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Abstract

In this paper, we consider the energy of a simple graph with respect to its
normalized Laplacian eigenvalues (Randić eigenvalues), which we call the normalized
Laplacian energy (also Randić energy). We provide improved upper and lower
bounds on these energies for connected (bipartite) graphs.

1 Introduction and preliminaries

LetG be a finite, simple and undirected graph with n vertices. Let V (G) = {v1, v2, ..., vn} be

the vertex set of G. If any vertices vi and vj are adjacent, then we use the notation vi ∼ vj.

For vi ∈ V (G) , the degree of the vertex vi, denoted by di, is the number of the vertices

adjacent to vi.

The matrix L (G) = D (G) − A (G) is called the Laplacian matrix [27, 28] of G,

where A (G) is the adjacency matrix and D (G) is the diagonal matrix of the vertex

degrees. Since A (G) and L (G) are all real symmetric matrices, their eigenvalues are real

numbers. So, we can assume that λ1 (G) ≥ λ2 (G) ≥ ... ≥ λn (G) (μ1 (G) ≥ μ2 (G) ≥
... ≥ μn (G) = 0) are the adjacency (Laplacian) eigenvalues of G. It follows from the

Geršgorin disc theorem that L (G) is semidefinite. Therefore, all Laplacian eigenvalues of
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G are nonnegative. If the graph G is a connected non-bipartite graph, then μi (G) > 0

for i = 1, 2, ..., n [10]. Because the graph G is assumed to be connected, it has no isolated

vertices (i.e., di > 0 for all 1 ≤ i ≤ n) and therefore the matrix D−1/2 (G) is well-defined.

Then L∗ = L∗ (G) = D−1/2 (G)L (G)D−1/2 (G) is called the normalized Laplacian matrix

of the graph G. Its eigenvalues are ρ1 (G) ≥ ρ2 (G) ≥ ... ≥ ρn (G) = 0. For details of the

spectral theory of the normalized Laplacian matrix, see [7].

It is convenient to write the normalized Laplacian matrix as In−R, where R = R (G) is

the so-called Randić matrix whose (i, j)-entry is

rij =

{
1√
didj

, if vi ∼ vj

0, otherwise .

The Randić eigenvalues q1, q2, ..., qn of the graph G are the eigenvalues of its Randić

matrix. Since R (G) is a real symmetric matrix, its eigenvalues are real numbers. So we

can order them so that q1 ≥ q2 ≥ ... ≥ qn.

One of the most remarkeble chemical applications of graph theory is based on the

close-correspondence between the graph eigenvalues and the molecular orbital energy

levels of π−electrons in conjugated hydrocarbons. For the Hüchkel molecular orbital

approximation, the total π−electron energy in conjugated hydrocarbons is given by the

sum of absolute values of the eigenvalues corresponding to the molecular graph G in which

the maximum degree is not more than four in general.

The singular values of a real matrix (not necessarily square) M are the square roots

of the eigenvalues of the matrix MMT , where MT denotes the transpose of M.

For convenience, if M is a real symmetric matrix of order n, we order and denote

the eigenvalues by λ1 (M) ≥ λ2 (M) ≥ ... ≥ λn (M) and the singular values by σ1 (M) ≥
σ2 (M) ≥ ... ≥ σn (M) . Nikiforov [29] extended the concept of graph energy to any matrix

M, i.e., if G is a graph and M is a real symmetric matrix associated with G, then the

M−energy of G is

EM (G) =
n∑

i=1

∣∣∣∣λi (M)− tr (M)

n

∣∣∣∣ , (1)

where tr (M) is the trace of M.

The energy of G was defined by Gutman in [13, 14] as

E (G) =
n∑

i=1

|λi (G)| .

-322-



Research on graph energy is nowadays very active, as seen from the recent papers [21]-[23],

[25], [29]-[32], [15, 17] monograph [23], the references quoted therein. Recently, the Lapla-

cian energy [16, 33], Randić energy [2]-[4],[8, 18, 12], [24], [26] and the normalized Lapla-

cian energy [6, 19, 20] of a graph has received much interest. Along the same lines, the

energy of more general matrices and sequences has been studied.

Using (1) with M taken to be L∗, the normalized Laplacian energy and Randić energy

of a graph G is

EL∗ (G) =
n∑

i=1

|ρi − 1| =
n∑

i=1

|λi (In − L∗)| and ER (G) =
n∑

i=1

|qi| . (2)

Since L∗ = In −R, it is easy to see that this equivalent to

EL∗ (G) =
n∑

i=1

|qi| =
n∑

i=1

σi (R) = ER (G) .

Some basic properties of EL∗ (G) may be found in [6].

From (1), one can immediately get the normalized Laplacian energy of a graph by

computing the normalized Laplacian eigenvalues of the graph. However, even for special

graphs, it is still complicated to find the normalized Laplacian eigenvalues of them. Hence,

it makes sense to establish lower and upper bounds to estimate the invariant for some

classes of graphs.

Recall that the general Randić index of a graph G is defined in [1] as

Rα = Rα (G) =
∑
vi∼vj

(didj)
α ,

where α �= 0 is a fixed real number.

The general Randić index when α = −1 is

R−1 = R−1 (G) =
∑
vi∼vj

1

didj
.

Some properties on R−1 can be founded in [6].

The complete product G1∨G2 of graphs G1 and G2 is the graph obtained from G1∪G2

by joining every vertex of G1 with every vertex of G2. Generally, we denote by Kn and

Kp,q (p+ q = n) the complete graph and complete bipartite graph.

Gutman et al. [19] gave lower bound for normalized Laplacian energy using the Randic

index. In [6], Cavers et al. obtained lower and upper bounds for EL∗ (G) . In addition,

some bounds were obtained for EL∗ (G) by Hakimi-Neshaad in [20].
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We purpose to obtain some better bounds using the following inequality (in Lemma

1.1) technique on our main results.

Lemma 1.1 [33] Let a1, a2, ..., an be nonnegative numbers. Then

n

⎡⎣ 1

n

n∑
i=1

ai −
(

n∏
i=1

ai

)1/n
⎤⎦ ≤ n

n∑
i=1

ai −
(

n∑
i=1

√
ai

)2

≤ n (n− 1)

⎡⎣ 1

n

n∑
i=1

ai −
(

n∏
i=1

ai

)1/n
⎤⎦ .

In this paper, we obtain some new bounds on EL∗ (G) (= ER (G)) of graphs and improve

some results which were obtained on this energies. In the following we recall some results

from spectral graph theory, and state a few analytical inequalities for our work.

Lemma 1.2 [7] Let the normalized Laplacian eigenvalues of G be given as ρ1 ≥ ρ2 ≥
.... ≥ ρn = 0 . Then

0 ≤ ρi ≤ 2.

Morever ρ1 = 2 if and only if G has a connected bipartite and nontrivial component.

Lemma 1.3 [34] Let G be an undirected, simple and connected graph with n, n ≥ 2,

vertices and m edges. Then

n−1∑
i=1

ρi = n and
n∑

i=1

ρ2i = n+ 2R−1

where R−1 =
∑

vi∼vj
1

didj
.

Lemma 1.4 [31] Let G be a graph of order n with no isolated vertices. Suppose G has

minimum vertex degree equal to dmin and maximum vertex degree equal to dmax. Then

n

2dmax

≤ R−1 ≤ n

2dmin

.

Equality occurs in both bounds if and only if G is a regular graph.

Theorem 1.5 [9] Let G be a connected graph of order n and Δ be the absolute value of

the determinant of the Randic matrix R (G) . Then

ER (G) =

{ ≥ 1 +
√

2R−1 − 1 + (n− 1) (n− 2)Δ2/(n−1)

≤ 1 +
√

(n− 1) (2R−1 − 1) .

If the maximum degree dmax is equal to n− 1, then both the equalities hold if and only

if G ∼= Kn or G ∼= K1 ∨ rK2 with n = 2r + 1 (r ≥ 2).
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2 Main Results

After all above materials, we are ready to present our main results.

Theorem 2.1 Let G be an undirected, simple and connected graph with n, n ≥ 3 vertices.

Then

EL∗ (G) = ER (G) =

⎧⎨⎩ ≥ 1 +
√
2R−1 − 1 + (n− 1) (n− 2)Δ2/(n−1)

≤ 1 +
√

(n− 2) (2R−1 − 1) + (n− 1)Δ2/(n−1)
(3)

where Δ = det (In − L∗) . If the maximum degree dmax is equal to n − 1, then both the

equalities hold if and only if G ∼= Kn or G ∼= K1 ∨ rK2 with n = 2r + 1 (r ≥ 2).

Proof. Setting ai = (ρi − 1)2 and replacing n by n− 1 in Lemma 1.1, we obtain that

N ≤ (n− 1)
n−1∑
i=1

(ρi − 1)2 −
(

n−1∑
i=1

|ρi − 1|
)2

≤ (n− 2)N,

where N =(n− 1)
[

1
n−1

∑n−1
i=1 (ρi − 1)2 − (∏n−1

i=1 (ρi − 1)2
)1/(n−1)

]
.

Therefore, considering Lemma 1.3 we have

N ≤ (n− 1) (2R−1 − 1)− (EL∗ (G)− 1)2 ≤ (n− 2)N.

Observe that

N = (n− 1)

⎡⎣ 1

n− 1

n−1∑
i=1

(ρi − 1)2 −
(

n−1∏
i=1

(ρi − 1)2
)1/(n−1)

⎤⎦
= (n− 1)

⎡⎣ 1

n− 1
(2R−1 − 1)−

(
n−1∏
i=1

(ρi − 1)

)2/(n−1)
⎤⎦

= 2R−1 − 1− (n− 1)Δ2/(n−1).

Hence we get result. For equality conditions, it can be seen in Theorem 1.5.

Remark 2.2 In [20], Hakiminezhaad and Ashrafi obtained the following lower bound for

the normalized Laplacian energy :

EL∗ (G) ≥ 1 +

√
n

dmax

− 1 + 2

(
n− 1
2

)
Δ2/(n−1). (4)

From Lemma 1.4, the lower bound (3) is better than the lower bound (4).
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A strongly regular graph with parameters (n, r, λ, μ) , denoted by SRG (n, r, λ, μ), is

an r−regular graph on n vertices such that for every pair of adjacent vertices there are λ

vertices adjacent to both, and for every pair of non-adjacent vertices there are μ vertices

adjacent to both.

Considering Lemma 1.4 and the inequality (3), we arrive at the following result.

Corollary 2.3 Let G be a graph of order n with no isolated vertices. Suppose G has

minimum vertex degree equal to dmin and maximum vertex degree equal to dmax. Then

EL∗ (G) = ER (G) =

⎧⎪⎨⎪⎩
≥ 1 +

√
n

dmax
− 1 + (n− 1) (n− 2)Δ2/(n−1)

≤ 1 +

√
(n− 2)

(
n

dmin
− 1

)
+ (n− 1)Δ2/(n−1)

(5)

where Δ = det (In − L∗) . Equality holding in both of these inequalities if and only if

G ∼= SRG
(
n, δ, δ

2−δ
n−1

, δ
2−δ
n−1

)
or G ∼= Kn.

In (5), in the upside, one of the present authors [8] gave the proof the equality holding

if and only if G ∼= SRG
(
n, δ, δ

2−δ
n−1

, δ
2−δ
n−1

)
or G ∼= Kn. Morever, these characterizations of

extremal graphs are also satisfying for the underside equality.

Remark 2.4 It can be easy to see that the bound (3) is better than all results which were

obtained for EL∗ (G) in [19] and [6] on many examples. We consider the graph G =

(V,E) with vertex set V = {v1, v2, v3, v4} and the edge set E = {v1v2, v2v3, v1v3, v3v4} .
For this graph, EL∗ (G) = 2.4574. While the lower bound in (3) gives EL∗ (G) ≥ 2.406, the

lower bounds in Theorem 16 [6] and (3.8) [19], give EL∗ (G) ≥ 2.3016 and EL∗ (G) ≥ 1,

respectively.

Similarly, while the upper bound in (3) gives EL∗ (G) ≤ 2.49, the upper bound in

Lemma1 [6] gives EL∗ (G) ≤ 2.708.

If G has k connected components, in particular, G1, G2, ..., Gk, then

EL∗ (G) =
k∑

i=1

EL∗ (Gi) .

We first provide a bound on the normalized Laplacian energy of a graph with k compo-

nents.

Theorem 2.5 Let G be a graph of order n with k connected components and with no

isolated vertices. Then

EL∗ (G) = ER (G) =

{ ≥ k +
√
2R−1 − k + (n− k − 1) (n− k)Δ2/(n−k)

≤ k +
√
(n− k − 1) (2R−1 − k) + (n− k)Δ2/(n−k)

(6)

where Δ = det (In − L∗) .
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Proof. Note that 0 is an eigenvalue of L∗ with multiplicity k. The rest of the proof is

similar to the proof of Theorem 2.1, replacing n by n− k.

Using the bounds of R−1 in the above Lemma 1.4, we give the following corollary.

Corollary 2.6 Let G be a graph of order n with k connected components and with no

isolated vertices. Then

EL∗ (G) = ER (G) =

⎧⎪⎨⎪⎩
≥ k +

√
n

dmax
− k + (n− k − 1) (n− k)Δ2/(n−k)

≤ k +

√
(n− k − 1)

(
n

dmin
− k

)
+ (n− k)Δ2/(n−k)

.

Taking k = 2 in (6),we obtain the following result for the normalized Laplacian energy

(Randić energy) of connected bipartite graphs.

Corollary 2.7 Let G be a connected bipartite graph with n ≥ 3 vertices. Then

EL∗ (G) = ER (G) =

{ ≥ 2 +
√
2R−1 − 2 + (n− 2) (n− 3)Δ2/(n−2)

≤ 2 +
√

(n− 3) (2R−1 − 2) + (n− 2)Δ2/(n−2)
(7)

with equality holding for odd n in both of these inequalities if and only if G ∼= Kp,q with

n = p+ q.

Proof. Since G is bipartite, we have ρ1 = 2 [7]. Then, if we combine this fact with the

proof of Theorem 2.5 , we arrive at the result. One can easily check that both equalities

hold if and only if G is bipartite graph with

|ρ2 − 1| = |ρ3 − 1| = ... = |ρn−1 − 1| =
√

2R−1 − 2

n− 2
.

If ρ2 = 1, then G ∼= Kp,q with n = p+ q. Otherwise ρ2 > 1. Since G is bipartite graph,

one can easily see that G is a bipartite graph with normalized Laplacian spectrum⎧⎪⎪⎪⎨⎪⎪⎪⎩2, 1±
√

2R−1 − 2

n− 2
, ..., 1±

√
2R−1 − 2

n− 2︸ ︷︷ ︸
n−2
2

, 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Using the bounds of R−1 in the Corollary 2.7, we give the following result. For equality

conditions, it can be seen in [8].
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Corollary 2.8 Let G be a connected bipartite graph with n ≥ 3 vertices. Then

EL∗ (G) = ER (G) =

⎧⎪⎪⎨⎪⎪⎩
≥ 2 +

√
n

dmax
− 2 + (n− 2) (n− 3)Δ2/(n−2)

≤ 2 +

√
(n− 3)

(
n

dmin
− 2

)
+ (n− 2)Δ2/(n−2)

(8)

with equality holding in both of these inequalities if and only if G ∼= Kν,ν or G is the

incidence graph of a symmetric 2 −
(
ν, dmin,

2d2min−2dmin

n−2

)
−design [11] (see, p.166) where

n = 2ν and ν > dmin.

Remark 2.9 Recently, the concept of Randić energy was studied intensively in the liter-

ature. One can easily see that the bound (3) is better than the some previous results.

For example, the lower bound which was obtained for Randić energy in [8] is the same

with the bound (5). But we know that (3) is better than (5). In addition, the lower bound

in [26] is also same with the bound (3). Again, in [5], [24], [26] it was presented the

following upper bound for Randić energy

ER (G) ≤ 1 +
√
(n− 1) (2R−1 − 1). (9)

Using the arithmetic-geometric mean inequality, it follows that the upper bound in (3)

is better than the upper bound (9). Similarly, the upper bounds (7) and (8) over Randić

energy of connected bipartite graphs are better than the results which were obtained in [9].
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