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I. Ž. Milovanović, E. I. Milovanović, M. Matejić
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Abstract

Let G be a simple connected graph with n vertices and m edges. Denote by
d1 ≥ d2 ≥ · · · ≥ dn > 0 and d(e1) ≥ d(e2) ≥ · · · ≥ d(em) > 0 sequences of vertex
and edge degrees, respectively. Adjacency of the vertices i and j is denoted by i ∼ j.
A vertex-degree topological index, referred to as general sum-connectivity index, is
defined as χα = χα(G) =

∑
i∼j(di + dj)

α, where α is an arbitrary real number.
Lower and upper bounds for χα are obtained. We also prove one generalization of
discrete Kantorovich inequality.

1 Introduction

Let G = (V,E), V = {1, 2, . . . , n}, E = {e1, e2, . . . , em} be a simple connected graph

with n vertices and m edges. Denote by d1 ≥ d2 ≥ · · · ≥ dn > 0 and d(e1) ≥ d(e2) ≥
· · · ≥ d(em) > 0 sequences of vertex and edge degrees, respectively. If vertices i and j

are adjacent, we denote it as i ∼ j. In addition, we use the following notation: Δ = d1,

δ = dn, Δe = d(e1) + 2, δe = d(em) + 2. As usual, L(G) denotes a line graph of G.

Gutman and Trinajstić [1] introduced two vertex degree topological indices, named as

the first and the second Zagreb index. These are defined as

M1 = M1(G) =
n∑

i=1

d2i and M2 = M2(G) =
∑
i∼j

didj.
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The first Zagreb index can be also expressed as (see [23])

M1 = M1(G) =
∑
i∼j

(di + dj) . (1)

Details on the mathematical theory of Zagreb indices can be found in [2–6,21,24].

Recently [7], a graph invariant similar to M1 came into the focus of attention, defined

as

F = F (G) =
n∑

i=1

d3i ,

which for historical reasons [3] was named forgotten topological index. It satisfies the

identities

F =
∑
i∼j

(d2i + d2j) =
m∑
i=1

[d(ei) + 2]2 − 2M2 . (2)

Another degree–based graph invariant was introduced in [8], and named general sum-

connectivity index, χα. It is defined as

χα = χα(G) =
∑
i∼j

(di + dj)
α , (3)

where α is an arbitrary real number. More on mathematical properties of this index can

be found in [9–14].

In this paper we are concerned with upper and lower bounds for χα. Also, we present

one generalization of discrete Kantorovich inequality, and show how it can be used to

obtain upper bounds for M1. The derived inequality is best possible in its class.

2 Preliminaries

In this section we recall some results for χα, and state a few analytical inequalities needed

for our work.

In [10] (see also [9]) the following was proved:

Lemma 1. [10]. Let G be a nontrivial connected graph with maximum degree Δ and

minimum degree δ, and α ∈ R. Then

2α−1Δα−1M1 ≤ χα ≤ 2α−1δα−1M1, if α < 1, (4)

2α−1δα−1M1 ≤ χα ≤ 2α−1Δα−1M1, if α ≥ 1 . (5)

The equality holds in each inequality for some α �= 1 if and only if G is regular.
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In [8] upper and lower bounds for χα(G) in terms of invariant M1 and graph parameter

m were obtained.

Lemma 2. [8]. Let G be a graph with m ≥ 1 edges. If 0 < α < 1, then

χα(G) ≤ Mα
1 m

1−α , (6)

and if α < 0 or α > 1, then

χα(G) ≥ Mα
1 m

1−α . (7)

Equality holds if and only if di + dj is constant, for any edge {i, j} ∈ E.

For the real number sequences the following result was proved in [15] (see also [16]):

Lemma 3. [15]. Let p = (pi), and a = (ai), i = 1, 2, . . . ,m, be two positive real number

sequences with the properties

m∑
i=1

pi = 1 and 0 < r ≤ ai ≤ R < +∞ .

Then
m∑
i=1

piai + rR
m∑
i=1

pi
ai

≤ r +R , (8)

with equality if and only if for some k, 1 ≤ k ≤ m, holds R = a1 = · · · = ak ≥ ak+1 =

· · · = am = r.

In [19] the following was proved:

Lemma 4. [19]. Let q = (qi) be a sequence of positive real numbers, and a = (ai) and

b = (bi) sequences of real numbers with the properties

0 < r1 ≤ ai ≤ R1 < +∞ and 0 < r2 ≤ bi ≤ R2 < +∞ ,

i = 1, 2, . . . ,m. Denote with S a subset of Im = {1, 2, . . . ,m} which minimizes the

expression ∣∣∣∣∣∑
i∈S

qi − 1

2

m∑
i=1

qi

∣∣∣∣∣ .
Then∣∣∣∣∣

m∑
i=1

qi

m∑
i=1

qiaibi −
m∑
i=1

qiai

m∑
i=1

qibi

∣∣∣∣∣ ≤ (R1 − r1)(R2 − r2)
∑
i∈S

qi

(
m∑
i=1

qi −
∑
i∈S

qi

)
. (9)
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In the following lemma we recall well-known Chebyshev inequality (see for example

[16]) which will be used later.

Lemma 5. Let q = (qi) be a sequence of positive real numbers, and a = (ai) and b = (bi),

i = 1, 2, . . . ,m, sequences of non-negative real numbers of similar monotonicity. Then

m∑
i=1

qi

m∑
i=1

qiaibi ≥
m∑
i=1

qiai

m∑
i=1

qibi . (10)

If sequences a = (ai) and b = (bi) has opposite monotonicity, then the sense of (10)

reverses.

3 Main result

3.1 A new inequality for real number sequences

In this section we prove a new inequality for real number sequences.

Theorem 1. Let p = (pi) and a = (ai), i = 1, 2, . . . ,m, be real number sequences,

with a = (ai) being monotonic and 0 < r ≤ ai ≤ R < +∞. Let S be a subset of

Im = {1, 2, . . . ,m} which minimizes the expression∣∣∣∣∣∑
i∈S

pi − 1

2

m∑
i=1

pi

∣∣∣∣∣ .
Then

m∑
i=1

piai

m∑
i=1

pi
ai

≤
(
1 + γ(S)

(R− r)2

rR

)( m∑
i=1

pi

)2

, (11)

where

γ(S) =

∑
i∈S

pi

m∑
i=1

pi

⎛⎜⎜⎜⎜⎝1−

∑
i∈S

pi

m∑
i=1

pi

⎞⎟⎟⎟⎟⎠ .

Equality is attained if R = a1 = · · · = am = r.

Proof. For qi =
pi∑m
i=1 pi

, ai = ai, bi = 1
ai
, R1 = R, r1 = r, R2 = 1

r
and r2 = 1

R
,

i = 1, 2, . . . ,m, the inequality (9) becomes∣∣∣∣∣∣∣∣∣∣∣
1−

m∑
i=1

piai

m∑
i=1

pi
ai(

m∑
i=1

pi

)2

∣∣∣∣∣∣∣∣∣∣∣
≤ (R− r)

(
1

r
− 1

R

)∑
i∈S

pi

m∑
i=1

pi

⎛⎜⎜⎜⎜⎝1−

∑
i∈S

pi

m∑
i=1

pi

⎞⎟⎟⎟⎟⎠ . (12)

-480-



For qi =
pi∑m
i=1 pi

, ai = ai, bi =
1
ai
, i = 1, 2, . . . ,m, the inequality (10) transforms into

1 ≤

m∑
i=1

piai

m∑
i=1

pi
ai(

m∑
i=1

pi

)2 . (13)

Combining (12) and (13), gives

m∑
i=1

piai

m∑
i=1

pi
ai(

m∑
i=1

pi

)2 ≤ 1 +
(R− r)2

rR
·

∑
i∈S

pi

m∑
i=1

pi

⎛⎜⎜⎜⎜⎝1−

∑
i∈S

pi

m∑
i=1

pi

⎞⎟⎟⎟⎟⎠ ,

wherefrom we arrive at (11).

Remark 1. The inequality (11) is a revision of the inequality

m∑
i=1

piai

m∑
i=1

pi
ai

≤
(⌊

m
2

⌋
R +

⌊
m+1
2

⌋
r
) (⌊

m+1
2

⌋
R +

⌊
m
2

⌋
r
)

rRm2

given in [17]. The above inequality is not always correct. It is correct when pi = 1
m
,

i = 1, 2 . . . ,m. However, if pi �= 1
m

and p1 + p2 + · · ·+ pm = 1, the above inequality might

be incorrect. Thus, for example for m = 5, p1 = p2 =
1
4
, p3 = p4 = p5 =

1
6
, a1 = a2 = 3,

a3 = a4 = a5 = 2, r = 2 and R = 3, one obtains that 625 ≤ 624, which is obviously

wrong.

Since γ(S) ≤ 1
4
for each S ⊂ Im, the following corollary of Theorem 1 is valid.

Corollary 1. Let p = (pi), be a sequence of positive real numbers and a = (ai), i =

1, 2, . . . ,m, a monotone sequence of positive real numbers, with the properties

p1 + · · ·+ pm = 1, 0 < r ≤ ai ≤ R < +∞ .

Then
m∑
i=1

piai

m∑
i=1

pi
ai

≤ (R + r)2

4rR
. (14)

Remark 2. The inequality (14) (proved in [20]) is a generalization of Kantorovich in-

equality (see for example [16]).

For pi = 1, i = 1, 2, . . . ,m, the following corollary of Theorem 1 holds:
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Corollary 2. Let a = (ai), i = 1, 2, . . . ,m, be a real number sequence with the property

0 < r ≤ ai ≤ R < +∞. Then
m∑
i=1

ai

m∑
i=1

1

ai
≤ m2

(
1 + α(m)

(R− r)2

rR

)
, (15)

where

α(m) =
1

4

(
1− (−1)m+1 + 1

2m2

)
.

Remark 3. The inequality (15) was proved in [17]. Since α(m) ≤ 1
4
, it is a generalization

of the inequality
m∑
i=1

ai

m∑
i=1

1

ai
≤ m2

4
· (R + r)2

rR
,

proved in [22].

3.2 Some inequalities for general sum–connectivity index

In what follows we derive lower and upper bounds for the degree-based topological index

χα in terms of topological indices M1, M2 and F and graph parameters m, Δe and δe.

Theorem 2. Let G be a simple connected graph with n vertices and m ≥ 2 edges. Then,

for any α ≥ 2,

(F + 2M2)δ
α−2
e ≤ χα ≤ (F + 2M2)Δ

α−2
e . (16)

If α ≥ 1, then

M1δ
α−1
e ≤ χα ≤ M1Δ

α−1
e . (17)

If α ≥ 0, then

mδαe ≤ χα ≤ mΔα
e .

Equalities in the above inequalities are attained, respectively, for α = 2, α = 1, α = 0, or

if L(G) is regular.

When α ≤ 2, α ≤ 1 and α ≤ 0, respectively, the opposite inequalities are valid.

Proof. Let e = {i, j} be an arbitrary edge of graph G. Then d(e) = di+dj−2. According

to (3), topological index χα can be computed from the following expression

χα =
∑
i∼j

(di + dj)
α =

m∑
i=1

(d(ei) + 2)α, χ0 = m. (18)

From (3) follows

F + 2M2 = χ2 =
∑
i∼j

(di + dj)
2 =

m∑
i=1

(d(ei) + 2)2 .
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Since

χα =
m∑
i=1

(d(ei) + 2)α =
m∑
i=1

(d(ei) + 2)2(d(ei) + 2)α−2 ,

for α ≥ 2 holds

δα−2
e

m∑
i=1

(d(ei) + 2)2 ≤ χα ≤ Δα−2
e

m∑
i=1

(d(ei) + 2)2 ,

i.e.

(F + 2M2)δ
α−2
e ≤ χα ≤ (F + 2M2)Δ

α−2
e .

By a similar procedure, the remaining inequalities in Theorem 2 can be proved.

Remark 4. Let α and β be arbitrary real numbers such that α− β ≥ 0. Then, according

to

χα =
m∑
i=1

(d(ei) + 2)α =
m∑
i=1

(d(ei) + 2)β(d(ei) + 2)α−β

follows that

δα−β
e χβ ≤ χα ≤ Δα−β

e χβ , (19)

with equality if and only if α = β, or L(G) is regular.

If α− β ≤ 0, the opposite inequality is valid.

The question is for which values of parameter β the inequality (19) has practical im-

portance. For β = 0, β = 1 and β = 2 it was considered in Theorem 2. Since
m∑
i=1

(d(ei) + 2)3 = EF + 6F + 12M2 − 12M1 + 8m,

for α ≥ 3 holds

δα−3
e (EF + 6F + 12M2 − 12M1 + 8m) ≤ χα ≤ Δα−3

e (EF + 6F + 12M2 − 12M1 + 8m) ,

where EF is the reformulated forgotten topological index. When α ≤ 3, the opposite

inequality is valid. Obviously, these inequalities depend on a large number of graph in-

variants.

Another question is how would (19) look like if β ≥ 4 and its practical usability.

For α = −1
2
and β = −1, the inequality (19) gives a connection between harmonic and

sum-connectivity indices.

Remark 5. Since

2δ ≤ δe ≤ Δe ≤ 2Δ ,

then for α ≥ 1 and α ≤ 1, from (17) the inequalities (4) and (5) are obtained. Hence,

the inequality (17) is stronger than these inequalities.
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Corollary 3. Let G be a simple connected graph with n vertices and m ≥ 2 edges. Then,

for any α ≥ 2

4M2δ
α−2
e ≤ χα ≤ 2FΔα−2

e .

Equality is attained if G is regular.

Proof. The required inequality is obtained based on (16) and

4M2 ≤ F + 2M2 ≤ 2F .

Corollary 4. Let G be a simple connected graph with n vertices and m ≥ 2 edges. Then,

for any α ≤ 1,

mδeΔ
α−1
e ≤ χα ≤ mΔeδ

α−1
e ,

with equality if and only if L(G) is regular.

In the next Theorem we establish a lower bound for χα in terms of M1, M2 and F .

Theorem 3. Let G be a simple connected graph with n vertices and m edges. Then, for

any real α, α ≤ 1 or α ≥ 2,

χα ≥ (F + 2M2)
α−1

Mα−2
1

. (20)

If 1 ≤ α ≤ 2, the opposite inequality is valid. Equality is attained if and only if α = 1, or

α = 2, or L(G) is regular.

Proof. Let p = (pi) and a = (ai), i = 1, 2, . . . ,m, be positive real number sequences,

where p1 + p2 + · · · + pm = 1. Then, for any real t, t ≤ 0 or t ≥ 1, Jensen’s inequality

holds (see [16, 18])
m∑
i=1

pia
t
i ≥

(
m∑
i=1

piai

)t

. (21)

If 0 ≤ t ≤ 1 the opposite inequality is valid in (21).

For t = α − 1, pi =
d(ei) + 2∑m

i=1(d(ei) + 2)
, ai = d(ei) + 2, i = 1, . . . ,m, the inequality (21)

becomes
m∑
i=1

(d(ei) + 2)α

m∑
i=1

(d(ei) + 2)

≥

⎛⎜⎜⎜⎜⎝
m∑
i=1

(d(ei) + 2)2

m∑
i=1

(d(ei) + 2)

⎞⎟⎟⎟⎟⎠
α−1

.
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According to (18), for α = 1 and α = 2, this inequality transforms into

χα

M1

≥ (F + 2M2)
α−1

Mα−1
1

,

wherefrom the inequality (20) is obtained.

Equality in (21) holds if and only if t = 0, or t = 1, or a1 = a2 = · · · = am. Therefore

equality in (20) holds if and only if α = 1, or α = 2, or d(e1) + 2 = · · · = d(em) + 2, i.e.

if L(G) is regular.

Corollary 5. Let G be a simple connected graph with n vertices and m edges. Then, for

any real α ≥ 1,

χα ≥ 4α−1Mα−1
2

Mα−2
1

,

with equality if α = 1, or G is regular.

Remark 6. For qi = ai = d(ei) + 2 and bi =
1

d(ei)+2
, i = 1, 2, . . . ,m, the inequality (10)

becomes

m(F + 2M2) ≥ M2
1 .

Then, for any α ≥ 1
(F + 2M2)

α−1

Mα−2
1

≥ Mα
1

mα−1
.

Therefore (20) is stronger than (7).

In the next Theorem we establish a connection between χα, χα−1 and χα−2.

Theorem 4. Let G be a simple connected graph with n vertices and m ≥ 2 edges. Then

χα − (Δe + δe)χα−1 +Δeδeχα−2 ≤ 0 , (22)

with equality if and only if for some k, 1 ≤ k ≤ m, Δe = d(e1) + 2 = · · · = d(ek) + 2 ≥
d(ek+1) + 2 = · · · = d(em) + 2 = δe.

Proof. For pi =
(d(ei) + 2)α−1∑m
i=1(d(ei) + 2)α−1

, ai = d(ei) + 2, i = 1, 2, . . . ,m, r = δe = d(em) + 2

and R = Δe = d(e1) + 2, the inequality (8) transforms into

m∑
i=1

(d(ei) + 2)α

m∑
i=1

(d(ei) + 2)α−1

+Δeδe

m∑
i=1

(d(ei) + 2)α−2

m∑
i=1

(d(ei) + 2)α−1

≤ Δe + δe .
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From the above and (18) we get

χα

χα−1

+Δeδe
χα−2

χα−1

≤ Δe + δe ,

wherefrom (22) is obtained.

Corollary 6. Let G be a simple connected graph with n vertices and m ≥ 2 edges. Then

χα ≤ χ2
α−1

4χα−2

(√
Δe

δe
+

√
δe
Δe

)2

, (23)

with equality if L(G) is regular.

Proof. According to the arithmetic-geometric mean inequality [16], we have that

2
√
Δeδeχα−2χα ≤ χα +Δeδeχα−2 ≤ (Δe + δe)χα−1 ,

wherefrom (23) is obtained.

Remark 7. For α = 2 and α = 1 from (23) we obtain

F ≤ M2
1

4m

(√
Δe

δe
+

√
δe
Δe

)2

− 2M2 , (24)

and

M1 ≤ m2

2H

(√
Δe

δe
+

√
δe
Δe

)2

, (25)

where H = 2χ−1 is a harmonic index.

According to Theorem 1, i.e. inequality (11), the following is valid:

Theorem 5. Let G be a simple connected graph with n vertices and m ≥ 2 edges. Denote

by S a subset of Im = {1, 2, . . . ,m} which minimizes the expression∣∣∣∣∣∑
i∈S

(d(ei) + 2)α−1 − 1

2
χα−1

∣∣∣∣∣ .
Then

χα ≤ χ2
α−1

χα−2

⎛⎝1 + β(S)

(√
Δe

δe
−
√

δe
Δe

)2
⎞⎠ , (26)

where

β(S) =

∑
i∈S(d(ei) + 2)α−1

χα−1

(
1−

∑
i∈S(d(ei) + 2)α−1

χα−1

)
.

Equality is attained if L(G) is regular.
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Proof. The inequality (26) is obtained from (11) for pi = (d(ei) + 2)α−1, ai = d(ei) + 2,

i = 1, 2, . . . ,m, R = Δe = d(e1) + 2, and r = δe = d(em) + 2.

Remark 8. Since β(S) ≤ 1
4
, the inequality (26) is stronger than (23). Thus, for example,

for α = 1, from (26) we obtain

M1 ≤ 2m2

H

⎛⎝1 + α(m)

(√
Δe

δe
−
√

δe
Δe

)2
⎞⎠ , (27)

where

α(m) =
1

4

(
1− (−1)m+1 + 1

2m2

)
.

The above inequality is stronger than (25) when m is odd.

Theorem 6. Let G be a simple connected graph with n vertices and m ≥ 2 edges. Then

χαχ−α ≤ m2

⎛⎝1 + α(m)

(√
Δα

e

δαe
−
√

δαe
Δα

e

)2
⎞⎠ (28)

with equality if L(G) is regular.

Proof. For pi = 1, ai = (d(ei) + 2)α, i = 1, . . . ,m, R = Δα
e = (d(e1) + 2)α, and r = δαe =

(d(em) + 2)α, according to Theorem 1 we obtain (28).

Remark 9. For α = 1 the inequality (28) reduces to (27).
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vanović (Eds.), Bounds in Chemical Graph Theory – Mainstreams, Univ. Kragujevac,

Kragujevac, 2017, pp. 121–133.
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