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Abstract

Using majorization we find two general lower bounds for the Laplacian Resolvent
Energy of a graph, one in terms of the degrees of the vertices, the other in terms of
the number of edges, and some particular lower bounds for c-cyclic graphs, 0 ≤ c ≤
6.

1 Introduction

Let G = (V,E) be a finite simple connected graph with vertex set V = {1, 2, . . . , n}, edge
set E and degrees d1 ≥ d2 ≥ · · · ≥ dn. We consider A to be the adjacency matrix of

G, D the diagonal matrix whose diagonal elements are the degrees of G and L = D − A

the Laplacian matrix of G, with eigenvalues λ1 ≥ ... ≥ λn−1 ≥ λn = 0 (For all graph

theoretical terms the reader is referred to reference [10]). The Laplacian Resolvent Energy

of a graph, proposed by Cafure et al. in [4] as an alternative to the Resolvent Energy

(see [5]) is defined as

RL(G) =
n∑

i=1

1

n+ 1− λi

. (1)

In this note we use the majorization technique in order to prove two general lower

bounds for the Laplacian Resolvent Energy, one in terms of the degrees of the graph that

is attained by the n-star graph, the other in terms of the number of edges. We also find

particular lower bounds for c-cyclic graphs, 0 ≤ c ≤ 6.
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Majorization has been applied extensively to find bounds and extremal values for a

variety of descriptors. We point out the book chapters [1] and [3] and the articles [7], [11]

and [9] for a sample of the variety of scenarios covered with this approach.

Here is a brief summary of majorization: given two n-tuples x = (x1, . . . , xn) and

y = (y1, . . . , yn) with x1 ≥ x2 ≥ . . . ≥ xn and y1 ≥ y2 ≥ . . . ≥ yn, we say that x majorizes

y and write x � y in case
k∑

i=1

xi ≥
k∑

i=1

yi, (2)

for 1 ≤ k ≤ n− 1 and
n∑

i=1

xi =
n∑

i=1

yi. (3)

A Schur-convex function Φ : R → R keeps the majorization inequality, that is, if Φ

is Schur-convex then x � y implies Φ(x) ≥ Φ(y). Likewise, a Schur-concave function

reverses the inequality: for this type of function x � y implies Φ(x) ≤ Φ(y). A simple

way to construct a Schur-convex (resp. Schur-concave) function is to consider

Φ(x) =
n∑

i=1

f(xi),

where f : R → R is a convex (resp. concave) one-dimensional real function. For more

details on majorization the reader is referred to [8].

2 Lower bounds for the Laplacian resolvent energy

The following lemma can be found in [8]:

Lemma 1 Let Σa be the set of real n-tuples x = (x1, x2, . . . , xn) such that x1 ≥ x2 ≥
. . . ≥ xn ≥ 0 and

∑n
i=1 xi = a. Then the minimal element of Σa, that is the element

x∗ ∈ Σa such that x � x∗ for all x ∈ Σa, is given by(a
n
,
a

n
, . . .

a

n

)
.

The next result is due to Grone (see [6]):

Lemma 2 For any graph G we have (λ1, λ2, . . . , λn) � (d1 + 1, d2, . . . , dn−1, dn − 1).

With these tools we can prove now the following

Proposition 1 For any graph G we have

RL(G) ≥ 1

n− d1
+

n−1∑
i=2

1

n+ 1− di
+

1

n+ 2− dn
≥ n2

n(n+ 1)− 2|E| .

The left inequality is attained by the n-star graph.
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Proof. The first inequality follows from lemma 2 and the fact that the Laplacian Resol-

vent Energy is a Schur-convex function on account of the real function f(x) = 1
n+1−x

being

convex for x < n + 1. The second inequality follows from considering in the first lemma

the set Σ2|E| to which (λ1, . . . , λn) and d̄ = (d1+1, . . . , dn−1) belong and whose mimimal

element is x∗ = (2|E|
n
, . . . , 2|E|

n
). Then with some abuse of notation, if we denote by RL(x)

the Laplacian Resolvent Energy of a graph evaluated, not at the n-tuple (λ1, . . . , λn), but

at an arbitrary n-tuple x = (x1, . . . , xn), with x1 ≥ x2 ≥ . . . ≥ xn ≥ 0 and
∑

i xi = 2|E|,
we have

RL(G) ≥ RL(d̄) ≥ RL(x∗) =
n2

n(n+ 1)− 2|E| .

Now for the n-star graph Sn its eigenvalues are n, 1 with multiplicity n − 2 and 0

and therefore RL(Sn) = 1 +
n− 2

n
+

1

n+ 1
, which coincides with the lower bound when

d1 = n− 1 and di = 1 for 2 ≤ i ≤ n �
We are usually interested in connected graphs, but if we consider the n-vertex graph

without edges, our rightmost bound recovers the lower bound
n

n+ 1
shown in [4].

Now we will use the following result found in [2]:

Lemma 3 For c-cyclic graphs, the minimal degree sequences with respect to the majoriza-

tion order are given by (2n−2, 1, 1) , in case c = 0 and n > 2, (2n) , in case c = 1, and

n > 2, (32c−2, 2n−2c+2) , in case 2 ≤ c ≤ 6 and n > 2c− 2.

Then we can prove the following

Proposition 2 If T is a tree and n > 2 we have RL(T ) ≥ 1
n−2

+ n−3
n−1

+ 1
n
+ 1

n+1
. If G is

a unicyclic graph and n > 2 we have RL(G) ≥ 1
n−2

+ n−2
n−1

+ 1
n
. If G is a c-cyclic graph,

2 ≤ c ≤ 6, and n > 2c− 2 we have RL(G) ≥ 1
n−3

+ 2c−3
n−2

+ n+1−2c
n−1

+ 1
n
.

Proof. Assume T is a tree, (λ1, . . . , λn) its n-tuple of eigenvalues and (d1, . . . , dn) its

degree sequence. Then by lemma 2 we have (λ1, . . . , λn) � (d1 + 1, d2, . . . , dn−1, dn −
1) = d̄ , and by lemma 3 (d1, d2, . . . , dn) � (2, 2, . . . , 2, 1, 1) . Now it is clear that d̄ �
(3, 2, . . . , 2, 1, 0) = d∗ , and therefore

RL(G) ≥ R(d∗) =
1

n− 2
+

n− 3

n− 1
+

1

n
+

1

n+ 1
.

The other statements follow similarly �
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Remarks. The lower bounds in Proposition 2 in general are not tight. In the case of

trees, it was shown in [4] that RL(T ) ≥ RL(Pn), and RL(Pn) is strictly larger than our

bound
1

n− 2
+
n− 3

n− 1
+
1

n
+

1

n+ 1
except for the case n = 3. For other c-cyclic graphs, there

are no lower bounds for RL(G) that we know of, and we conjecture that the minimum

value is attained precisely at one of those graphs with minimal degree sequence.
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