
Some Inequalities Between Degree– and
Distance–Based Topological Indices of

Graphs

Ali Ghalavand, Ali Reza Ashrafi∗

Department of Pure Mathematics, Faculty of Mathematical Sciences,

University of Kashan, Kashan 87317-53153, I. R. Iran

(Received June 4, 2017)

Abstract

The aim of this paper is to present some inequalities between degree distance
and Gutman index with the Zagreb and reformulated Zagreb indices of graphs.

1 Introduction

Throughout this paper G is a finite, undirected and simple connected graphs with the

vertex set V (G) and edge set E(G). The number of vertices and edges of G are called

the order and size of G, respectively. Choose vertices u and v in V (G). The degree of v,

degG(v), is the number of edges incident to v and N [v,G] denotes the set of all vertices

adjacent to v. The distance between u and v, denoted by dG(u, v) (d(u, v) for short), is

defined as the number of edges in a shortest path connecting them. We also use notations

Pn for a path of order n, Cn for a cycle of size n and Sn to denote the star on n vertices.

Suppose G denotes the set of all non-isomorphic graphs and as usual R is the set of

all real numbers. A numerical graph invariant is a function α : G −→ R such that

G ∼= H implies that α(G) = α(H). If α correlates a chemico-physical property of a

class of molecules, then we use the word topological index for α. A topological index

∗Corresponding author ( ashrafi@kashanu.ac.ir )

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 79 (2018) 399-406
                         

                                          ISSN 0340 - 6253 



can be defined by degree of vertices is called a degree-based topological index and a

topological index based on graph distances is said to be a distance-based topological

index. It is well-known that distance-based topological indices can be used for character-

izing molecular graphs, establishing relationships between structure and chemico-physical

properties of molecules.

The degree distance of a graph is a degree analog of the well-known Wiener index. To

define, we assume that G is a connected graph, u ∈ V (G) and DG(u) =
∑

v∈V (G) d(u, v).

Then this invariant can be defined as

D′(G) =
∑

x∈V (G)

degG(x)DG(x) =
1

2

∑
x,y∈V (G)

d(x, y)[deg(x) + deg(y)].

The degree distance invariant of graphs was first introduced by Dobrynin and Kochetova

[4] and then by Gutman [10], who used a different name for this topological index and

conjectured that the minimum degree distance of n−vertex graphs, n ≥ 2, is 3n2− 7n+4

and the unique extremal graph is Sn. This conjecture was proved by Tomescu [20].

Tomescu also characterized connected unicyclic and bicyclic graphs in terms of the degree

sequence and obtained minimal graphs in these classes with respect to the degree distance

[22]. Ilić et al. [14] characterized n−vertex unicyclic graphs with girth k, having minimum

and maximum degree distance, respectively. They also proved that the graph obtained

from two triangles linked by a path, is the unique graph having the maximum degree

distance among bicyclic graphs. Bucicovschi and Cioaba [2] determined the minimum

degree distance of a connected graph of order n and size e. We refer the interested

readers to consult papers [5, 6, 21] for more information on this topological index.

Gutman [10], introduced a topological index named the modified Schultz index.

This invariant is now known as the Gutman index. The Gutman index of a graph G

is defined as Gut(G) =
∑

{u,v}⊆V (G) degG(u)degG(v)dG(u, v). Chen and Liu [3] obtained

bicyclic graphs with the smallest Gutman index and characterized the corresponding

extremal graphs. Feng and Liu [9] proved that the graph formed from two triangles

linked by a path has maximal Gutman index among all bicyclic graphs. Mazorodze et

al. [18] obtained an asymptotically sharp upper bound for the Gutman index in terms

of the minimum degree of the graph under consideration. Dankelmann et al. [7] gave an

upper bound for Gutman index and Mukwembi [17] improved this bound.

The first and second Zagreb indices of a graph G [12] are denoted by M1(G) and
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M2(G), respectively. These invariants can be defined as

M1(G) =
∑

v∈V (G)

deg2G(v) and M2(G) =
∑

uv∈E(G)

degG(u)degG(v).

A survey of properties of M1 and M2 are given in [11,19]. Khalifeh et al. [15] obtained this

invariants under some graph operations and Habibi et al. [13], the first three maximum

values of M1 and the first two maximum values of M2 on the class of n−vertex tetracyclic

graphs with n ≥ 6 vertices are computed. Borovic̆anin [1] et al., provided a survey of

the most significant estimates about bounds for Zagreb indices, attempting to cover the

existing literature up to the end of year 2016.

Miličević et al. [16], was introduced the first and second reformulated Zagreb indices

as the edge counterpart of the first and second Zagreb indices, respectively. These are

defined as EM1(G) =
∑

e∈E(G) degG(e)
2 and EM2(G) =

∑
e∼f degG(e)degG(f), where for

e = uv, degG(e) = degG(u) + degG(v) − 2 denotes the degree of the edge e, and e ∼ f

means that the edges e and f are incident. In addition Zhang and Zhang [23] introduced

the general Zagreb index of G as M
(α)
1 (G) =

∑
u∈V (G) degG(u)

α, where α is an arbitrary

real number except from 0 and 1. Obviously M
(2)
1 (G) = M1(G) and for α = 3 one can

obtain the forgotten index F (G) [8].

The girth of a graph G, g(G), is defined as the length of a shortest cycle contained

in the graph G. If the graph G does not contain any cycles then its girth is defined to

be infinite. The aim of this paper is to obtain some inequalities, relating degree distance

and the first and second Zagreb indices of graphs.

2 Main Results

The diameter of a simple connected graph G, diam(G), is the maximum distance be-

tween vertex pairs of G and for x ∈ V (G), d(G, x, k) denotes the number of vertices of

G, say v, such that dG(x, v) = k. Note that d(G, x, k) = 0, when k > diam(G). In

addition, it is clear that the, d(G, x, 1) = degG(x). It is easy to see that
∑

k≥1 d(G, x, k) =

|V (G) − 1|. On the other hand, the degree distance of G can be expressed as D′(G) =∑
x∈V (G) d(x)

∑
k≥1 kd(G, x, k).

Theorem 2.1 Let G be a graph with n vertices, m edges and g(G) > 4. Then D′(G) ≥
6nm− 6m−M1(G)− 2M2(G) with equality if and only if diam(G) ≤ 3.
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Proof. By definition, we have

D′(G) =
∑

x∈V (G)

degG(x)
∑
k≥1

kd(G, x, k)

=
∑

x∈V (G)

degG(x)

⎡⎣d(G, x, 1) + 2d(G, x, 2) +
∑
k≥3

kd(G, x, k)

⎤⎦ .

On the other hand, by this equality and our notations,

D′(G) =
∑

x∈V (G)

degG(x)

⎡⎣degG(x) + 2
∑

xu∈E(G)

(degG(u)− 1) +
∑
k≥3

kd(G, x, k)

⎤⎦
≥

∑
x∈V (G)

degG(x)

⎡⎣degG(x) + 2
∑

xu∈E(G)

(degG(u)− 1) + 3
∑
k≥3

d(G, x, k)

⎤⎦
=

∑
x∈V (G)

degG(x)

⎡⎣degG(x) + 2
∑

xu∈E(G)

(degG(u)− 1)

+ 3

⎛⎝n− 1− degG(x)−
∑

xu∈E(G)

(degG(u)− 1)

⎞⎠⎤⎦
=

∑
x∈V (G)

degG(x)

⎡⎣3n− 3− 2degG(x)−
∑

xu∈E(G)

(degG(u)− 1)

⎤⎦
=

∑
x∈V (G)

degG(x)

⎡⎣3n− 3− 2degG(x) + degG(x)−
∑

xu∈E(G)

degG(u)

⎤⎦
= 6nm− 6m−M1(G)−

∑
x∈V (G)

degG(x)
∑

xu∈E(G)

degG(u)

= 6nm− 6m−M1(G)− 2
∑

xu∈E(G)

degG(x)degG(u)

= 6nm− 6m−M1(G)− 2M2(G).

It is clear that the equality holds if and only if diam(G) ≤ 3. �

As an example for the equality in Theorem 2.1 is a cycle of length five. Suppose

diam(G) ≥ 3 and define α = max{degG(v), degG(u) | dG(u, v) = 3}.

Theorem 2.2 Let G be a graph with n vertices, m edges and g(G) > 6. Then

D′(G) ≥ 8nm− 2m(4 + α) +M1(G)(2α− 1)−M2(G)(2α + 4).

The equality holds if and only if diam(G) ≤ 4 and

{degG(v), degG(u) | dG(u, v) = 3} = {α}.
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Proof. By definition and similar to the proof of Theorem 2.1,

D′(G) =
∑

x∈V (G)

degG(x)
∑
k≥1

kd(G, x, k)

=
∑

x∈V (G)

degG(x)

⎡⎣d(G, x, 1) + 2d(G, x, 2) + 3d(G, x, 3) +
∑
k≥4

kd(G, x, k)

⎤⎦ .

On the other hand, by last equality and our notations,

=
∑

x∈V (G)

degG(x)

⎡⎣degG(x) + 2
∑

xu∈E(G)

(degG(u)− 1) + 3d(G, x, 3) +
∑
k≥4

kd(G, x, k)

⎤⎦
≥

∑
x∈V (G)

degG(x)

⎡⎣degG(x) + 2
∑

xu∈E(G)

(degG(u)− 1) + 3d(G, x, 3) + 4
∑
k≥4

d(G, x, k)

⎤⎦
=

∑
x∈V (G)

degG(x)

⎡⎣degG(x) + 2
∑

xu∈E(G)

(degG(u)− 1) + 3d(G, x, 3)

+ 4(n− 1− degG(x)−
∑

xu∈E(G)

(degG(u)− 1)− d(G, x, 3))

⎤⎦
=

∑
x∈V (G)

degG(x)

⎡⎣4n− 4− 3degG(x)− 2
∑

xu∈E(G)

(degG(u)− 1)− d(G, x, 3)

⎤⎦
=

∑
x∈V (G)

degG(x)

⎡⎣4n− 4− 3degG(x) + 2degG(x)− 2
∑

xu∈E(G)

degG(u)− d(G, x, 3)

⎤⎦
= 8nm− 8m−M1(G)− 2

∑
x∈V (G)

degG(x)
∑

xu∈E(G)

degG(u)−
∑

x∈V (G)

degG(x)d(G, x, 3)

= 8nm− 8m−M1(G)− 4
∑

xu∈E(G)

degG(x)degG(u)−
∑

x∈V (G)

degG(x)d(G, x, 3)

= 8nm− 8m−M1(G)− 4M2(G)−
∑

x∈V (G)

degG(x)d(G, x, 3)

≥ 8nm− 8m−M1(G)− 4M2(G)− α
∑

x∈V (G)

d(G, x, 3)

= 8nm− 8m−M1(G)− 4M2(G)− 2α
∑

uv∈E(G)

(degG(u)− 1)(degG(v)− 1)

= 8nm− 8m−M1(G)− 4M2(G)

− 2α
∑

uv∈E(G)

[degG(u)degG(v)− (degG(u) + degG(v)) + 1]

= 8nm− 8m−M1(G)− 4M2(G)− 2αM2(G) + 2αM1(G)− 2αm

= 8nm− 2m(4 + α) +M1(G)(2α− 1)−M2(G)(2α+ 4).

It is clear that the equality holds if and only if {degG(v), degG(u) | dG(u, v) = 3} = {α}
and diam(G) ≤ 4. �
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As an example for the equality in Theorem 2.2 is the cycle of length seven. Define:

β = β(G) = max{degG(v) | v is the middle point of a path of length 2}.

Theorem 2.3 Let G be a graph with n vertices, m edges and g(G) > 4. Then Gut(G)

≥ M2(G) + 2EM2(G) − 2(β − 2)EM1(G) + (M1(G))3

4m2 − 5F (G) + 8M1(G) − 8m. The

equality holds if and only if diam(G) ≤ 2 and

{degG(v) | uvw is a path of length two in G } = {β}.

Proof. By definition,

Gut(G) =
∑

{u,v}⊆V (G)

degG(u)degG(v)dG(u, v)

=
∑

uv∈E(G)

degG(u)degG(v) + 2
∑

e∼f,e=uv,f=vw

degG(u)degG(w)

+
∑

{u,v}⊆V (G),degG(u,v)≥3

degG(u)degG(v)dG(u, v)

≥
∑

uv∈E(G)

degG(u)degG(v) + 2
∑

e∼f,e=uv,f=vw

degG(u)degG(w)

= M2(G) + 2
∑

e∼f,e=uv,f=vw

degG(u)degG(w)

= M2(G) + 2
∑

e∼f,e=uv,f=vw

(
degG(e)− (degG(v)− 2)

)(
degG(f)− (degG(v)− 2)

)
By expanding the terms under summation, we have

Gut(G) ≥ M2(G) + 2
∑

e∼f,e=uv,f=vw

degG(e)degG(f)

− 2
∑

e∼f,e=uv,f=vw

(degG(v)− 2)(degG(e) + degG(f))

+ 2
∑

e∼f,e=uv,f=vw

(degG(v)− 2)2

= M2(G) + 2EM2(G)− 2
∑

e∼f,e=uv,f=vw

(degG(v)− 2)(degG(e) + degG(f))

+ 2
∑

v∈V (G)

(
degG(v)

2

)
(degG(v)− 2)2,
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and by simplifying last summations, we have

Gut(G) ≥ M2(G) + 2EM2(G)− 2
∑

e∼f,e=uv,f=vw

(degG(v)− 2)(degG(e) + degG(f))

+
∑

v∈V (G)

[
deg4G(v)− 5deg3G(v) + 8deg2G(v)− 4degG(v)

]
= M2(G) + 2EM2(G)− 2

∑
e∼f,e=uv,f=vw

(degG(v)− 2)(degG(e) + degG(f))

+ M4
1 (G)− 5F (G) + 8M1(G)− 8m

≥ M2(G) + 2EM2(G)− 2(β − 2)
∑

e∼f,e=uv,f=vw

(degG(e) + degG(f))

+ M4
1 (G)− 5F (G) + 8M1(G)− 8m

≥ M2(G) + 2EM2(G)− 2(β − 2)EM1(G) +M
(4)
1 (G)− 5F (G) + 8M1(G)− 8m.

The result now follows from this fact that M
(4)
1 (G) ≥ (M1(G))3

4m2 . By our argument

given above, one can easily seen that the equality holds if and only if diam(G) ≤ 2 and

{degG(v) | v is the middle point of a path of length 2} = {β}. �

Again the cycle graph of size five is an example for equality in Theorem 2.3.
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