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Abstract
If a graph G of order n has the same Laplacian energy as the complete graph Kn

does, i.e., if LE(G) = 2(n−1), then G is said to be L-borderenergetic. In this paper,
we first prove that there are no 2-connected L-borderenergetic graphs of order n ≥ 5
with maximum degree Δ = 3, which improves the result in [B. Deng, X. Li, J. Wang,
Further results on L-Borderenergetic Graphs, MATCH Commun. Math. Comput.
Chem., 77(2017)607–616]. Then by surveying the L-borderenergetic graphs with
maximum degree Δ = 4, we present two asymptotically tight bounds on their sizes.

1 Introduction

Let G be a simple graph of order n and size m and {d1, d2, · · · , dn} be its degree sequence.

Denote the maximum degree and average degree of G by Δ and d(= 2m/n), respectively.

Let Zg(G) =
∑n

i=1 d
2
i , called the first Zagreb index of G. Denote the complete graph of

order n by Kn. The adjacency matrix of G is denoted by A(G), whose eigenvalues are

λ1 ≥ λ2 ≥ · · · ≥ λn, which consist of the spectrum of G. If D(G) is the diagonal matrix

of the vertex degrees of G, L(G) = D(G)−A(G) is defined to be the Laplacian matrix of

G. The Laplacian spectrum of G is composed of its eigenvalues μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥
μn = 0. For details on spectral graph theory, see [3].

The energy [9] and the Laplacian energy [14] of a graph G, denoted by E(G) and

LE(G), respectively, are defined as

E(G) =
n∑

i=1

|λi|,
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and

LE(G) =
n∑

i=1

|μi − d|.

For more information on graph energy and its applications in chemistry, we can refer

to [8, 10, 11, 17].

Recently, the concept of borderenergetic graphs [7] was proposed, namely graphs of

order n satisfying E(G) = 2(n− 1). The corresponding results on borderenergetic graphs

can be seen in [4, 15, 21, 22, 24]. Similarly, some related topics on energy of graphs have

been studied; see [1, 12, 13, 16, 18–20].

For the Laplacian energy of graphs, a similar concept as borderenergetic graphs, called

L-borderenergetic graphs, was proposed by F. Tura [26]. That is, a graph G of order n is

L-borderenergetic if LE(G) = LE(Kn). Note that LE(Kn) = 2(n− 1). More results on

L-borderenergetic graphs, we can refer to [5, 6, 23, 26–28].

In [6], a main result is presented as follow. Let t(G) be the number of vertices of

degree 3 in G.

Theorem 1. If G is a 2-connected graph with maximum degree Δ = 3 and t(G) ≥ 7,

then G is not L-borderenergetic.

In this paper, we obtain a better result, i.e. Theorem 2, which improves Theorem 1.

Theorem 2. If G is a 2-connected graph of order n ≥ 5 with maximum degree Δ = 3,

then G is not L-borderenergetic.

When n = 4, it is easy to check that graph K4−e, i.e., the graph obtained by deleting

an edge from K4, is L-borderenergetic. Note that K4 − e is a 2-connected graph with

maximum degree Δ = 3.

On the other hand, we will focus on the L-borderenergetic graphs with maximum

degree Δ = 4. In chemical graph theory [2, 25], it is well known that, as carbon atoms

are 4-valent, a chemical graph is the graph has no vertex of degree greater than 4. Using

the Koolen-Moulton and the McClelland types of inequalities on the Laplacian energy,

we present two asymptotically tight bounds on their sizes of the L-borderenergetic graphs

with maximum degree Δ = 4. These two types of inequalities below are given by Gutman

and Zhou [14].
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The Koolen-Moulton type of inequality on the Laplacian energy:

LE(G) ≤ 2m

n
+

√√√√(n− 1)

[
2M −

(
2m

n

)2
]
. (1)

The McClelland type of inequality on the Laplacian energy:

LE(G) ≤
√
2Mn , (2)

where M = m+ 1
2

∑n
i=1(di − 2m

n
)2.

2 Proof of Theorem 2

Proof. From the L-borderenergetic graphs with 4 ≤ n ≤ 9 depicted in [5], we know that

when 5 ≤ n ≤ 9, there are no 2-connected L-borderenergetic graphs with maximum

degree Δ = 3. So the following discussion is under the condition n ≥ 10.

For the case of t(G) ≥ 7, the result follows by Theorem 1. Now we only need to

discuss the case of 1 ≤ t(G) ≤ 6. And we prove it by contradiction. Suppose G is

L-borderenergetic. That is, LE(G) =
∑n

i=1 |μi − d| = 2(n− 1). Then we have(
n∑

i=1

|μi − d|
)2

= 4(n− 1)2. (3)

From the left hand of above equation and the Cauchy-Schwarz inequality, we get(
n∑

i=1

|μi − d|
)2

≤ n

n∑
i=1

(μi − d)2 = n

n∑
i=1

(
μ2
i + d

2 − 2μid
)

= n

(
2m+

n∑
i=1

d2i + nd
2 − 4dm

)
(4)

Since G has t(G) vertices of degree 3 and n− t(G) vertices of degree 2, we obtain

d =
3t(G) + 2(n− t(G))

n
, m =

3t(G) + 2(n− t(G))

2
.

When t(G) = 1, we get d = 2 + 1/n, m = n + 1/2 and
∑n

i=1 d
2
i = 4n + 5. Thus, by

(3) and (4), we have

4(n− 1)2 =

(
n∑

i=1

|μi − d|
)2

≤ n[2n+ 1 + 4n+ 5 + n(2 + 1/n)2 − 4(2 + 1/n)(n+ 1/2)]

= 2n2 + 2n− 1,
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which is a contradiction as n ≥ 10. With a similar way, we discuss the cases of t =

2, 3, 4, 5, 6.

When t(G) = 2, we get d = 2 + 2/n, m = n+ 1 and
∑n

i=1 d
2
i = 4n+ 10. By (3) and

(4), we have 4(n− 1)2 ≤ 2(n2 + 2n− 2).

When t(G) = 3, we get d = 2 + 3/n, m = n + 3/2 and
∑n

i=1 d
2
i = 4n + 15. By (3)

and (4), we have 4(n− 1)2 ≤ 2n2 + 6n− 9.

When t(G) = 4, we get d = 2 + 4/n, m = n+ 2 and
∑n

i=1 d
2
i = 4n+ 20. By (3) and

(4), we have 4(n− 1)2 ≤ 2(n2 + 4n− 8).

When t(G) = 5, we get d = 2 + 5/n, m = n + 5/2 and
∑n

i=1 d
2
i = 4n + 25. By (3)

and (4), we have 4(n− 1)2 ≤ 2n2 + 10n− 25.

When t(G) = 6, we get d = 2 + 6/n, m = n+ 3 and
∑n

i=1 d
2
i = 4n+ 30. By (3) and

(4), we have 4(n− 1)2 ≤ 2(n2 + 6n− 18).

For above cases, it all makes contradictions as n ≥ 10. Hence, we can see that G is

not L-borderenergetic.

Indeed, when the maximum degree of a graph is 4, there exists 2-connected L-borderenergetic

graphs. For example, G1 and G2 are two such graphs, see Figure 1. And their Laplacian

spectra are given as follow.

LSp(G1) = {6, 6, 6, 5, 5, 3, 3, 2, 0};
LSp(G2) = {6, 6, 6, 6, 3, 3, 3, 3, 0}.

Moreover, we will survey the sizes of the L-borderenergetic graphs with maximum degree

4 in the next section.

G1
G2

Figure 1. Two 4-regular L-borderenergetic graphs G1 and G2 of order 9.
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3 Bounds on the size of L-borderenergetic graphs

with maximum degree 4

First, we use the Koolen-Moulton type of inequality on Laplacian energy to obtain The-

orem 3.

Theorem 3. If G is an L-borderenergetic graph with maximum degree Δ = 4, then

m ≤ 1

16
Zg(G) +

5n

4
− (n− 3)2

4(n− 1)
− 1. (5)

When G is 4-regular, the bound in (5) is asymptotically tight.

Proof. Let f(x) = 2x
n
+
√
(n− 1)[2(x+ 1

2

∑n
i=1(di − 2x

n
)2)− (2x

n
)2]. Then we see that the

function f(x) is increasing as x ∈ [m, 2n]. Due to m ≤ 2n, we have f(m) ≤ f(2n). Hence,

by (1), we have

LE(G) = 2(n− 1) ≤ 2m

n
+

√√√√(n− 1)

[
2

(
m+

1

2

n∑
i=1

(
di − 2m

n

)2
)

−
(
2m

n

)2
]

≤ 4 +

√√√√(n− 1)

[
4n+

n∑
i=1

(di − 4)2 − 16

]
. (6)

From above inequality, it arrives at

(2n− 6)2 ≤ (n− 1)

[
4n+

n∑
i=1

(di − 4)2 − 16

]

= (n− 1)

(
4n+

n∑
i=1

d2i + 16n− 16m− 16

)
= (n− 1)(20n+ Zg(G)− 16m− 16).

By above inequality, it is easy to get

m ≤ 1

16
Zg(G) +

5n

4
− (n− 3)2

4(n− 1)
− 1.

When G is 4-regular, we have m = 2n and Zg(G) = 16n. Then by above inequality, we

get

m ≤ 9n

4
− (n− 3)2

4(n− 1)
− 1.

Since

lim
n→∞

9n
4
− (n−3)2

4(n−1)
− 1

2n
= 1,

the bound in (5) is asymptotically tight when G is 4-regular.
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Next we use the McClelland type of inequality on Laplacian energy to obtain another

result.

Theorem 4. If G is an L-borderenergetic graph with maximum degree Δ = 4, then

m ≤ 1

16
Zg(G) +

5n

4
− (n− 1)2

4n
. (7)

When G is 4-regular, the bound in (7) is asymptotically tight.

Proof. Let g(x) =
√
2(x+ 1

2

∑n
i=1(di − 2x

n
)2)n. Then we see that the function g(x) is

increasing as x ∈ [m, 2n]. Due to m ≤ 2n, we have g(m) ≤ g(2n). Thus, by (2), we have

LE(G) = 2(n− 1) ≤
√√√√2

(
m+

1

2

n∑
i=1

(
di − 2m

n

)2
)
n ≤

√√√√4n2 + n

n∑
i=1

(di − 4)2 (8)

By above inequality, we obtain

4(n− 1)2 ≤ 4n2 + n

(
n∑

i=1

d2i + 16n− 16m

)
= 4n2 + nZg(G) + 16n2 − 16mn

Hence, it is easy to get

m ≤ 1

16
Zg(G) +

5n

4
− (n− 1)2

4n
.

When G is 4-regular, we have m = 2n and Zg(G) = 16n. Then by above inequality, we

get

m ≤ 9n

4
− (n− 1)2

4n
.

Since

lim
n→∞

9n
4
− (n−1)2

4n

2n
= 1,

the bound in (7) is asymptotically tight when G is 4-regular.
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[25] N. Trinajstić, Chemical Graph Theory , CRC Press, Boca Raton, 1992.

[26] F. Tura, L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77

(2017) 37–44.

[27] F. Tura, L-borderenergetic graphs and normalized Laplacian energy, MATCH Com-

mun. Math. Comput. Chem. 77 (2017) 617–624.

[28] Q. Tao, Y. Hou, A computer search for the L-borderenergetic graphs, MATCH Com-

mun. Math. Comput. Chem. 77 (2017) 595–606.

-310-


