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Abstract

If G is a (molecular) graph and dv the degree of its vertex u, then its sigma index
is defined as σ(G) =

∑
(du − dv)

2, with summation going over all pairs of adjacent
vertices. Some basic properties of σ(G) are established. The inverse problem for
topological indices is about the existence of a graph having its index value equal to
a given non-negative integer. We study the problem for the sigma index and first
show that σ(G) is an even integer. Then we construct graph classes in which σ(G)
covers all positive even integers. We also study the inverse problem for acyclic,
unicyclic, and bicyclic graphs.

1 Introduction

Let G = (V,E) be a graph with |V (G)| = n vertices and |E(G)| = m edges. For a vertex

v ∈ V (G), we denote the degree of v by dv. A vertex with degree one is called a pendent

vertex. With slight abuse of language, we shall use the term “pendent edge” for an edge

having a pendent vertex. If u and v are adjacent vertices of G, then the edge connected

them will be denoted by uv.
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Topological indices are defined and used in many areas to study several properties

of different objects such as atoms and molecules. Several topological indices have been

defined and studied by mathematicians and chemists [26,27]. They are defined as graph

invariants corresponding to and reflecting several physical, chemical, pharmacological,

pharmaceutical, biological, etc. properties of the underlying chemical species.

Two of the most important degree–based topological graph indices are the first and

second Zagreb indices:

M1(G) =
∑

u∈V (G)

(du)
2 =

∑
uv∈E(G)

[
du + dv

]
(1)

and

M2(G) =
∑

uv∈E(G)

du dv . (2)

respectively. These were introduced in the 1970s [15,16]. For details of their mathematical

theory and chemical applications see [5, 7, 13, 21] and the references cited therein.

Two additional Zagreb–type indices are the forgotten index [11]

F (G) =
∑

u∈V (G)

(du)
3 =

∑
uv∈E(G)

[
(du)

2 + (dv)
2
]

(3)

and the hyper–Zagreb index [24]

Hyp(G) =
∑

uv∈E(G)

(du + dv)
2 . (4)

Also the present Turkish authors contributed recently to the research of Zagreb–type

indices. In [6], some results on the first Zagreb index together with some other indices

are given. In [8], the multiplicative versions of these indices are studied. Some relations

between Zagreb indices and some other indices, such as ABC, GA and Randić, are

obtained in [20]. Zagreb indices of the line graphs of subdivision graphs were studied

in [22]. A more generalized version of subdivision graphs is called r-subdivision graphs

and their Zagreb indices are calculated in [28]. These indices were calculated for several

important graph classes in [30].

If all vertices of a graph have the same degree, then the graph is said to be regular.

Regularity makes calculations easier in many occasions. A graph which is not regular,

that is which has at least two different vertex degrees, is said to be irregular. Irregularity

may occur slightly or strongly. As a result of this, several measures for irregularity have
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been defined and used by some authors [14,18,23]. Some of these measures are in terms

of vertex degrees. The most thoroughly investigated ones are the Albertson index [2]

Alb(G) =
∑

uv∈E(G)

|du − dv|

see also [10], and the Bell index [4]

B(G) =
∑

v∈V (G)

(
dv − 2m

n

)2

.

Another irregularity index was briefly mentioned in [1, 12], but seems that has not

been investigated in any detail. Motivated by this fact, we studied this index and its

properties, especially the inverse problem for it. We propose that this graph invariant be

called sigma index and be denoted by σ in resemblance with the standard deviation in

statistics. It is defined as

σ = σ(G) =
∑

uv∈E(G)

(du − dv)
2 . (5)

In this paper, we mainly study the inverse problem for the sigma index. We show in

Theorem 2.1 that σ(G) must be even for any graph G, and then we construct some graph

classes such that their sigma indices cover all positive even integers.

2 Sigma index

We first establish some simple properties of the sigma index that will be helpful in solving

the inverse problem. First of all, we point out the identity

σ(G) = F (G)− 2M2(G) (6)

which is directly obtained by combining Eqs. (2), (3), and (5).

Theorem 2.1. For every simple graph G, σ(G) is an even integer.

Proof. The well known relation
∑

u∈V (G)

du = 2m implies that in the graph G there must

be an even number (or zero) vertices of odd degree. Therefore, on the right–hand side of

Eq. (3), an even number of terms (du)
3 are odd, implying that F (G) is an even integer.

Theorem 2.1 follows then from the identity (6).
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Note that by the same argument, also M1(G), Hyp(G), and Alb(G) are even integers.

In addition to the above simple proof, we demonstrate the validity of Theorem 2.1 in

a less straightforward manner. By this we will be able to arrive at some relations that

are needed in the subsequent considerations.

Proof. By induction. The smallest graph for which σ can be calculated is N2, the edgeless

graph with two vertices. Obviously σ(N2) = 0, which is even. Now we move to the

induction step. Let G be a simple graph with n vertices. We can assume that G is

connected as otherwise we can sum up the sigma indices of all components to get σ(G).

We now prove the statement by means of a simple and accurate idea of demonstrating

that by adding a new edge e to a graph G, the parity of σ remains the same. There are

two cases to consider:

i) e connects two non-adjacent vertices u and v;

ii) e joins a vertex u of G to a new vertex v /∈ V (G).

Case i) Let u and v be two non-adjacent vertices of G. Let the degrees of u and v

in G be denoted by du = k and dv = t. Let also NG(u) = {v1, v2, . . . , vk} and NG(v) =

{v′1, v′2, . . . , v′t}. Finally let the degrees of vi for 1 ≤ i ≤ k be di and the degrees of v′i for

1 ≤ i ≤ t be d′i. Then

Figure 1. Non-adjacent vertices u and v

σ(G) = σ(G− {u, v}) +
k∑

i=1

(k − di)
2 +

t∑
i=1

(t− d′i)
2

= σ(G− {u, v}) + k · k2 − 2k
k∑

i=1

di +
k∑

i=1

di
2 + t · t2 − 2t

t∑
i=1

d′i +
t∑

i=1

(d′i)
2 .
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Now add a new edge e to join u and v as in Fig. 2.

Figure 2. The graph G+ e

Then,

σ(G+ e) = σ(G− {u, v}) + (du + 1− d1)
2 + · · ·+ (du + 1− dk)

2

+ (dv + 1− d′1)
2 + · · ·+ (dv + 1− d′t)

2 + (du − dv)
2

and hence

σ(G+ e)− σ(G) = k + t+ 2

[
k2 + t2 −

k∑
i=1

di −
t∑

i=1

d′i

]
+ (k − t)2

which is clearly even as k + t and (k − t)2 have the same parity.

Case ii) Let us add a new edge e to join a vertex v ∈ G to a new pendent vertex

v /∈ V (G) as in Fig. 3:

Figure 3. A graph with a pendent edge

Let the degree of u in G be denoted by du = k and let NG(u) = {v1, . . . , vk} with di

denoting the degree of vi. Then

σ(G) = σ(G− u) + k3 +
k∑

i=1

di
2 − 2k

k∑
i=1

di

-495-



and

σ(G+ e) = σ(G− u) + k3 + 3k2 + k +
k∑

i=1

di
2 − 2k

k∑
i=1

di − 2
k∑

i=1

di

implying that

σ(G+ e)− σ(G) = k(3k + 1)− 2
k∑

i=1

di

which is again an even integer.

Corollary 2.1. Let G be a simple graph. Let a vertex u of G be joined to a new vertex

v /∈ V (G) by a new pendent edge e. Then σ(G+ e) = σ(G) if and only if

∑
v∈N(u)

dv =
k(3k + 1)

2
.

Proof. By the second proof of Theorem 2.1, σ(G+ e) = σ(G) = k(3k + 1)− 2
k∑

i=1

di.

If the vertex u is pendent, we have

Corollary 2.2. Let G be a simple graph. Let a pendent vertex u of G be joined to a new

pendent vertex v /∈ V (G) by a new pendent edge e. Then σ(G+ e) = σ(G) iff dv = 2.

Proof. By easy computation.

Corollary 2.2 means that if we have a pendent path of length at least 2 in a graph G

and if we add a new edge to the pendent end of this path, then the sigma index does not

change. This enables us to omit the branches of length more than 2 when calculating the

sigma index, see Fig. 4.

Figure 4. Tadpole graphs with equal σ indices

Similarly, if we have a cycle of length k within G which has k− 1 vertices of degree 2,

then we can replace this cycle with a triangle, see Fig. 5. We shall call this replacement

a cyclic reduction.
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Figure 5. Cyclic reduction keeps σ unchanged: both graphs have equal σ-values

In general, if we have a sequence of adjacent vertices v1, v2, . . . , vq of degree 2, we can

replace this v1−vq path by an edge connecting v1 to vq. Similarly, we call this replacement

a path reduction, see Fig. 6.

Figure 6. Path reduction keeps σ unchanged: both graphs have equal σ-values

The above specified two reductions enable one to calculate σ(G) by determining the

σ-value of a graph much smaller than G.

Theorem 2.2. Let Sr,k be the double star depicted in Fig. 7. Let the degrees of two

adjacent central vertices u, v be du = k ≥ 3, dv = r ≥ 1. The sigma index of Sr,k is then

given by

σ(Sr,k) = (k − 1)3 + k2 + (r − 1)3 + r2 − 2kr .

Figure 7. The double star graph Sr,k

Similar results can be given for du ≥ 1, dv ≥ 3.
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Proof. Consider the following graphs in Figs. 8, 9, and 10:

Figure 8. The graphs S1,3, S1,4, and S1,5

Figure 9. The graphs S2,3, S2,4, and S2,5

Figure 10. The graphs S3,3, S3,4, and S3,5

Consider the graphs S1,k. It is easy to see that

σ(S1,k) = (k − 1)2 · k = k3 − 2k2 + k], .

In an analogous manner we can obtain the following formulas:

σ(S2,k) = k3 − 2k2 − k + 4

σ(S3,k) = k3 − 2k2 − 3k + 16

σ(S4,k) = k3 − 2k2 − 5k + 42

σ(S5,k) = k3 − 2k2 − 7k + 88

σ(S6,k) = k3 − 2k2 − 9k + 160 .

It is not difficult to see that the coefficient of k in σ(Sr,k) is 3− 2r. To find the constant

term, say ar, which only depends on r, note that the following formula is satisfied:

ar+1 = ar + 12 +
r−2∑
i=1

(6i+ 8) .

Therefore we conclude that

ar+1 = ar + 3r2 − r + 2 .
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After telescopic sum, we obtain the general formula for the constant term of σ(Sr,k) as

ar = (r − 1)(r2 − r + 2) .

Hence the result follows.

Note that σ(Sr,k) increases according to the following relations when we move to the

right and down in Figs. 8, 9 and 10:

Corollary 2.3. σ(Sr,k+1)− σ(Sr,k) = 3k2 − k − 2(r − 1).

Corollary 2.4. σ(Sr+1,k)− σ(Sr,k) = 3r2 − r − 2(k − 1).

Note that moving to right (respectively down) in Figs. 8, 9, and 10 means that we

are adding a new pendent vertex (and edge) to u (respectively v). Hence we can obtain

the σ index of Sr,k for large r and k in terms of smaller r and k’s.

3 Inverse problem for sigma index

Inverse problems are encountered in many areas of science, and naturally in mathematics.

Graph–theoretical problems of this kind are also interesting. The inverse problem for

topological indices is concerned with the existence of a graph whose index is equal to a

given non-negative integer. This problem. representing the beginning of what nowadays

is referred to as the inverse problem for graph indices, seems to be first proposed in [17].

In [25], the inverse problem for the first Zagreb index M1(G) was solved by showing

that all positive even integers except for 4 and 8 are equal to the first Zagreb index of

a caterpillar graph. In [31], Wagner showed that each integer greater than 469 is the

Wiener index of a special graph class called starlike trees. In [32], all 49 positive integer

values which are not the Wiener index of any graph are listed. Some more results for the

Wiener index can be found in [3] and [9].

In [19], the inverse problem for four topological indices was studied. Recently, in [29],

the inverse problem for the second Zagreb indexM2(G), forgotten index F (G), and hyper–

Zagreb index HM(G) was completely solved. In particular, the authors of [29] found

10 values of positive integers which cannot be the second Zagreb index of any graph.
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Similarly, it was found that there are 10 values of positive even integers which cannot be

the forgotten index of any graph. In the same paper, also the 50 values of positive even

integers which cannot be the hyper–Zagreb index of any graph were established.

In this paper, we study the inverse problem for σ index, which is one of the irregularity

indices. Our methodology depends on the following crucial observations:

Transformation 3.1. Let G be a graph possessing adjacent vertices u, v of degree 3.

Construct the graph G∗ by inserting a new vertex x of degree 2 on the edge connecting u

and v, cf. Fig. 11.

Figure 11. Transformation 3.1

Lemma 3.1. For any graph G having two adjacent vertices of degree 3,

σ(G∗) = σ(G) + 2 .

That is, applying Transformation 3.1 increases the sigma index of a graph G satisfying

the given degree conditions by 2.

Proof. Let u and v be two adjacent vertices of the graph G having degree du = dv = 3.

Let us add a vertex x of degree 2 on the edge uv. Then

σ(G) =
∑

rs∈E(G)

rs �=uv

(dr − ds)
2

and

σ(G∗) = (du − dx)
2 + (dx − dv)

2 +
∑

rs∈E(G∗)
rs �=ux,xv

(dr − ds)
2 = 12 + 12 +

∑
rs∈E(G)

rs �=uv

(dr − ds)
2

implying the result.

Transformation 3.2. Let G and G∗ be as in Transformation 3.1. Construct the graph

G∗∗ by attaching a new pendent vertex y to the vertex x of G∗, cf. Fig. 12.
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Figure 12. Transformation 3.2

Lemma 3.2. Let G and G∗ be as in Transformation 3.1. Then

σ(G∗∗) = σ(G) + 4 .

That is, applying Transformation 3.2 increases the sigma index of a graph G satisfying

the given degree conditions by 4.

Proof. Let G be as in Lemma 3.1. Construct G∗∗ as described by Transformation 3.2. In

Fig. 12, we have du = dv = dx = 3 and dy = 1. We then have

σ(G∗∗) = (du−dx)
2+(dx−dv)

2+(dx−dy)
2+

∑
rs∈E(G∗)

rs �=ux,xv,xy

(dr−ds)
2 = 02+02+22+

∑
rs∈E(G)

rs �=uv

(dr−ds)
2

which together with the proof of Lemma 3.1 implies the result.

The following result answers the inverse problem for σ index:

Theorem 3.1. For all non-negative integers k, there exists at least one graph G with

σ(G) = 2k.

Proof. Note first that any regular graph has σ index equal to 0. So we can start with

a 3-regular graph G0 of order at least 2 to satisfy the degree conditions. Let u and v

be two adjacent vertices. Evidently, σ(G0) = 0. Construct the graph G1 by applying

Transformation 3.1 to G0. Then

σ(G1) = σ(G0) + 2 = 2 .

Construct the graph G2 by applying Transformation 3.2 to G1. Then

σ(G2) = σ(G1) + 2 = σ(G0) + 2 · 2 = 4 .

Now note that the graph G2 obtained by successively applying Transformations 3.1 and

3.2 to the graph G0 possesses two new pairs of adjacent vertices of degree 3: u, x and
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x, v, see Fig. 12. Therefore we can apply Transformation 3.1 to G2 gives a new graph

G3 and by Lemma 3.1, we get

σ(G3) = σ(G2) + 2 = σ(G0) + 3 · 2 = 6 .

Now apply the Transformation 3.2 to G3 to reach to a graph G4. Evidently,

σ(G4) = σ(G3) + 2 = σ(G0) + 4 · 2 = 8 .

Continuing in this fashion, we arrive at graphs G5, G6, G7, . . . , Gk, . . . for which σ(Gk) =

2k. That is, σ can take all non-negative even integer values.

Transformation 3.3. Let G be a graph possessing a vertex v of degree d ≥ 2. Let

u1, u2, . . . , ud be the vertices of G adjacent to v. Construct the graph G† by replacing

vertex v with a complete graph Kd on d vertices. Thus, if the vertices of this complete

graph are v1, v2, . . . , vd, then in G†, vi is adjacent with ui, for i = 1, 2, . . . , d, cf. Fig. 13.

Figure 13. Transformation 3.3 with d = 3

Lemma 3.3. For any graph G different than null graph and K2,

σ(G†) = σ(G) .

That is, applying Transformation 3.3 preserves the sigma index.

The proof is straightforward.

Clearly, Transformation 3.3 can be repeatedly applied infinitely many times, resulting

in the following corollary:

Corollary 3.1. For each fixed non-negative integer k, there exists infinitely many con-

nected graphs G with σ(G) = 2k.

-502-



Transformation 3.4. Let G be a graph possessing a vertex v of degree 2. Let the neigh-

bors of v be u1, u2. Construct the graph GΔ by inserting new vertices (of degree 2) on the

edges vu1 and vu2, and by attaching a two-vertex path to v, cf. Fig. 14.

Figure 14. Transformation 3.4

Lemma 3.4. For any graph G different than the null graph and K2,

σ(GΔ) = σ(G) + 4 .

That is, applying Transformation 3.4 to all graphs except for null graphs and K2, increases

the sigma index by 4.

The proof is by computation.

The following three results are direct consequences of Lemma 3.4:

Corollary 3.2. There exist trees with σ = 2k for all non-negative integers k �= 2.

Proof. To start with, we know that σ(K2) = 0 and σ(Pn) = 2. We show that σ can

take all positive even integer values 6, 8, 10, 12, . . . by means of Lemma 3.4 after finding

two graphs with sigma index equal to 6 and 8. Lemma 3.4 then gives two graphs with

σ = 6 + 4 = 10 and σ = 8 + 4 = 12. Successive applications of the same Lemma give all

even integers ≥ 6 as the σ index of a graph. Observe that the graph GΔ in Fig. 14 has

σ = 6 and the graph in Fig. 15 has σ = 8.

It only remains to show that there is no graph with σ(G) = 4. For trees which are

path graphs at the same time, we know that σ(G) = 2. So we may assume that G has

at least one vertex of degree 3. If G is the star graph S4, then σ(S4) = 12. If we add an

extra vertex (of degree 2) to one, two or all three branches of S4, we obtain σ(G) = 10, 8,

and 6, respectively. As σ has path reduction property, adding more vertices to three

branches of S4 will not change the sigma index. So, when G has a vertex of degree 3,
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σ(G) cannot be 4. Let us now assume that G has at least one vertex v of degree 4. If

at least one vertex u adjacent to v is of degree 2, then the edge uv will contribute 4 to

σ. Considering all other edges, σ cannot be 4. If at least one vertex u adjacent to v is

of degree 1, then the edge uv will contribute 9 to σ. Finally if all four vertices adjacent

to v are of degree 3, then the four edges connecting these vertices to v will contribute 4

to σ. Considering all other edges, σ cannot be 4 again. For graphs having a vertex with

degree at least 5, we can use the same idea.

Figure 15. A graph with σ = 8

Corollary 3.3. There exist connected unicyclic graphs with σ = 2k for all non-negative

integers k �= 1.

Proof. By construction. For the cycle graphs Cn, we have σ(Cn) = 0. Let G0 be the

unicyclic graph obtained by adding a path of length two to any vertex v of a cycle graph

Cn, see Fig. 16 with n = 6. Then σ(G0) = 4.

Figure 16. A unicyclic graph with σ = 4

Let G1 be the unicyclic graph obtained by adding another path of length two to one

of the two adjacent vertices to v which lie on the cycle in G1, see Fig. 17 with n = 6.

Then σ(G1) = 6.

Figure 17. A unicyclic graph with σ = 6
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Let now n be large enough. Continuing adding new paths of length 2 as above, yields

the graphs G2, G3, . . . , Gk, . . . with σ(Gk) = 2k.

Corollary 3.4. There exist connected bicyclic graphs with σ = 2k for all non-negative

integers k �= 0, 1.

Proof. By construction. Let B2 be the bicyclic graph obtained by gluing two cycle graphs

of length not necessarily the same, along one sides of both, see Fig. 18. Then σ(B2) = 4.

Figure 18. A bicyclic graph with σ = 4

Let B3 be the bicyclic graph obtained by adding a path of length two to any vertex

v of B2, see Fig. 19. Then σ(B3) = 6.

Figure 19. A bicyclic graph with σ = 6

Let B4 be the bicyclic graph obtained by adding another path of length two to one of

the two neighboring vertices of v on the cycle in B3, see Fig. 20. Then σ(B4) = 8.

Figure 20. A bicyclic graph with σ = 8

Continuing the addition of new paths of length 2 as specified above, results in the

graphs B5, B6, . . . , Bk, . . . with σ(Bk) = 2k.
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