, — dv‘ <n-2 is fulfilled for any uv

edge in G. According to Ref. [24] this implies that

IRF(G) = F(G) - 2M,(G) < m(n - 2)*
with equality if and only if G is the star Sn. It is verified that IRF(G)=F(G)-2M2(G) <
n>VAR(G) and equality holds if G is a regular or a well-stabilized graph [34]. Additionally, in

our comparative study we tested a weighted version of the irregularity index IRF(G) which is
defined by IRFW(G)= IRF(G)/M2(G).

iv) Consider the irregularity index IRL(G) introduced by Vukicevi¢ and Gasperov [8].

IRL(G) = Y [Ind, —Ind,|= Y m,; ln[ij .
1

uveE i<j
Based on the following two lemmas we can establish upper and lower bounds for IRL(G).

Lemma 2 [35]: Let dy and du be positive integers where dy > du. Then

d"d;d“zlndv—lndu >d,-d

u v

u

with equality in both sides if and only if dv > d..
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Lemma 3 [36]: Let t, dv and du be positive integers where dy > du. Then

didm_lnd ~Ind, _M
t(d,d,) t(d, +d,)

with equality in both sides if and only if G is regular.

Proposition 1 Starting with Lemma 2, define the irregularity indices IRLU(G) and IRLL(G)
as

IRLUG) = ). 4, ~d,

Zmin(d,.d,) Zm( i j
,—d, i-i
LG = XS =T ]

uveE i<j

It is easy to see that

IRLU(G) 2 IRL(G) = ) |Ind, —Ind,| > IRLL(G),

uveE

where equality holds in both sides if and only if G is regular.

Proposition 2 Using Lemma 3, and assuming that t=1, consider the irregularity indices

IRLF(G) and IRLA(G) defined by

IRLF(G)_Z:E\/(dT S, (J—IJ

and

uveEd 2; (J-‘rl)

It follows that

IRLF(G) > IRL(G) = ) _|Ind,

uveE

where equalities hold in both sides if and only if G is regular.
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v) Let Tn be an n-vertex tree. As can be observed, there exist several topological indices TOP

for which the following inequalities hold:

TOP(P,) < TOP(T,) < TOP(S, )

For example, the irregularity indices IR2(G), IRA(G) and IRC(G) are characterized by the

above extremal property.

Lemma 4 [37]: If T, is an n-vertex tree, then

4n—-8<M,(T,)<(n-1)

and the left equality holds if and only if T, is the path P, and the right equality holds if and
only if Ty is the star Sn. As a consequence of above inequalities the following proposition

yields:

Proposition 3 If T, is an n-vertex tree then

Rap )= |28 202D o= M) 202D oy foop 202D
n-1 n n-1 n n

and the left equality holds if and only if T, is the path P, and the right equality holds if and
only if Ty is the star Sy.

Lemma 5 [22]: Among trees with n vertices, the star S, has the minimum and the path P, has

the maximum Randi¢ index. This observation implies the following proposition:
Proposition 4 If T, is an n-vertex tree, then
IRA(P) <IRA(T,) =n—-2Ra(T,) <IRA(S,)

and the left equality holds if and only if Ty is the path P, and the right equality holds if and
only if Ty is the star Sp.
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Lemma 6 [23]: Let T, be an n-vertex tree. Then for the reciprocal Randi¢ index RR(Tn) one
obtains that

RR(P,)<RR(T,)= Y ,/dd, <RR(S,)
uveE
and the left equality holds if and only if Ty is the path P, and the right equality holds if and
only if Ty is the star Sy.

Proposition 5 If Ty, is an n-vertex tree, then from Lemma 6 one obtains that
RR(T,)) 2
RC(P ) < IRA(T,) = FRTD _2M (1pes)
m n
and the left equality holds if and only if Ty is the path P, and the right equality holds if and
only if Ty is the star Sp.

4 Relations between selected irregularity indices and some

physico-chemical properties of octane isomers

We tested the applicability of the preselected irregularity indices for predicting five physico-
chemical properties of octane isomers. These are: Boiling point (Bp), Standard enthalpy of
vaporization (DHVAP), Entropy, Acentric factor (AcenFac) and Enthalpy of vaporization

(HVAP). All data were taken from the database www.moleculardescriptors.eu.

Table 2 summarizes the results of statistical structure-property analysis. It contains only the
computed correlation coefficients (r) whose absolute values are not less than 0.8.
Additionally, for comparison, in Table 2 the correlation coefficients related to Randi¢ index

(Ra) and the spectral radius (p) of octane isomer graphs are also included.

It should be noted that from the definitions of topological invariants Ra(G) and IRA(G) it

follows that their absolute values of their correlation coefficients are identical.

Some computed results of structure-property correlation analysis are illustrated in Fig.3.
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Table 2 The correlation coefficients between irregularity indices and 5 preselected physico-
chemical properties of octane isomers

T.opolo.glcal Bp DHVAP | Entropy | AcenFac | HVAP
invariant
VAR(G) _ -0.936 -0.954 -0.973 -0.886
AL(G) -0.816 -0.976 -0.897 -0.933 -0.944
IR1(G) _ -0.919 -0.951 -0.961 -0.866
IR2(G) _ -0.818 -0.936 -0.987 _
IRF(G) _ -0.938 -0.907 -0.900 -0.906

IRFW(G) -0.855 -0.952 -0.847 -0.844 | -0.943

IRA(G) -0.820 -0.958 -0.906 -0.904 | -0.936
IRB(G) -0.805 -0.953 -0.912 -0.906 | -0.925
IRC(G) -0.881 -0.954 -0.995 | -0.812

IRDIF(G) -0.830 -0.939 -0.863 -0.872 -0.915

IRL(G) -0.837 -0.987 -0.893 -0.935 -0.956

IRLU(G) -0.825 -0.973 -0.914 -0.924 | -0.945

IRLF(G) -0.829 -0.984 -0.902 -0.959 -0.953

IRLA(G) -0.822 -0.980 -0.885 -0.937 | -0.948

IRD1(G) -0.804 -0.963 -0.851 -0.920 -0.928

IRGA(G) -0.819 -0.962 -0.911 -0.909 [ -0.937

IRM1(G) -0.812 -0.953 -0.910 -0.901 -0.928

IRM2G) -0.862 -0.961 -0.863 -0.854 -0.944

Ra(G) 0.820 0.958 0.906 0.904 0.936

p(G) -0.840 -0.916 -0.980
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Fig. 3 Relations between irregularity indices and five physico-chemical properties of octane

isomers.

Evaluating the predictive power of various topological indices on the basis of corresponding

correlation coefficients listed in Table 2, we arrive at the following conclusions.

D

Considering the property prediction power (predictive ability), there exist irregularity
indices which perform significantly better than the classical Randi¢ index (Ra) or the
spectral radius p(G) of octane isomer graphs. By inspection of the data given in Table
2, we see that the majority of selected irregularity indices is characterized by a good
predictive power, and in several cases the absolute values of correlation coefficients

are over 0,9.
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2) It is an interesting observation is that all calculated correlation coefficients are
negative numbers. Comparing the computed correlation coefficients it can be

concluded that the most convenient irregularity indices for predicting

Bp are IRM2(G) with r = - 0.862 and IRFW(G) with r = - 0.855,
DHVAP are IRL(G) with r=- 0.987 and IRLF(G) with r=-0.984,
Entropy are VAR(G) with r = - 0.954 and IRC(G) with r =- 0.954,
AcenFac are IRC(G) with r = - 0.995 and IR2(G) with r =- 0.987,
HVAP(G) are IRL(G) with r = - 0.956 and IRLF(G) with r =- 0.953.

As can be seen, the greatest correlation coefficients belong to DHVAP and AcenFac
properties, while the prediction of the boiling point (Bp) is characterized by relatively
lower correlation coefficients [40].

3) All irregularity indices investigated in this study, except topological index IRM2(G)
belong to the family of degree-based molecular descriptors. The main advantage of
using degree-based irregularity indices is that their computation is easy comparing
them to distance-based and spectrum-based topological descriptors [8]. The practical
application of distance-based and spectrum-based topological indices is more

complicated, because they cannot be directly deduced from the structure of graphs.

5 Final remarks

Although several attempts have been made for the exact distinction of degree-based and non-
degree-based topological invariants, their classification belongs to open problems [8,38].

A paradox phenomenon related to the characterization and categorization of various graph
invariants (including irregularity indices as well) is demonstrated by the following example.
Denote by Q the set of connected graphs and consider the degree-based topological index

defined by
IM(G)=2(n—-1)* - M,(G)

where G € Q). Let Qr be a subset of Q including n-vertex trees T of diameter less than 5.
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According to the identity published in [39]:
IM(T) =2(n—1)* =M, (T) = W(T)

where W(T) is the Wiener index of T € Q;. It is known that the Wiener index belongs to the
family of most popular distance-based topological indices for G € Q [8, 39, 40]. But as we
can conclude, in this particular case, (i.e. for trees included in Qr) the corresponding Wiener

index can be considered as a degree-based topological invariant.
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