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Abstract

Geometric–arithmetic index is defined as GA(G) =
∑

uv∈E(G)

2
√
dudv

du+dv
, where du

denotes the degree of a vertex u in G. In this paper, we obtain the first and second
maximum values of geometric–arithmetic index for all tricyclic graphs on n vertices
and the corresponding extremal graphs.

1 Introduction

We consider only simple, undirected and finite graphs. A graph is denoted by G =

G(V,E), where V is its vertex set and E its edge set. The order of G is the number

n = |V (G)| of its vertices and its size is the number m = |E| of its edges. For two vertices

u and v (u, v ∈ V ), if uv ∈ E(G), we say u and v adjacent in G. The degree of a vertex
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u, denoted du, is the number of vertices adjacent to it in G. The number of vertices of

degree i in G will be denoted by ni = ni(G). We denote the minimum and the maximum

degree of vertices of G by δ = δ(G) and Δ = Δ(G), respectively.

During the last decades, a large number of topological indices were introduced and

found some applications in chemistry, see e.g., [4, 5, 13]. The study of topological indices

goes back to the seminal work by Wiener [15] in which he used the sum of all shortest-

path distances, nowadays known as the Wiener index of a (molecular) graph for modeling

physical properties of alkanes.

The geometric–arithmetic (GA) index is a newly proposed graph invariant in mathe-

matical chemistry. Motivated by the definition of the Randić connectivity index, Vukičević

and Furtula [14] proposed the geometric–arithmetic index. The geometric–arithmetic in-

dex GA(G) of a graph G is defined as in [14] by

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
. (1)

The reason for introducing a new index is to gain prediction of some property of

molecules somewhat better than obtained by already indices. For physicochemical prop-

erties such as entropy, enthalpy of vaporization, standard enthalpy of vaporization, en-

thalpy of formation, and acentric factor, it is noted in Rodriguez and Sigarreta [11] and

Vukičević and Furtula [14] that the predictive power of GA index is somewhat better than

the predictive power of other indices such as Randić index.

In [14] Vukičević and Furtula gave the lower and upper bounds for GA, and identified

the trees with the minimum and the maximum GA indices, which are the star and the

path respectively. In [1], Das and Trinajstić compared the GA and ABC indices for

chemical trees and molecular graphs. In [16], Yuan, Zhou and Trinajstić gave the lower

and upper bounds for the GA index for molecular graphs using the numbers of vertices

and edges. They also determined the n-vertex molecular trees with the minimum, the

second-minimum and the third-minimum, as well as the second-maximum and the third-

maximum, GA indices. The details about mathematical properties of the GA indices and

their applications in QSPR and QSAR can be found in the survey [2] reported by Das,

Gutman and Furtula. For instance, see the recent papers [8–10, 12] and references cited

therein.

Recently, Du et al. [3,7] determined the (molecular) trees, unicyclic and bicyclic graphs

with maximum GA indices. In this paper, we will determine the first and second maximum
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graphs of GA indices for the tricyclic graphs.

2 Preliminaries

Let e be an edge of the graph G, connecting the vertices u and v. Then defining GA (G)

is by associating a weight w (e) to the edge e:

w (e) =
2
√
dudv

du + dv

so that the geometric–arithmetic index is a sum of edge contributions:

GA (G) =
∑
e∈E

w (e) . (2)

The weight w (e) is positive-valued for all edges e.

Let G be a simple graph with n ≥ 2 vertices and m edges. An edge of G connecting

a vertex of degree i with a vertex of degree j will be called an (i, j)-edge. The number

of (i, j)-edges will be denoted by eij. Clearly, eij = eji and
∑

1≤i≤j≤n−1

eij = m. Eq.(1) can

now be rewritten as

GA (G) =
∑

1≤i≤j≤n−1

2
√
ij

i+ j
eij =

∑
1≤i≤j≤n−1

[
1−

(√
i−√

j
)2

i+ j

]
eij

=
∑

1≤i≤j≤n−1

eij −
∑

1≤i≤j≤n−1

(√
i−√

j
)2

i+ j
eij

Let, as before, e be the edge of the graph G connecting the vertices u and v. Associate

to the edge e a weight w∗ (e):

w∗ (e) =

[(√
du −

√
dv
)2

du + dv

]
For graphs without isolated vertices (in particular, for connected graphs),

GA (G) = m−
∑
e∈E

w∗ (e) (3)

Lemma 2.1. If G is a simple graph with m edges, then

GA(G) = m−
∑

uv∈E(G)

(√
du −

√
dv
)2

du + dv
. (4)

For a connected graph G with m edges, from Eq.(3), we have GA (G) = m − f (G),

where f (G) =
∑

uv∈E(G)

[ (√
du−

√
dv

)2

du+dv

]
. Thus, for a fixedm, GA (G) is decreasing on f (G).

Using this fact, we will determine tricyclic graphs with large GA indices.
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Φ0
Φ1

Figure 1. Tricyclic graphs Φ0 and Φ1 .

Let Gn be the set of all connected graphs with n vertices and n + 2 edges. A graph

G ∈ Gn is called a tricyclic graph. Let G1
n = {G|G ∈ Gn and e33 = 5, e23 = 2, e22 = n− 5}

and G2
n = {G|G ∈ Gn and e12 = e23 = 1, e33 = 7, e22 = n − 7} with G1

n = {Φ0} and

G2
n = {Φ1} are the unique tricyclic graphs with n vertices respectively (see Fig. 1).

Table 1 lists the equivalence classes (Eq.cl.) of Gn with n1 = 0 (i.e, each class pertaining

to a particular degree sequence) that are of interest for the present considerations.

3 Main Results

In this section, we determine the first and second maximum of GA indices for tricyclic

graphs.

Lemma 3.1. (See [6]) There is a connected tricyclic graph G of order n with n1(G) = 0

if and only if G satisfies Table 1.

Table 1. Degree distributions of connected tricyclic graphs with n1 = 0.

Eq.cl. n6 n5 n4 n3 n2 n1 ni(i ≥ 7)

D1 1 0 0 0 n− 1 0 0
D2 0 1 0 1 n− 2 0 0
D3 0 0 2 0 n− 2 0 0
D4 0 0 1 2 n− 3 0 0
D5 0 0 0 4 n− 4 0 0

Lemma 3.2. For the tricyclic graph Φ0, we have GA(Φ0) = n+
4
√
6

5
.

Lemma 3.3. For the tricyclic graph Φ1, we have GA(Φ1) = n+
6
√
6 + 10

√
2

15
.

Theorem 3.4. Let G ∈ Gn\(G1
n ∪ G2

n) for n ≥ 6, then

GA(G) < n+
6
√
6 + 10

√
2

15
< n+

4
√
6

5
.
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Proof. For n = 5 there exits exactly four non-isomorphic tricyclic graphs. So, it is enough

to assume that n ≥ 6. Two cases are considered as follows:

A) Tricyclic graphs without pendant vertices.

B) Tricyclic graphs containing at least one pendant vertex.

Case (A): Lemma 3.1 and Table 2 gives us the result.

Table 2. The connected tricyclic graphs with n1 = 0 and their GA.

Eq.cl. e23 e24 e25 e26 e33 e34 e35 e44 e22 GA

D1 0 0 0 6 0 0 0 0 n− 4 n+ 3
√
3− 4

D2 2 0 4 0 0 0 1 0 n− 5 n+ 35
√
15+160

√
10+112

√
6−700

140

D2 3 0 5 0 0 0 0 0 n− 6 n+ 50
√
10+42

√
6−210

35

D3 0 6 0 0 0 0 0 1 n− 5 n+ 4
√
2− 4

D3 0 8 0 0 0 0 0 0 n− 6 n+ 16
√
2−18
3

D4 4 4 0 0 1 0 0 0 n− 7 n+ 24
√
6+40

√
2−90

15

D4 6 4 0 0 0 0 0 0 n− 8 n+ 36
√
6+40

√
2−120

15

D4 5 3 0 0 0 1 0 0 n− 7 n+ 14
√
6+4

√
3+14

√
2−49

7

D4 3 3 0 0 1 1 0 0 n− 6 n+ 42
√
6+20

√
3+70

√
2−175

35

D4 4 2 0 0 0 2 0 0 n− 6 n+ 168
√
6+120

√
3+140

√
2−630

105

D4 2 2 0 0 1 2 0 0 n− 5 n+ 84
√
6+120

√
3+140

√
2−420

105

D5 12 0 0 0 0 0 0 0 n− 10 n+ 24
√
6−50
5

D5 10 0 0 0 1 0 0 0 n− 9 n+ 4
√
6− 8

D5 8 0 0 0 2 0 0 0 n− 8 n+ 16
√
6−30
5

D5 6 0 0 0 3 0 0 0 n− 7 n+ 12
√
6−20
5

D5 4 0 0 0 4 0 0 0 n− 6 n+ 8
√
6−10
5

D5 2 0 0 0 5 0 0 0 n− 5 n+ 4
√
6

5

Case (B): If G is a tricyclic graph containing at least one pendant vertex, then we

characterize the following subcases.

Subcase (1): G has at least two pendant vertices.

Let x1 and x2 be two pendant vertices and adjacent to vertices y1 and y2, respectively,

and dy1 = r1 ≥ dy2 = r2, then r1 ≥ r2 ≥ 2.

(1) If r1 ≥ r2 ≥ 3, then

f(G) =
∑

uv∈E(G)

(√
du −

√
dv
)2

du + dv
≥ (

√
1−√

r1)
2

1 + r1
+

(
√
1−√

r2)
2

1 + r2

≥ 2× (
√
1−√

3)
2

1 + 3
= 2−

√
3.

From Lemma 2.1, we have GA(G) = m− f(G) ≤ n+
√
3 and the equality holds for

the unique graph depicted in Fig. 2.
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(2) If r2 = 2 and r1 ≥ 3, then e12 ≥ 1 and G has at least one (2, t)-edge for some t ≥ 3.

Since
(
√
1−√

r1)
2

1+r1
≥ (

√
1−√

3)
2

1+3
and (

√
2−√

t)
2

2+t
≥ (

√
2−√

3)
2

2+3
, we have

f(G) =
∑

uv∈E(G)

(√
du −√

dv
)2

du + dv
≥ (

√
1−√

2)
2

1 + 2
+

(
√
1−√

3)
2

1 + 3
+

(
√
2−√

3)
2

2 + 3

=
90− 12

√
6− 15

√
3− 20

√
2

30
.

Figure 2. The unique tricyclic graph G with two pendant vertices and GA(G) =
8 +

√
3.

From Lemma 2.1, we get

GA(G) = m− f(G) ≤ n+
12
√
6 + 15

√
3 + 20

√
2− 30

30
≈ n+ 1.7886

equality holds if and only if G ∈ G3
n, where G3

n = {G|G ∈ Gn and e33 = 8, e23 =

e13 = e12 = 1, e22 = n− 11}

Figure 3. A tricyclic graph G ∈ G3
n with GA(G) = n+ 1.7886.

(3) If r1 = r2 = 2, then G has at least two (2, t)-edges, where t ≥ 3 and

f(G) =
∑

uv∈E(G)

(√
du −

√
dv
)2

du + dv
≥ 2× (

√
1−√

2)
2

1 + 2
+ 2× (

√
2−√

3)
2

2 + 3

=
60− 12

√
6− 20

√
2

15
.

From Lemma 2.1, we have

GA(G) = m− f(G) ≤ n+
12
√
6 + 20

√
2− 30

15
≈ n+ 1.8452

equality holds if and only if G ∈ G3
n, where G3

n = {G|G ∈ Gn and e33 = 8, e23 = e12 =

2, e22 = n − 12}. Thus, for any tricyclic graph G with n ≥ 10 and at least two pendant

vertices, the maximum value of GA index is n+ 12
√
6+20

√
2−30

15
.

-472-



Figure 4. A tricyclic graph G ∈ G3
n with GA(G) = n+ 1.8452.

Subcase (2): G has exactly one pendant vertex.

Let x be the pendant vertex and adjacent to vertex y, then dy = r ≥ 2.

(1) If r ≥ 3, then

f(G) =
∑

uv∈E(G)

(√
du −

√
dv
)2

du + dv
≥ (

√
1−√

r)
2

1 +
√
r

≥ (
√
1−√

3)
2

1 +
√
3

=
2−√

3

2
.

From Lemma 2.1, we have GA(G) = m− f(G) ≤ n+
2 +

√
3

2
≈ n+1.8660 and the

equality holds for the unique graph depicted in Fig. 5.

Figure 5. The unique tricyclic graph G with one pendant vertex with GA(G) =
6 + 1.8660.

(2) If r = 2, then G has at least one (2, t)-edge, where t ≥ 3.

(a) If t ≥ 4, then

f(G) =
∑

uv∈E(G)

(√
du −

√
dv
)2

du + dv
>

(
√
1−√

2)
2

1 + 2
+

(
√
2−√

t)
2

2 + t

≥ (
√
1−√

2)
2

1 + 2
+

(
√
2−√

4)
2

2 + 4
=

6− 4
√
2

3
.

From Lemma 2.1, we have

GA(G) = m− f(G) < n+
4
√
2

3
≈ n+ 1.8856.

(b) If t = 3, then

f(G) =
∑

uv∈E(G)

(√
du −

√
dv
)2

du + dv
≥
(√

1−√
2
)2

1 + 2
+

(√
2−√

t
)2

2 + t

=

(√
1−√

2
)2

1 + 2
+

(√
2−√

3
)2

2 + 3
=

30− 6
√
6− 10

√
2

15
.
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From Lemma 2.1, we have

GA(G) = m− f(G) ≤ n+
6
√
6 + 10

√
2

15
≈ n+ 1.9226

equality holds if and only if G ∈ G2
n.

Thus, from the above arguments and calculations. If G is a tricyclic graph with δ = 1,

then GA(G) ≤ GA(Φ1) and if G is a tricyclic graph with δ ≥ 2, then GA(G) < GA(Φ1) <

GA(Φ0). This completes the proof.
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