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Abstract

A balanced shaping method for stabilizing open mass action systems is proposed
in this paper. Since complex balanced systems are locally asymptotically stable, the
closed loop system, which is dynamically equivalent to a complex balanced system
under state feedback, is also stable. Essentially, the stabilization process is to find a
target system such that the matching equation is satisfied. We show that balanced
shaping control is an equivalent method of kinetic feedback design for stabilizing
open mass action systems. In addition, controller design based on solving convex
quadratic programming is also presented. Lastly, we illustrate the effectiveness of
balanced shaping control with two examples.

1 Introduction

Chemical reaction networks (CRNs) arise abundantly in process systems and biological

applications, the theory related to it has attracted a growing interest from engineering

[17,26], and even mathematics [1, 7,24] in recent decades.

Research on CRNs was initiated and developed by Horn, Jackson [19], and Fein-

berg [14–16]. Structurally, each CRN corresponds to a directed graph, namely reaction

graph. Reactions are associated with directed edges, while reactants and products (namely
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complexes) are associated with vertexes. This graph representation provides a clear in-

sight on the mathematical structure of CRNs, since weakly reversible CRNs contribute

to digraphs with each connected component to be a strongly connected one. Besides re-

action graph, there exist other graph representations for CRNs, such as species-reaction

graph [6] and species-reaction Petri net [2,3]. These two kinds of graphs were used to an-

alyze the existence of multiple equilibria and develop checkable conditions for persistence

of CRNs in [3] and [6] respectively. A CRN together with mass action law give rise to

a mass action system. The dynamics of some mass action systems have been known to

us. In [19], it was shown that mass action systems contain certain stability property, i.e.,

self-sustaining oscillation and bistability are precluded from complex balanced systems,

and mass action systems admitting quasi-thermodynamic condition are locally asymptot-

ically stable. Feinberg [13] reported the famous Deficiency Zero Theorem, saying that

for each mass action system for which the underlying CRN is weakly reversible and has

deficiency zero, then there exists a unique locally asymptotically stable equilibrium in

each positive stoichiometric compatibility class. He extended it to the Deficiency One

Theorem in [16], which gives weaker conditions for the existence and uniqueness of equi-

librium in each positive stoichiometric compatibility class, i.e., weakly reversible but not

necessary zero-deficient. The same results were established for complex balanced sys-

tems [19,25,33]. Furthermore, if complex balanced systems are assumed to be persistent,

then the stability is global [1, 24]. The Lyapunov function used in all the above works

is a logarithmic function, referred to as the Gibbs’ free energy hereinafter. Recently, the

famous global attractor conjecture has been proven by Craciun with toric differential in-

clusions [8], which implies complex balanced systems are globally asymptotically stable

in each positive stoichiometric compatibility class.

A mass action system is a nonnegative polynomial system [5]. Mass action systems can

be regarded as a possible prototype of nonlinear systems [11], since they have the ability to

produce qualitative phenomena such as stable and unstable equilibria, multiple equilibria,

bifurcation, oscillatory and even chaotic behavior [10,11], which are important for us to

study and understand nonlinear processes. In addition, a lot of nonnegative polynomial

systems can be realized by mass action systems, i.e., for a nonnegative polynomial system,

there exists a mass action system can realize its dynamics if some conditions are satisfied

[18, 28]. Hence, we can investigate nonnegative polynomial systems from the perspective
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of mass action systems [12].

Owing to such practical conclusions on mass action systems and strong relationship

between mass action systems and nonnegative polynomial systems stated above, we can

design controllers for open loop polynomial systems. In [31], the authors have considered

an open loop system with linear input structure, both static and dynamic state feedback

controllers were designed such that the closed loop system is dynamically equivalent to a

weakly reversible mass action system. In another literature [22], the same strategies were

applied to achieve weakly reversible mass action systems with minimal deficiency.

In this paper, we deal with the problem of stabilizing open mass action systems. If the

closed loop system under control is dynamically equivalent to a system, which is stable

at the desired state, then the former is also stable. Inspired by this fact, we stabilize

open mass action systems by state feedback. Since complex balanced systems are stable

at each equilibrium, we can choose them as target systems. More precisely, we look

for a proper state feedback such that the closed loop system is dynamically equivalent

to a mass action system with complex balanced structure. Therefore, control action is

taken to shape the closed loop system, and hence we call this control method balanced

shaping control. Mathematically, balanced shaping is equivalent to the solution of a set of

nonlinear algebraic equations. By fixing the complex stoichiometric matrix of the target

system, these nonlinear constraints change to be linear ones, then we can compute a target

system which is as similar to the mass action system related to the open loop system as

possible through solving convex quadratic programming problem, thus the controller is

designed based on optimization.

The rest of this paper is organized as follows. Section 2 gives a brief introduction

on CRNs. In section 3, we propose the theoretical framework for shaping closed loop

systems such that they have complex balanced target systems under state feedback. Next,

optimization based controller design is presented in section 4. Finally, balanced shaping

control is applied to two examples in section 5. Section 6 concludes the paper.

Notation: Throughout the paper, Rn, Rn
>0, Rn

≥0, Zn, and Zn
≥0 denote the space of n-

dimensional real, positive real, non-negative real, integer and nonnegative integer vectors

respectively; A·i means the ith column of matrix A; 1n and 0n denote n-dimensional

vector with all elements being 1 and 0, respectively; matrix D = diag(di) ∈ Rn×n is a

diagonal matrix with the ith diagonal element to be di.

-83-



2 Preliminaries on chemical reaction networks

In this section, we will sketch the mathematical structure of CRNs and the related results

on stability analysis. All CRNs investigated are governed by mass action kinetics in this

paper.

For a CRN involving n species Xi(i = 1, · · · , n), c complexes Cl(l = 1, · · · , c) and r

reactions Rj(j = 1, · · · , r), we suppose the jth reaction is associated with complexes Cj
and Cj′ , then it can be represented by

Rj :
∑n

i=1 ZijXi
//
∑n

i=1 Zij′Xi , (1)

where Zij, Zij′ ∈ Z≥0 are called stoichiometric coefficients. The stoichiometric coefficients

not only define the complex stoichiometric matrix Z ∈ Zn×c
≥0 with Z·l expressing the lth

complex Cl in the n species, but also define the stoichiometric matrix S ∈ Zn×r with

S·j = Z·j′ − Z·j. Using a slight abuse of notation, we will also refer to the vector Z·l as

the complex Cl in the context.

Definition 1. A CRN N = {X , C,R} is composed of three finite sets:

(1) A set X =
⋃n

i=1 Xi of species;

(2) A set C =
⋃r

j=1{Z·j, Z·j′} of complexes with
⋃r

j=1{j, j′} = {1, · · · , c} and Z·j, Z·j′ ∈

Zn
≥0;

(3) A set R =
⋃r

j=1{Z·j → Z·j′} of reactions, such that for any Z·j ∈ C, Z·j → Z·j /∈ R,

and there must exist a Z·j′ ∈ C satisfying either Z·j → Z·j′ ∈ R or Z·j′ → Z·j ∈ R.

Matrices S and Z can be connected by

S = ZB, (2)

where B ∈ Rc×r is the incidence matrix [4] of reaction graph G(V,E) of N . Structurally,

G(V,E) is a digraph, where V is the set of vertexes with each vertex corresponding to

a complex and E is the set of edges with each edge corresponding to a reaction. For

reaction graph G, its incidence matrix B is defined as Blj = 1 (and −1) if complex Cl acts

as product (and reactant) complex for reaction Rj, and Blj = 0 otherwise [25].

Definition 2. A CRN N is weakly reversible if for each reaction Z·j → Z·j′ ∈ R, there

exists a sequence of reactions in R, which starts with Z·j′ and ends with Z·j, i.e., Z·j′ →
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Z·j1 ∈ R, Z·j1 → Z·j2 ∈ R, · · · , Z·j(k−1)
→ Z·jk ∈ R, Z·jk → Z·j ∈ R. N is reversible if

Z·j → Z·j′ ∈ R indicates Z·j′ → Z·j ∈ R.

In a view of graph theory, N is weakly reversible if and only if each component of

reaction graph G is a strongly connected one. Obviously, reversible CRNs are also weakly

reversible in the view of graph theory.

With mass balance, the dynamics of a CRN can be modeled by

ẋ = Sv(x), (3)

where x ∈ Rn
≥0 is the concentration vector with xi representing the concentration of species

Xi, v(x) is the reaction rate vector with vj(x) representing the rate function of Rj.

Definition 3. The linear subspace Im S is called the stoichiometric subspace of N . For

any x0 ∈ Rn
>0, S (x0) = {x0+ ξ|ξ ∈ Im S} is named the stoichiometric compatibility class

of x0, and S (x0) ∩ Rn
>0 is called the positive stoichiometric compatibility class of x0.

Integrating (3) with respect to time yields

x− x0 =
r∑

j=1

S·j

∫ t

0

vj(τ)dτ,

where x0 = x(0) is the initial condition. Therefore, the state remains within S (x0) for

all time if the system starts with x0.

Rate function vj(x) is related to the kinetics. Under mass action kinetics, the reaction

rate obeys power law in the concentrations of species. For Rj, the reaction rate is

vj(x) = kjj′
n∏

i=1

x
Zij

i , (4)

where kjj′ is the reaction rate coefficient. Therefore, dynamics of CRNs governed by mass

action kinetics can be captured by the following complex centered formulation [28]

ẋ = ZLΨ(x), (5)

where L ∈ Rc×c is a Kirchhoff matrix with

Lij =

{
kji i 6= j,

−
∑c

k 6=j Lkj i = j.
(6)

and Ψ(x) ∈ Rc is the kinetic vector given by

Ψ(x) =


∏n

i=1 x
Zi1
i

...∏n
i=1 x

Zic
i

 . (7)
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Here, kji is the reaction rate coefficient of Z·j → Z·i. Obviously, L reports the structure

of N , i.e., Lij 6= 0 if and only if there exists a reaction from complex Z·j to complex Z·i,

and Ψ(x) is solely determined by Z. Denote the set of kji as K, i.e., K =
⋃c

i,j=1,i 6=j kji,

then we can define mass action system as following.

Definition 4. A CRN N = {X , C,R} together with mass action kinetics give rise to a

mass action system M = {X , C,R,K} admitting

ẋ = ZLΨ(x). (8)

M is called weakly reversible if N is weakly reversible.

Both complex balanced systems and detailed balanced systems are weakly reversible,

the definitions of them are given below.

Definition 5. For a mass action system M captured by (8), x∗ ∈ Rn
>0 is a complex

balanced equilibrium of M if LΨ(x∗) = 0c. Mass action systems admitting a complex

balanced equilibrium are named complex balanced systems.

Definition 6. For a mass action system M captured by (8), x∗ ∈ Rn
>0 is a detailed

balanced equilibrium of M if ΛL> = LΛ, where Λ = diag(Ψi(x
∗)) ∈ Rc×c. Mass action

systems admitting a detailed balanced equilibrium are named detailed balanced systems.

Detailed balanced systems are definitely complex balanced systems, while some other

conditions should be satisfied for a complex balanced system to be detailed balanced [9].

For these two classes of balanced systems, the stability has been known.

Lemma 1. [8, 19, 25] For a complex balanced system M governed by (8), suppose x∗ ∈

Rn
>0 is an equilibrium, then x∗ is the unique equilibrium in S (x∗) ∩ Rn

>0, and moreover,

it is locally asymptotically stable with respect to all initial conditions in S (x∗) ∩ Rn
>0

near x∗. Further, under persistence x∗ is globally asymptotically stable with respect to

all initial conditions in S (x∗) ∩ Rn
>0.

The proof of the Lemma 1 is carried through with Lyapunov function

G(x) = x>[Ln(x)− Ln(x∗)]− (x− x∗)>1n, (9)

which is referred to as the Gibbs’ free energy in the context.
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Corollary 1. [8,9,32] For any detailed balanced system, there exists a unique equilibrium

in each positive stoichiometric compatibility class. Moreover, every equilibrium is locally

asymptotically stable. The result is further enhanced to globally asymptotic stability with

persistence support.

3 Balanced shaping control

Though complex balanced systems are locally asymptotically stable, the stability of mass

action systems that are not complex balanced is not known to us yet. This together with

the demand that a system should work at a certain positive equilibrium motivate us to

consider the following control problem: For a positive state x† ∈ Rn
>0, how to stabilize

the closed loop system at x† with a controller? This problem formulation captures well

the actual requirement of system biology and chemical engineering. In this section, we

stabilize mass action systems through balanced shaping. Firstly, we give a formulation

of open mass action system following the literature [23]. Then balanced shaping control

strategy is proposed.

3.1 Open mass action systems

Open mass action systems (reactions contained in M are taking place in a reactor) are

process systems under the following assumptions:

(1) the system is isothermal and isobaric,

(2) constant physico-chemical properties, such as density and reaction rate coefficients,

(3) only inlet and outlet convection and reactions are taking place.

With overall mass balance and component mass balances, the open system can be

model by [23] {
ẋ = ZLΨ(x)− y(

∑n
i=1 Fi)x+ yF̄xin,

ẏ = y2(Fout −
∑n

i=1 Fi),
(10)

where x ∈ Rn
≥0 is the state vector, Z, L and Ψ(x) are matrices related to mass action

system M, y = 1
V
where V is the volume of the liquid in the reactor, F̄ = diag(Fi) ∈ Rn×n

≥0

where Fi is the inlet volumetric flow rate containing species Xi, Fout is the outlet volumet-

ric flow rate containing all components in the reactor, and xin = [x1,in, · · · , xn,in]
> ∈ Rn

≥0

where xi,in is the inlet concentration of species Xi.
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Assume Fi is kept constant for all i = 1, · · · , n, then we can use Fout to stabilize y

at any y∗ ∈ R>0 using the equation ẏ = y2(Fout −
∑n

i=1 Fi). Therefore, we assume y

is perfectly controlled and constant in our model, without loss of generality, we assume

y = y∗ = 1. Hence we can model open mass action systems by the following linear input

affine system

ẋ = ZLΨ(x)− fx+ gu, (11)

where f = (
∑n

i=1 Fi) is constant, g = F̄ is the linear input structure, and u = xin is the

input. It is important to remark that we choose inlet concentrations as manipulable input

but keep V constant to model open mass action systems here.

Eq. (11) is a fully actuated system, there is a designed input for each of the n states.

However, this is not practical since not all inlet concentrations are manipulable. Therefore,

a general model for the open mass action system is needed. Denote E (|E| = p) as the

index set of manipulable variables, i.e.,

E = {i|i ∈ E if and only if xi,in is munipulable}. (12)

Then a general model for the open mass action system is

ẋ = ZLΨ(x)− f̂x+ ĝû, (13)

where f̂ =
∑

i∈E Fi, ĝ = {F̄·i|ĝ·j = F̄·i if and only if i ∈ E , j = 1, · · · , p} is the linear input

structure, û = {xi,in|ûj = xi,in if and only if i ∈ E , j = 1, · · · , p} is the input. Moreover,

ĝ is of full column rank, i.e., rank(ĝ) = p. For example, if x1,in is the manipulable inlet

concentration for reaction

X1
k12 // X2

k23 // X3 (14)

taking placing in the reactor, then the corresponding f̂ , ĝ and û are

f̂ = F1, ĝ =

F1

0
0

 , û = x1,in. (15)

Denote N1 = { Xi
f̂ // C0 , i = 1, · · · , n}, and M1 as the mass action system for

which the underlying CRN is N1, then ẋ = −f̂x is dynamically equivalent to M1. Let M̂

be the mass action system consists of M and M1, then ẋ = ZLΨ(x)− f̂x is dynamically

equivalent to mass action system M̂. Hence, (13) can be rewritten as

ẋ = ẐL̂Ψ̂(x) + ĝû, (16)
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where Ẑ, L̂ and Ψ̂(x) are matrices related to mass action system M̂. Take the mass

action system represented by (14) for example, by choosing x1,in as manipulable inlet

concentration, then the corresponding mass action system M1 is

X1
k12 //

F1 !!

X2
k23 //

F1

��

X3,

F1}}
C0

(17)

and the open mass action system can be modeled by (16), where Ẑ and L̂ are

Ẑ =

1 0 0 0
0 1 0 0
0 0 1 0

 , L̂ =


−(F1 + k12) 0 0 0

k12 −(F1 + k23) 0 0
0 k23 −F1 0
F1 F1 F1 0

 .

3.2 Balanced shaping control strategy

For open loop system (16), if we stabilize it with state feedback û = α(x), then the closed

loop system is

ẋ = ẐL̂Ψ̂(x) + ĝα(x). (18)

Furthermore, if system (18) is dynamically equivalent to a system

ẋ = f(x), (19)

which is stable at x†, then closed loop system (18) will also be stable at x†.

Since complex balanced systems are locally asymptotically stable at each equilibrium,

they are naturally candidate systems for (19). Specifically, if system (18) is dynamically

equivalent to a complex balanced system M̃ = {X , C̃, R̃, K̃} modeled by

ẋ = Z̃L̃Ψ̃(x), (20)

where x ∈ Rn
≥0 is the state, Z̃, L̃ and Ψ̃(x) are defined as in section 2. Then we get

ẐL̂Ψ̂(x) + ĝα(x) = Z̃L̃Ψ̃(x). (21)

As ĝ is of full column rank, ĝ>ĝ is nonsingular, we can rewrite (21) as

α(x) = (ĝ>ĝ)−1ĝ>
(
Z̃L̃Ψ̃(x)− ẐL̂Ψ̂(x)

)
= (ĝ>ĝ)−1QΦ(x),

(22)

where Q ∈ Rp×q is a matrix with constant elements, Φ(x) ∈ Rq
≥0 is a nonnegative vector

with distinct elements (nonnegative monomials).
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For open mass action system, we choose inlet concentrations as manipulable inputs

in section 2, hence û = α(x) should be nonnegative in a necessary condition of physical

realizability. Since ĝ>ĝ is a positive diagonal matrix, a sufficient condition for α(x) given

by (22) to be nonnegative is that Q is a nonnegative matrix, i.e., Q ∈ Rp×q
≥0 .

Based on the above analysis, we have the following control strategy.

Theorem 1. For open mass action system modeled by (16), x† ∈ Rn
>0 is a desired equi-

librium point, if there exist Z̃ ∈ Zn×c̃
≥0 and L̃ ∈ Rc̃×c̃ such that

(i) L̃Ψ̃(x†) = 0c̃,

(ii) 1
>
c̃ L̃ = 0>

c̃ and L̃ij ≥ 0, ∀ i 6= j,

(iii) ĝ⊥ẐL̂Ψ̂(x) = ĝ⊥Z̃L̃Ψ̃(x) (we call it matching equation),

(iv) Q is a nonnegative matrix, i.e., Q ∈ Rp×q
≥0 ,

where ĝ⊥ ∈ R(n−p)×n is a left annihilator of ĝ with rank(ĝ⊥) = n − p. Then the closed

loop system is stable at x† under state feedback

û = (ĝ>ĝ)−1QΦ(x), (23)

where Q and Φ(x) are given by (22).

Proof. Conditions (i) and (ii) ensure that mass action system M̃ = {X , C̃, R̃, K̃} modeled

by ẋ = Z̃L̃Ψ̃(x) is complex balanced at x†.

Since ĝ⊥ is a left annihilator of ĝ, i.e., ĝ⊥ĝ = 0(n−p)×p, this together with condition

(iii) indicate that there exists α(x) such that

Z̃L̃Ψ̃(x)− ẐL̂Ψ̂(x) = ĝα(x), (24)

or equivalently ẐL̂Ψ̂(x) + ĝα(x) = Z̃L̃Ψ̃(x), which means complex balanced system M̃

is dynamically equivalent to the closed loop system ẋ = ẐL̂Ψ̂(x) + ĝα(x). According to

Lemma 1, M̃ is locally asymptotically stable at each equilibrium, therefore, the closed

loop system will also be stable at x† with state feedback û = α(x). While rank(ĝ) = p,

ĝ>ĝ is nonsingular, we get

α(x) = (ĝ>ĝ)−1ĝ>
(
Z̃L̃Ψ̃(x)− ẐL̂Ψ̂(x)

)
= (ĝ>ĝ)−1QΦ(x)

(25)

from (24), and the nonnegativity of α(x) follows from condition (iv). This completes the

proof.
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Remark 1. It is important to observe that we can compute ĝ⊥ with identity matrix E

and E defined by (12), i.e.,

ĝ⊥ = {Ei·|[ĝ⊥]·j = Ei· if and only if i ∈ {1, · · · , n}\E , j = 1, · · · , n− p}. (26)

Take the input structure ĝ in (15) as an example, a left annihilator is

ĝ⊥ =

[
0 1 0
0 0 1

]
.

Since detailed balanced systems are also complex balanced systems, we have the fol-

lowing conclusion for a detailed balanced system to be the target system.

Corollary 2. For open mass action system modeled by (16), x† ∈ Rn
>0 is a desired

equilibrium point, if there exist Z̃ ∈ Zn×c̃
≥0 and L̃ ∈ Rc̃×c̃ such that

(i) Λ̃L̃> = L̃Λ̃,

(ii) 1
>
c̃ L̃ = 0>

c̃ and L̃ij ≥ 0, ∀ i 6= j,

(iii) ĝ⊥ẐL̂Ψ̂(x) = ĝ⊥Z̃L̃Ψ̃(x),

(iv) Q is a nonnegative matrix, i.e., Q ∈ Rp×q
≥0 ,

where Λ̃ = diag(Ψ̃i(x
†)) ∈ Rc̃×c̃, then the closed loop system is stable at x† under state

feedback (23).

Theorem 1 provides a controller design method for stabilizing open loop system (16)

at x†. Since the closed loop system is dynamically equivalent to a locally asymptotically

stable target system, which in fact is a complex balanced system, we would like to call

this control method balanced shaping. Under control action û = α(x), the closed loop

system works like a complex balanced system, therefore, the complex balanced structure

is shaped through α(x).

Generally, conditions given by Theorem 1 is less strict than that reported in Corol-

lary 2, since detailed balanced systems are definitely complex balanced.

Remark 2. A strongly related notion of balanced shaping control is kinetic feedback

design [23]. For an open loop polynomial system with nonnegative integer exponents

ẋ = M̃Ψ̃(x) + ĝû, (27)

-91-



where M̃ ∈ Rn×c̃ is a constant matrix, Ψ̃(x) ∈ Rc̃ contains monomials of the open loop

system, ĝ ∈ Rn×p is the linear input structure, û ∈ Rp is the input, Lipták et al [23] pro-

posed a kinetic design method for stabilizing the system at a desired positive equilibrium

point x†. With static polynomial feedback law

û = KΨ̃(x), (28)

where K is a constant feedback gain to be determined, the closed loop system is

ẋ = (M̃ + ĝK)Ψ̃(x). (29)

As Ψ̃(x) is determined by a matrix Z̃ ∈ Zn×c̃
≥0 , if there exist K and Kirchhoff matrix L̃

such that the closed loop system is dynamically equivalent to a complex balanced system

M̃ characterized by the pair (Z̃, L̃), i.e.,

(M̃ + ĝK)Ψ̃(x) = Z̃L̃Ψ̃(x), (30)

then the closed loop system will be stable at x†, since M̃ is stable at x†. Compared with

kinetic feedback design, balanced shaping control is an equivalent method for stabilizing

open mass action systems by supposing Z̃ = Ẑ. According to Theorem 1, the following

conditions should be fulfilled with Z̃ = Ẑ

L̃Ψ̂(x†) = 0ĉ, (31a)

1
>
ĉ L̃ = 0>

ĉ , (31b)

L̃ij ≥ 0, ∀ i 6= j, (31c)

ĝ⊥Ẑ(L̂ − L̃) = 0(n−p)×ĉ, (31d)

[ĝ>Ẑ(L̃ − L̂)]ij ≥ 0, ∀ i = 1, · · · , p, j = 1, · · · , ĉ. (31e)

While the conditions (i.e. Eqs. (38), (40) and (41) in [23]) should be fulfilled for kinetic

feedback design are 

L̃Ψ̂(x†) = 0ĉ, (32a)

1
>
ĉ L̃ = 0>

ĉ , (32b)

L̃ij ≥ 0, ∀ i 6= j, (32c)

(M̃ + ĝK) = ẐL̃, (32d)

Kij ≥ 0, ∀ i = 1, · · · , p, j = 1, · · · , ĉ. (32e)

Next, we prove that conditions (31d) and (31e) are equivalent to (32d) and (32e). If there

exists a Kirchhoff matrix L̃ such that Eqs. (31d) and (31e) are satisfied, then there exists
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a K̂ such that Ẑ(L̂ − L̃) = ĝK̂, since ĝ⊥ is the left annihilator of ĝ. Let K = −K̂,

then (32d) is fulfilled (here M̃ = ẐL̂). Moreover, we have K̂ = −(ĝ>ĝ)−1ĝ>Ẑ(L̃ − L̂),

it follows that (32e) is satisfied since ĝ>ĝ is a positive diagonal matrix. On the other

hand, if there exist L̃ and K such that conditions (32d) and (32e) are satisfied, then

(31d) is straightforward since M̃ = ẐL̂, and we can get K = (ĝ>ĝ)−1ĝ>Ẑ(L̃ − L̂). While

Kij ≥ 0 and ĝ>ĝ is a positive diagonal matrix, (31e) is fulfilled. Therefore, balanced

shaping control and kinetic feedback design are equivalent methods for stabilizing open

mass action systems. Though these two methods have the same design goal, i.e., the

closed loop system is dynamically equivalent to a complex balanced system M̃. However,

L̃ is the only variable to be determined in balanced shaping control, we characterize the

existence and positivity of û i.e., (31d) and (31e), with the help of ĝ⊥, hence balanced

shaping control may has advantage in computation in this sense.

Remark 3. Balanced shaping control can also be applied to stabilize affine system like

ẋ = f̂(x) + ĝû, (33)

where ĝ ∈ Rn×p is the linear input structure with full column rank, û ∈ Rp is the input,

and f̂(x) ∈ Rn is a kinetically realizable polynomial vector field [18], i.e., f̂(x) has the

form

f̂i(x) = −xiµi(x) + νi(x), i = 1, · · · , n (34)

where µi(x) and νi(x) are polynomials with nonnegative coefficients. In this case, system

ẋ = f̂(x) can be kinetically realized by a mass action system M̂, hence (33) can be

rewritten as

ẋ = ẐL̂Ψ̂(x) + ĝû,

where Ẑ, L̂ and Ψ̂(x) are matrices related to M̂. Thus, balanced shaping control is

applicable to this case.

4 Optimization based controller design

Since the target system fulfilled for conditions in Theorem 1 and Corollary 2 may

not be unique, it follows that there may exist several controllers. In order to get an

appropriate controller, we propose a systematic method for computing complex balanced

(or detailed balanced) target system based on optimization in this section.
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As Ψ̃(x) is determined by Z̃, conditions (i) and (iii) in Theorem 1 are nonlinear

constraints involving Z̃ and L̃. For simplicity, we can fix Z̃ = Ẑ, and then look for a

solution of the following linear constraints:

L̃Ψ̂(x†) = 0ĉ,

1
>
ĉ L̃ = 0>

ĉ ,

L̃ij ≥ 0, ∀ i 6= j,

ĝ⊥Ẑ(L̂ − L̃) = 0(n−p)×ĉ,

[ĝ>Ẑ(L̃ − L̂)]ij ≥ 0, ∀ i = 1, · · · , p, j = 1, · · · , ĉ.

(35)

In this case, the stabilizer (23) changes to be

û = (ĝ>ĝ)−1ĝ>Ẑ(L̃ − L̂)Ψ̂(x), (36)

since Q = ĝ>Ẑ(L̃ − L̂) and Φ(x) = Ψ̂(x).

We hope to find a proper target system which is as similar to M̂ as possible, and

hence the control cost may be cut down. The reasons are: (a) Balanced shaping control

strategy can be considered as control action is taken such that M̂ is shaped into M̃ since

ẐL̂Ψ̂(x) + ĝα(x) = Z̃L̃Ψ̃(x). (b) The controller given by (36) containing L̃ − L̂, which

is the only difference between M̂ and M̃ since Z̃ = Ẑ. An available performance index

function is

J(L̃) = 1

2

ĉ∑
i,j=1

(L̃ij − L̂ij)
2. (37)

Based on the objective function (37) and constraints given by (35), an optimization

based systematic method for computing complex balanced target system is

min
L̃

J(L̃) (CB)

s.t.



L̃Ψ̂(x†) = 0ĉ,

1
>
ĉ L̃ = 0>

ĉ ,

L̃ij ≥ 0, ∀ i 6= j,

ĝ⊥Ẑ(L̂ − L̃) = 0(n−p)×ĉ,

[ĝ>Ẑ(L̃ − L̂)]ij ≥ 0, ∀ i = 1, · · · , p, j = 1, · · · , ĉ,

(38)

where Ẑ, L̂, Ψ̂(x†) and ĝ⊥ are known, x† is the desired equilibrium point.

By solving the optimization problem CB, we get L̃ firstly, then we can compute û

according to (36).

Remark 4. Target system M̃ is a complex balanced realization of the closed loop system

in balanced shaping control. The problem of finding realizations of kinetic systems was
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first addressed by Szederkényi et al. In [27], Szederkényi developed mixed integer linear

programming (MILP) algorithm capable of determine sparse and dense realizations. In

another paper [29], MILP was applied to find maximal and minimal realizations. Based

on MILP, various realization properties can be reached, such as complex balanced systems

[28], weakly reversible mass action systems [30], linearly conjugate mass action systems

[20], weakly reversible linearly conjugate mass action systems [21].

Analogously, an optimization based systematic method for computing detailed bal-

anced target system is

min
L̃

J(L̃) (DB)

s.t.



Λ̂L̃> = L̃Λ̂,
1
>
ĉ L̃ = 0>

ĉ ,

L̃ij ≥ 0, ∀ i 6= j,

ĝ⊥Ẑ(L̂ − L̃) = 0(n−p)×ĉ,

[ĝ>Ẑ(L̃ − L̂)]ij ≥ 0, ∀ i = 1, · · · , p, j = 1, · · · , ĉ,

(39)

where Ẑ, L̂, Λ̂ = diag(Ψ̂i(x
†)) and ĝ⊥ are known.

5 Illustrative examples

In this section, balanced shaping control is applied to two examples, the first one is a

process system, while the second one is a polynomial system.

5.1 Balanced shaping control for stabilizing a process system

Consider the open mass action system given by Lipták et al. (in section 5.2 in [23]), the

following chemical reactions are taking placing in the reactor

2X1 +X3
1 // X1 +X2

1 / X1 + 2X3.
1

o

X1 + 2X2

1

OO
1

77 (40)

Suppose the inlet volumetric flow rates F1 = F2 = 0.5m3/s, and the desired positive

equilibrium point x† = [1, 1, 1]>. By choosing inlet concentrations x1,in and x2,in as

manipulable variables, the open mass action system can be modeled by

ẋ = ẐL̂Ψ̂(x) + ĝû, (41)
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where

Ẑ =

2 1 1 1 1 0 0 0
0 1 0 2 0 1 0 0
1 0 2 0 0 0 1 0

 , L̂ =



−1 0 0 0 0 0 0 0
1 −1 1 1 0 0 0 0
0 1 −1 1 0 0 0 0
0 0 0 −2 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 1 1 1 0


,

ĝ =

0.5 0
0 0.5
0 0

 , û =

[
xi,in

x2,in

]
,

(42)

in which Ẑ and L̂ correspond to mass action system M̂

2X1 +X3
1 // X1 +X2

1 / X1 + 2X3,
1

o

X1 + 2X2

1

OO
1

77 X1
1 // C0 X2,

1oo

X3

1

OO (43)

where C0 is the zero complex. According to Remark 1, a left annihilator of ĝ is

ĝ⊥ =
[
0 0 1

]
. (44)

Now we design controller for the open loop system by utilizing the systematic method

proposed in section 4, which is based on optimization. By solving the corresponding

optimization problem CB, we get

L̃ =



−1 0 0.5 0.5 0 0 0 0
0.4294 −1 0 0 0.096 0.0678 0.339 0.0678

0 1 −1.5 0.5 0 0 0 0
0.4294 0 0.5 −1.5 0.096 0.0678 0.339 0.0678
0.1412 0 0 0 −0.1921 0 0.0508 0

0 0 0 0 0 −0.1356 0.1356 0
0 0 0.5 0.5 0 0 −1 0
0 0 0 0 0 0 0.1356 −0.1356


. (45)

Hence, the optimization based controller is

û =

[
1.9998x1 + 0.2712x2 + 1.4576x3 + 0.2712

0.5764x2
1x3 + 0.576x1 + 2.1356x2 + 2.3052x3 + 0.4068

]
. (46)

With initial state x0 = [0.5, 1.2, 1.5]>, Fig. 1 shows the states simulation of the closed

loop system. As one expects, the trajectories convergent to the desired point x†.
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Figure 1. States simulation of the closed loop system in section 5.1 with initial
value x0 = [0.5, 1.2, 1.5]>.

5.2 Application to a polynomial system

Another example is the following open loop polynomial system

ẋ = f̂(x) + ĝû, (47)

where

f̂(x) =

−0.6x1x2 + 0.8x2x3 − 0.2x1

−0.5x1x2 − 0.5x2x3 + 0.2x1

0.6x1x2 − 0.8x2x3 + 0.2x1

 , ĝ =

01
0

 , û ∈ R. (48)

According to Remark 3, ẋ = f̂(x) is kinetically realizable, and the realization is

C0 X1

0.2
�

0.2oo 0.2 // X1 +X3

X2 X1 +X2

0.5

O

0.6oo 0.6 // X1 +X2 +X3

X2 +X3

0.8

dd
0.8

66

0.5 // X3,

(49)

which is characterized by

Ẑ =

1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1

 , L̂ =



−1.7 0 0 0 0.2 0 0 0
0.6 0 0.8 0 0 0 0 0
0 0 −2.1 0 0 0 0 0
0.6 0 0.8 0 0 0 0 0
0.5 0 0 0 −0.6 0 0 0
0 0 0 0 0.2 0 0 0
0 0 0.5 0 0 0 0 0
0 0 0 0 0.2 0 0 0


. (50)
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Suppose x† = [1, 1, 1]> is the desired equilibrium point, we use the systematic method

proposed in section 4 to design controller for the open loop system. By solving the

optimization problem CB, we get

L̃ =



−0.6 0 0.6 0 0 0 0 0
0 0 0 0 0 0 0 0

0.45 0 −0.8 0 0.2 0 0.15 0
0 0 0 0 0 0 0 0
0 0 0.2 0 −0.2 0 0 0
0 0 0 0 0 0 0 0

0.15 0 0 0 0 0 −0.15 0
0 0 0 0 0 0 0 0


. (51)

Therefore, the complex balanced target system M̃ is

X1
0.2 / X2 +X3

0.6 /
0.2
o X1 +X2.

0.45
o

0.15
xx

X3

0.15

OO (52)

Hence the optimization based controller is

û =
[
0.35x1x2 + 0.3x2x3 + 0.15x3

]
. (53)

Finally, we simulate the states with initial value x0 = [1.5, 1.2, 0.5]>. Fig. 2 shows

that all trajectories convergent to x†.
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Figure 2. States simulation of the closed loop system in section 5.2 with initial
value x0 = [1.5, 1.2, 0.5]>.

6 Conclusion

In the present work, we have developed a theoretical framework for stabilizing open mass

action systems at the desired state. Since complex balanced systems are locally asymptot-
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ically stable, we try to shape the closed loop systems such that the target systems have a

complex balanced structure, and hence the closed loop systems are also stable. More pre-

cisely, control action is taken such that the closed loop system is dynamically equivalent

to a complex balanced system. Therefore, the effectiveness of balanced shaping control

is equivalent to the existence of proper state feedback and target system. By fixing the

complex stoichiometric matrix of the target system, balanced shaping control results in

a set of linear constraints, and we have proposed a systematic method for computing the

Kirchhoff matrix of the target system through solving optimization problem, i.e., convex

quadratic programming. In this case, we have shown that balanced shaping control is

an equivalent method of kinetic feedback design for stabilizing open mass action systems.

Finally, two examples have been given to illustrate the effectiveness of balanced shaping

control.

In this paper, we keep the inlet volumetric flow rates constant, and choose the inlet

concentrations as manipulable inputs, thus the open loop model for open mass action

system is a linear input affine system. If the inlet concentrations are kept constant and

the inlet volumetric flow rates are chosen as manipulable inputs, then the model for open

mass action system is an affine system with nonlinear input structure. In the near future,

we will consider this nonlinear case, and try to stabilize it by balanced shaping with the

help of mass conservation law.
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