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Abstract

The atom-bond connectivity (ABC) index is a vertex-degree-based graph invariant

that found applications in chemistry. For a graph G, the ABC index is defined as∑
uv∈E(G)

√
d(u)+d(v)−2

d(u)d(v)
, where d(u) is the degree of vertex u in G and E(G) is the set

of edges of G. Here, we show several new properties of the degree sequences of the

trees with minimal ABC index. We exploit them and some recently proven results of

the structure of the minimal-ABC trees to improve the algorithm based on the degree

sequence [13,38]. The evaluation of the new algorithm shows that it is significantly faster

than the known algorithms for identifying the trees with minimal ABC index.
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1 Introduction

Let G = (V,E) be a simple undirected graph of order n = |V | and size m = |E|. For

v ∈ V (G), the degree of v, denoted by d(v), is the number of edges incident to v. In

1998, Estrada et al. [24] proposed a new vertex-degree-based graph topological index, the

atom-bond connectivity (ABC) index, defined as

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
. (1)

In [24] it was shown that the ABC index can be a valuable predictive tool in the study

of the heat of formation in alkanes. Several years later in [23] Estrada elaborated a

novel quantum-theory-like justification for this topological index, which initiated a lot of

interest both in mathematical and chemical research communities. The physico-chemical

applicability of the ABC index was confirmed and extended also in several other studies

[8, 32,36,47]. In addition, numerous results and structural properties of ABC index were

established [5–7,9–12,17,20, 21,25,28–31,39, 40,44–46].

In [10] it was proven that adding an edge in a graph strictly increases its ABC index

(equivalently in [5] it was shown that deleting an edge in a graph strictly decreases its

ABC index). This fact has two immediate consequences. Firstly, among all connected

graphs with n vertices, the complete graphKn has maximal value of ABC index. Secondly,

among all connected graphs with n vertices, the graph with minimal ABC index is a tree.

In [25] it was shown that the star graph Sn is a tree with maximal ABC index.

On the other hand, a complete characterization of trees with minimal ABC index (also

refereed as minimal-ABC trees) is still an open problem. Computer supported search

can be of enormous help towards a solution of that problem. Here, we present some new

properties of trees with minimal ABC index. We combine them with some additional

recent theoretical results to obtain a new algorithm based on degree sequences of trees,

which is significantly faster than the known algorithms for identifying the trees with

minimal ABC index [13, 26,38,41].

In the sequel, we present some additional results and notation that will be used in the

rest of the paper. A vertex of degree one is a pendant vertex. A vertex is big, if its degree is

at least 3 and it is not adjacent to a vertex of degree 2. As in [31], a sequence of vertices of

a graph G, Sk = v0 v1 . . . vk, will be called a pendant path if each two consecutive vertices

in Sk are adjacent in G, d(v0) > 2, d(vi) = 2, for i = 1, . . . k − 1, and d(vk) = 1. The
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length of the pendant path Sk is k. If d(vk) > 2, then Sk is an internal path of length

k − 1.

A B1-branch is a path of length 2 with one end-vertex u that has at least one child

of degree at least 3. A Bk-branch, for k ≥ 2, is a (sub)graph comprised of a vertex v

of degree k + 1 and k pendant paths of length 2 that all have v as a common vertex.

We call the vertex u (resp. the vertex v) also the center of the B1-branch (resp. of the

Bk-branch, k ≥ 2). Moreover, a B∗
k-branch, for k ≥ 1, is a (sub)graph obtainable from

Bk by attaching an additional vertex to a pendant vertex of Bk-branch. Illustrations of

Bk- and B∗
k-branches are given in Figure 1.

B1 B∗
1

k

Bk(k ≥ 2)

k − 1

B∗
k(k ≥ 2)

Figure 1. Bk and B∗
k-branches, k ≥ 1.

A k-terminal vertex of a rooted tree is a vertex of degree k + 1 ≥ 3, which is a parent

of only B≥1-branches, such that at least one branch among them is a B1-branch (or B∗
1-

branch). The (sub)tree, induced by a k-terminal vertex and all its (direct and indirect)

children vertices, is called a k-terminal branch or Tk-branch.

A sequence D = (d1, d2, . . . , dn) is graphical if there is a graph whose vertex degrees

are di, i = 1, . . . , n. If in addition d1 ≥ d2 ≥ · · · ≥ dn, then D is a degree sequence.

In [43] Wang defined a greedy tree as follows.

Definition 1.1 ( [43]) Suppose the degrees of the non-leaf vertices are given, the greedy

tree is achieved by the following ‘greedy algorithm’:

1. Label the vertex with the largest degree as v (the root).

2. Label the neighbors of v as v1, v2, . . . , assign the largest degree available to them such

that d(v1) ≥ d(v2) ≥ . . .

3. Label the neighbors of v1 (except v) as v11, v12, . . . such that they take all the largest

degrees available and that d(v11) ≥ d(v12) ≥ ... then do the same for v2, v3, . . .
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4. Repeat 3. for all newly labeled vertices, always starting with the neighbors of the

labeled vertex with largest degree whose neighbors are not labeled yet.

The rest of the paper is structured as follows. In Section 2 we give an overview of the

theoretical and computational results relevant to this work. The degree sequences of the

minimal-ABC trees are considered in Section 3, where several new properties were shown.

The new computational results and conclusional remarks are given in Section 4.

2 Related results

2.1 Related theoretical results

To determine the minimal-ABC tress of order less than 10 is an easy task, so to simplify

the exposition in the rest of the paper, we assume that the trees of interest are of order

at least 10.

In [31], Gutman, Furtula and Ivanović obtained the following results.

Theorem 2.1 The n-vertex tree with minimal ABC index does not contain internal paths

of any length k ≥ 1.

Theorem 2.2 The n-vertex tree with minimal ABC index does not contain pendant paths

of length k ≥ 4.

Theorem 2.3 ( [31]) The n-vertex tree with minimal ABC index contains at most one

pendant path of length 3.

An immediate, but important, consequence of Theorem 2.1 is the next corollary.

Corollary 2.4 Let T be a tree with minimal ABC index. Then the subgraph induced by

the vertices of T whose degrees are greater than two is also a tree.

An improvement of Theorem 2.2 is the following result by Lin, Lin, Gao and Wu [40].

Theorem 2.5 Each pendant vertex of an n-vertex tree with minimal ABC index belongs

to a pendant path of length k, 2 ≤ k ≤ 3.

The following result by Gan, Liu and You [27] characterizes the trees with minimal ABC

index with prescribed degree sequences. The same result, using slightly different notation

and approach, was obtained by Xing and Zhou [44].
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Theorem 2.6 Given the degree sequence, the greedy tree minimizes the ABC index.

Theorem 2.7 ( [14]) A minimal-ABC tree does not contain a Bk-branch, k ≥ 5.

Theorem 2.8 ( [14]) A minimal-ABC tree does not contain more than four B4-bra-

nches.

In the rest of this section, we mention several relevant results regarding the bounds on

the number of Bk- and B∗
k-branches. Also we present some results about the forbidden

configurations in the minimal-ABC trees.

Lemma 2.9 ( [22]) A minimal-ABC tree does not contain a B∗
k-branch, k ≥ 4.

Theorem 2.10 ( [22]) Suppose that T is a minimal-ABC tree of order n > 18. If T

contains a pendent path of length 3, then two B2-branches cannot be attached to the same

vertex in T .

Corollary 2.11 ( [22]) A minimal-ABC tree of order n > 18 that contains a pendent

path of length 3 can contain at most two B2-branches.

Theorem 2.12 ( [18]) A minimal-ABC tree of order n > 18 with a pendant path of

length 3 does not contain B1-branch (B∗
1-branch).

Theorem 2.13 ( [18]) A minimal-ABC tree of order n > 18 with a pendant path of

length 3 may contain a B2-branch if and only if it is of order 161 or 168. Moreover, in

this case a minimal-ABC tree is comprised of single central vertex, B3-branches and one

B2, including a pendant path of length 3 that may belong to a B∗
3-branch or B∗

2-branch.

Theorem 2.14 ( [14]) A minimal-ABC tree does not contain more than four B4-bra-

nches.

Theorem 2.15 ( [15]) A minimal-ABC tree G can contain at most four B1-branches.

Moreover, if G is a Tk-branch itself, then it can contain at most three B1-branches.

Theorem 2.16 ( [15]) A minimal-ABC tree does not contain more than eleven B2-

branches.

Theorem 2.17 ( [16]) A minimal ABC tree of order n > 415 does not contain a pendent

path of length three.
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Theorem 2.18 ( [19]) A minimal-ABC tree cannot contain a B4-branch and a B1-

branch simultaneously.

Theorem 2.19 ( [19]) A minimal-ABC tree cannot contain a B4-branch and a B2-

branch simultaneously.

2.2 Related computational results

For complete characterization of the minimal-ABC trees, besides the theoretically proven

properties, computer supported search can be of enormous help. Therefore, we would like

to mention in the sequel few related results.

A first significant example of using computer search was done by Furtula, Gutman,

Ivanović and Vukičević [26], where the trees with minimal ABC index of up to size of

31 were computed, and an initial conjecture of the general structure of the minimal-

ABC trees was set. There, a brute-force approach of generating all trees of a given

order, speeded up by using a distributed computing platform, was applied. The plausible

structural computational model and its refined version presented there was based on the

main assumption that the minimal ABC tree posses a single central vertex, or said with

other words, it is based on the assumption that the vertices of a minimal ABC tree of

degree ≥ 3 induce a star graph. This assumption was shattered by counterexamples

presented in [1–3, 13]. In this context, it is worth to mention that for a special class of

trees, so-called Kragujevac trees, that are comprised of a central vertex and Bk-branches,

k ≥ 1 (see Figure 1 for an illustration), the minimal-ABC tress were fully characterized

by Hosseini, Ahmadi and Gutman [35].

In [13] by considering only the degree sequences of trees and some known structural

properties of the trees with minimal ABC index all trees with minimal ABC index of up

to size of 300, within 15 days, were computed. The enumeration of the degree sequences

of trees in [13] is related to the enumeration of the degree sequences of graphs by Ruskey

et al. [42]. It is based on the Havel-Hakimi’s recursive characterization of the degree

sequences of grpahs [33,34], and exploits the so called “reverse search”, a term originated

by Avis and Fukuda [4]. The algorithm of identifying trees with minimal ABC index

(Algorithm 1), comprised of three consecutive steps is presented bellow.

Due to the nature of the recursive relation used in the first step of Algorithm 1, the

same degree sequences were generated several times. That disadvantage was improved
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Algorithm 1 MinABCTrees(n). Algorithm based on the degree sequences that identifies
the minimal-ABC trees.

Input: An order n of a tree
Output: A tree with the minimal ABC index
1. Enumerate the degree sequences based on the Havel-Hakim recursive characterization,

satisfying in addition some known properties of the minimal-ABC trees.
2. Find corresponding ‘greedy trees’ for each generated degree sequence applying

Theorem 2.6.
3. Calculate the ABC index of each ‘greedy tree’ and select the tree with minimal value.

in [38], where the appropriate degree sequences were enumerated by applying an inte-

ger partitioning argument. For more information about the integer partitioning and its

relation to degree sequences we refer the reader to the introduction of the next section.

Together with combing the known properties of the minimal-ABC trees, the number and

the length of the candidate degree sequences was reduced. Thus, in [38], using a similar

single computer platform as in [13], all minimal-ABC trees of up to size of 350 within 8

days were identified.

Another advantage of applying integer partitioning for enumeration of the degree

sequences is that such enumeration can be easily parallelized. In [41], the above variant

of the degree sequences’ based algorithm, was implemented with MPI + OpenMP, and

minimal-ABC trees of up to size of 400 within 23 hours, on a workstation group with 36

CPU cores, were identified.

Here, by considering new structural properties of the minimal-ABC tree, we modify

the initial degree sequence based algorithm [13] and its improvement [13, 38], obtaining

a new version which is significantly faster than previous known algorithms mentioned

above. We have implemented a not parallelized version and identify the minimal-ABC

trees of up to size of 400 in less than 4 minutes on a single PC with 2 cores run at 2.3

GHz.

3 Degree sequences of minimal-ABC trees

The notation presented in this section is adopted from [37,38].

A partition of a positive integer m is a representation of m as a sum of positive integers,

saym = d1+d2+· · ·+dk. The summands d1, d2, . . . , dk are called the parts of the partition.

A partition m = d1 + d2 + · · · + dk is said to be in standard form if d1 ≥ d2 ≥ · · · ≥ dk,
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and can be written as a sequence (d1, d2, . . . , dk). Further, we will assume here that the

partitions are in standard form. By P (m) we will denote the set of all partitions of m and

by P (m, k) the set of partitions of m having k parts. Obviously, P (m) = ∪m
k=1P (m, k).

The partition numbers p(m) and p(m, k) denote the number of all partitions of m and

the number of all partitions of m with k parts, respectively, i.e., p(m) = |P (m)| and
p(m, k) = |P (m, k)|. It will be convenient to define p(0) = p(0, 0) = 1 and p(m, 0) = 0,

for all m ≥ 1. Let

Pd(m, k) = {(d1, d2, . . . , dk) ∈ P (m, k) | d1 = d ≥ di, i = 2, . . . , k}, and

P≥d(m, k) = {(d1, d2, . . . , dk) ∈ P (m, k) | di ≥ d, i = 1, . . . , k}.
Lemma 3.1 ( [38]) (d1, d2, . . . , dk) ∈ P≥d(m, k) ⇐⇒ (d1− (d− 1), d2− (d− 1), . . . , dk −
(d− 1)) ∈ P (m− k(d− 1), k), d ≥ 2.

We say that a non-increasing positive integer sequence D = (d1, d2, . . . , dt, dt+1, . . . , dn) is

optimal, if it is the degree sequence of a minimal-ABC tree with n vertices.

In the rest of this section, we present some new results about the degree sequences of

minimal-ABC trees .

3.1 Degree sequences of minimal-ABC trees with only
B3-branches

Proposition 3.2 Let D = (d1, d2, . . . , dt, dt+1 . . . , dn) be a degree sequence of minimal-

ABC tree G with n vertices that contains only B3-branches, where d1, d2, . . . , dt are degrees

of big vertices and dt+1 . . . , dn are degrees that belong to the vertices of the B3-branches.

Then,

1 ≤ t ≤ n− 14− i

15
,

with i = 1 if G contains a pendant path of length three, and i = 0 otherwise.

Proof: Since G is a tree, the lower bound on t is obvious. Let G has b3 B3-branches.

Then, it holds that

n = t+ 7b3 + i, i = 0, 1. (2)

By Theorem 2.6 it follows that the big vertices here have degree at least 4. Thus, we have

that sum of degrees is at least 4t+ 13b3 + 2i, or

2n− 2 ≥ 4t+ 13b3 + 2i. (3)
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From (2) and (3) the upper bound on t follows. αa

Remark 3.1 Equality (2) can be rewritten as b3 = (n − t − i)/7, i = 0, 1, which for a

fixed n has an integer solution for every 7th consecutive value of the parameter t. Thus,

we need to consider every 7th value of t in the interval [1, (n− 14)/15].

Consider a degree sequence D = (d1, d2, . . . , dt, dt+1 . . . , dn) defined as above. Let

Dt = (d1, d2, . . . , dt),

St =
t∑

k=1

dk = 2n− 2− 13b3 − 2i,

i = 0, 1 and b3 = (n−t−i)/7, i = 0, 1. To identify the minimal-ABC tree(s) with n vertices

and with only B3-branches we need to generate the partition set P (2n− 2), to calculate

the corresponding ABC index of each partition and choose the minimal one. However,

by Proposition 3.2 it suffices to consider the partitions set P≥4(St, t) or P (St − 3t, t), for

each t in [1, (n− 14− i)/15], that gives an integer solution of b3 = (n− t− i)/7, i = 0, 1.

3.2 Degree sequences of minimal-ABC trees that contain B4-
branches

We exploit Lemma 2.9 and Theorems 2.14, 2.18 and 2.19 to obtain the following result.

Proposition 3.3 Let Db4 = (d1, d2, . . . , dt, dt+1 . . . , dn) be a degree sequence of minimal-

ABC tree G with n vertices that contains B3 and b4 B4-branches, where d1, d2, . . . , dt are

degrees of big vertices and dt+1 . . . , dn are degrees that belong to the vertices of the B3 and

B4-branches. Then,

1 ≤ t ≤ n− 14− 2b4
22

, b4 = 1, 2, 3, 4.

Proof: Similarly as the proof of Proposition 3.2. αa

Consider a degree sequence D = (d1, d2, . . . , dt, dt+1 . . . , dn) defined as above. Let

Db4
t = (d1, d2, . . . , dt),

Sb4
t =

t∑
k=1

dk = 2n− 2− 17b4 − 13b3,
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b4 = 1, 2, 3, 4 and b3 = (n − t − 9b4)/7. To identify the minimal-ABC tree(s) with n

vertices, withB3-branches and b4 B4-branches, by Proposition 3.2 it suffices to consider the

partitions set P≥5(S
b4
t , t) or P (Sb4

t −4t, t), for each t in [1, (n−14−2b4)/22], b4 = 1, 2, 3, 4,

that results in an integer solution of b3 = (n− t− 9b4)/7, b4 = 1, 2, 3, 4.

3.3 Degree sequences of minimal-ABC trees that contain B2 and
B1-branches

Proposition 3.4 Let Db1,b2 = (d1, d2, . . . , dt, dt+1 . . . , dn) be a degree sequence of minimal-

ABC tree G with n vertices that contains B3-branches, b2 B2-branches, and b1 B1-branches

where d1, d2, . . . , dt are degrees of big vertices and dt+1 . . . , dn are degrees that belong to

the vertices of the B1, B2, and B3-branches. Then,

1 ≤ t ≤ n− 14 + 2b2 + 5b1
15

, b1 = 0, 1, 2, 3, 4, and b2 = 0, 1, . . . , 11.

Proof: Similarly as the proof of Proposition 3.2. αa

Consider a degree sequence Db1,b2 = (d1, d2, . . . , dt, dt+1 . . . , dn) defined as above. Let

Db1,b2
t = (d1, d2, . . . , dt),

Sb1,b2
t =

t∑
k=1

dk = 2n− 2− 13b3 − 9b2 − 3b1,

b1 = 0, 1, 2, 3, 4, b2 = 0, 1, . . . , 11 and b3 = (n− t− 5b2 − 2b1)/7. To identify the minimal-

ABC tree(s) with n vertices and with B3-branches, b2 B2-branches, and b1 B1-branches,

we need to consider the partitions set P≥4(S
b1,b2
t , t) or P (Sb1,b2

t − 3t, t), for each t in

[1, (n − 14 + 2b2 − 5b1)/15], b1 = 0, 1, 2, 3, 4, and b2 = 0, 1, . . . , 11, that gives an integer

solution of b3 = (n− t− 5b2 − 2b1)/7.

4 New computational results

The results and remarks from Subsections 2.1, 3.1, 3.2 and 3.3 lead to a modification

of the first step of Algorithm 1, that significantly reduced the length and number of the

possible degree sequences. The modification is presented in EnumerateDegreeSequences(n)

procedure below.

We have implemented in C++ Algorithm 1 with EnumerateDegreeSequences(n)

as its first step. The generation of partitions P (m, k) was done with Algorithm 3.7:
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Algorithm 2 EnumerateDegreeSequences(n). An algorithm that enumerate candidate
degree sequences of a minimal-ABC tree of order n, based on the known properties of the
minimal-ABC trees and integer partitioning.

Input: An order n of a tree
Output: Candidate degree sequences of a minimal-ABC tree of order n

1: if n = 161 or 169 the minimal-ABC trees are given by Theorem 2.13
2: else
3: if n ≤ 415
4: for i = 0, 1 do
5: for t = 1 . . . (n− 14− i)/15 and (n− t− i)/7 is integer do
6: b3 := (n− t− i)/7
7: St := 2n− 2− 13b3 − 2i
8: Compute P (St − 3t, t)
9: else
10: for t = 1 . . . (n− 14)/15 and (n− t)/7 is integer do
11: b3 := (n− t)/7
12: St := 2n− 2− 13b3
13: Compute P (St − 3t, t)
14: for b4 = 1 . . . 4 do
15: for t = 1 . . . (n− 14− 2b4)/22 and (n− t− 9b4)/7 is integer do
16: b3 := (n− t− 9b4)/7
17: St := 2n− 2− 17b4 − 13b3
18: Compute P (St − 4t, t)
19: for b1 = 0, 1 . . . 4 do
20: for b2 = 0, 1 . . . 11 and b1 + b2 �= 0 do
21: for t = 1 . . . (n− 14 + 2b2 + 5b1)/15 and (n− t− 5b2 − 2b1)/7 is integer do
22: b3 := (n− t− 5b2 − 2b1)/7
23: St := 2n− 2− 13b3 − 9b2 − 3b1
24: Compute P (St − 3t, t)

PartitionLexSuccessor from [37]. Our implementation was run on the same platform

as the initial algorithm from [13]: on 2.3 GHz Intel Core i5 processor with 4GB 1333 MHz

DDR3 RAM. The comparative performance of the known search algorithms together with

the algorithm presented here is given in Table 1.

All obtained trees with minimal ABC index of order up to 800 are summarized in

Figures 2, 3 and 4. For the sake of completeness, we include also the results for 7 ≤ n ≤
400, which were already obtained, partially or completely, in [13, 26, 38, 41]. For n ≤ 6,

the minimal ABC trees are paths Pn and they are omitted in the figures.

We would like to note that the algorithm presented here was run on a 6 year old

personal computer. Using more modern computer configuration will certainly improve

the running time. The algorithm presented here can be easily parallelized as in [41], which
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Table 1. The comparison performance of the existing search algorithms. The ab-
breviation DS stands for degree sequence.

Algorithm Range of n Time (approx.) Test platform

Brute-force search [26] 1 ≤ n ≤ 31 7 days for n = 31 Computer grid 400 CPUs

Original DS algorithm [13] 1 ≤ n ≤ 300 15 days PC, 2 cores, 2.3 GHz

Modified DS algorithm [38] 1 ≤ n ≤ 300 75.5 hours PC, 2 cores, 2.4 GHz

Parallelized
modified DS algorithm [41] 1 ≤ n ≤ 300 0.21 hours Workstation group, 36 cores

1 ≤ n ≤ 400 23 hours

Modified DS algorithm
presented here n ≤ 300 13 seconds PC, 2 cores, 2.3 GHz

1 ≤ n ≤ 400 3.7 minutes
1 ≤ n ≤ 700 20 hours
n = 800 2.2 hours

1 ≤ n ≤ 800 7 days

will bring more significant performance improvements. However, the new breakthrough

in the computation one can expect only by incorporating further structural properties of

the minimal-ABC trees and their degree sequences.
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Case n ≡ 0 (mod 7)

n = 7 n = 21 n = 28

n = 161, 168

n

7
− 1

35 ≤ n ≤ 154

n

7
− 3

Case n ≡ 1 (mod 7)

n = 8 n = 15 n = 22 n = 36n = 29

n

7
− 2

⌈
n

7

⌉
− 6

n = 43, 50, 57

n = 14

n

7
− 4

175 ≤ n ≤ 518

⌊
n

14

⌋
− 2,⌈

n

14

⌉
+ 1,

525 ≤ n ≤ 798

525 ≤ n ≤ 602

525 ≤ n ≤ 602

⌊
n

7

⌋

64 ≤ n ≤ 799

⌈
n

14

⌉
− 3, 609 ≤ n ≤ 798

⌊
n

14

⌋
+ 2, 609 ≤ n ≤ 798

Figure 2. Trees of order n, 7 ≤ n ≤ 800 (cases n ≡ 0, 1 (mod 7)), with minimal
ABC index obtained by computer search, where the candidate degree
sequences were enumerated with Algorithm 2
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Case n ≡ 3 (mod 7)

n = 10 n = 17 n = 24 n = 31

38 ≤ n ≤ 73

⌈
n

7

⌉
− 5

⌊
n

7

⌋
− 1

80 ≤ n ≤ 794

Case n ≡ 2 (mod 7)

n = 9 n = 16 n = 23

n = 37

n = 30

⌈
n

7

⌉
− 3

44 ≤ n ≤ 163

⌈
n

7

⌉
− 2

170 ≤ n ≤ 415

⌊
n− 2

14

⌋ ⌈
n− 2

14

⌉

422 ≤ n ≤ 800

Figure 3. Trees of order n, 7 ≤ n ≤ 800 (cases n ≡ 2, 3 (mod 7)), with minimal
ABC index obtained by computer search, where the candidate degree
sequences were enumerated with Algorithm 2.
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Case n ≡ 4 (mod 7)

n = 11 n = 18, 25, 32, 39

⌈
n

7

⌉
− 3

n = 46

Case n ≡ 5 (mod 7)

n = 12 n = 26

53 ≤ n ≤ 305

⌈
n

7

⌉
− 2

n = 19 33 ≤ n ≤ 110

⌈
n

7

⌉
− 4

⌊
n

7

⌋
− 1

312 ≤ n ≤ 501

⌊
n− 4

14

⌋
,⌈

n− 4

14

⌉
− 1,

508 ≤ n ≤ 795

508 ≤ n ≤ 536

508 ≤ n ≤ 536

⌊
n− 4

14

⌋
− 1,

⌈
n− 4

14

⌉
,

543 ≤ n ≤ 795

543 ≤ n ≤ 795

117 ≤ n ≤ 733

⌊
n

7

⌋
− 2

⌈
n− 5

14

⌉
− 1,⌊

n− 5

14

⌋
,

740 ≤ n ≤ 796

740 ≤ n ≤ 796
740 ≤ n ≤ 796

Figure 4. Trees of order n, 7 ≤ n ≤ 800 (cases n ≡ 4, 5 (mod 7)), with minimal
ABC index obtained by computer search, where the candidate degree
sequences were enumerated with Algorithm 2.
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Case n ≡ 6 (mod 7)

62 ≤ n ≤ 657

n = 13 n = 20 n = 27, 34

⌈
n

7

⌉
− 2

8

8

n = 41

n = 48

8

n = 55

⌊
n

7

⌋

⌈
n− 6

14

⌉⌊
n− 6

14

⌋
− 2

664 ≤ n ≤ 797

Figure 5. Trees of order n, 7 ≤ n ≤ 800 (the case n ≡ 6 (mod 7)), with minimal
ABC index obtained by computer search, where the candidate degree
sequences were enumerated with Algorithm 2.
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