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Abstract

We present linear-time algorithms for Computing the Merrifield-Simmons In-
dex (counting the number of independent sets) on polygonal tree graphs, that are
graphical representations of molecular graphs. Our methods combine a treewidth
decomposition of the input graph, that is a central graph technique, together with
the application of macros, that is a common tool used in Artificial Intelligence for
representing cumulative series of basic operations.

A macro is associated to each basic graphic pattern in our decomposition, al-
lowing us to represent and perform a serie of repetitive operations while the same
pattern graph is found. This results in a linear-time algorithm for counting the
number of independent sets on repetitive graph topologies, such as polygonal ar-
rays. Due to the existence of an efficient treewidth decomposition on polygonal
trees, it is also possible to count independent sets efficiently on this class of graphs.

1 Introduction

In hard counting problems, the computation of the number of independent sets of a graph

G, denoted as i(G), has been key for determining the frontier between efficient counting

(polynomial-time solvable) and intractable counting problems.

The recognition of structural patterns appearing on graphs has been helpful to design

efficient algorithms for computing i(G). For example, the linear-time Okamoto’s algo-
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rithm [12] computes i(G) when G is a chordal graph, and where the decomposition of

G in its clique-tree gives the possibility of applying dynamic programming in an efficient

way. Another case, is the Zhao’s algorithm for computing i(G) on regular graphs [20].

Decompositions of graphs such as clique separators, treewidth decomposition, and

clique decomposition are often used to design efficient graph algorithms. There are even

wonderful general results stating that a variety of NP-complete graph problems can be

solved in polynomial time for graphs of bounded treewidth and bounded clique-width [7].

In order to obtain efficient algorithms based on this approach, the input graphs have to

be restricted to a graph class, which has a bounded treewidth or a bounded clique-width

decomposition.

Polygonal array graphs have been widely investigated, and they represent a relevant

area of interest in mathematical chemistry, since they are molecular graphs used to rep-

resent the structural formula of chemical compound. In addition, it is also important to

recognize substructures of those compounds and learn messages from the graphic model

through the clear elucidation of their structures and properties [16].

The Merrifield-Simmons index of a molecular graph G, that is the number of inde-

pendent sets of G, is a typical example of an invariant used in mathematical chemistry

for quantifying relevant details of molecular structures. Merrifield and Simmons showed

the correlation between i(G) and boiling points on polygonal chain graphs representing

chemical molecules [4, 16].

In particular, hexagonal chains are the graph representations of an important sub-

class of benzenoid molecules, unbranched catacondensed benzenoid molecules, which play

a distinguished role in the theoretical chemistry of benzenoid hydrocarbons [15]. The

propensity of carbon atoms to form compounds, made of hexagonal arrays fused along

the edges, motivated the study of chemical properties of hydrocarbons via hexagonal

chains. Those graphs have been widely investigated and represent a relevant area of in-

terest in mathematical chemistry, since they are used for quantifying relevant details of

the molecular structure of the benzenoid hydrocarbons [6, 15,16].

The extremal chain graphs with respect to some useful topological indices in chemical

applications, such as the Merrified-Simmons index, have been extensively studied. In

1993, Gutman [9] discussed the extremal hexagonal chains according to three topological

invariants: Hosoya index, largest eigenvalue, and Merrified-Simmons index. His work
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greatly motivated the study of extremal polygonal chains.

On his seminal paper, Gutman showed extremal linear chains for Merrifield-Simmons

index for the particular case of hexagonal chains. He conjectured that the hexagonal chain

with the smallest Merrifield-Simmons index is unique and it corresponds to the zig-zag

polyphenegraph.

L.Zhang [17] showed Gutman’s conjecture. They showed that the minimum value for

the Merrifield-Simmons index is achieved by the zig-zag polyphenegraph. Later on, Cao

et al. [2] showed extremal polygonal chains for k-matchings (Hosoya index), considering

the topology of polygonal arrays that provide maximum as well as minimum values for the

Hosoya index. Their demonstrations are based on the use of the Z-polynomial (Z-counting

polynomial). Afterwards, Zhang, Wang and Li [18] determined the extremal hexagonal

chains concerning to the total φ-electron energy, which are similar to the extremal chains

in [19].

In recent years, several works have been done on the extremal problem for the values of

those two indices, i.e., on determining the graphs within a prescribed class that minimize

or maximize the value of the Hosoya and Merrifield-Simmons indices [2,4,15,16,19]. Some

of those works deal with the characterization of the extremal graphs with respect to these

two indices in several given graph classes. Usually, trees, unicyclic graphs, and certain

structures involving pentagonal and hexagonal cycles have been analyzed [2, 4, 5, 15, 21].

In [21], a survey about extremal graphs for Hosoya and Merrifield-Simmons indices for

different graph topologies is considered.

The previous works are connected to hexagonal chains, or to the Hosoya index, and the

obtained results show that typically the graphs of minimal Hosoya index coincide with

those of maximal Merrifield-Simmons index and vice versa. However, the correlations

between these two indices are not fully understood yet. For example, Deng [5] showed

that for the graphs with n vertices and n + 1 edges, denoted as (n, n + 1)-graphs, the

smallest Merrifield-Simmons index do not coincide with those of the largest Hosoya index.

On the other hand, the recognition of repetitive structures ’patterns’ in graphs is es-

sential in the design of efficient algorithms for processing combinatorial objects on them.

Furthermore, some tools developed in AI (Artificial Intelligence) have been useful to pro-

cess combinatorial objects in graphs [1,14]. In our case, we will apply macros represented

by symbolic variables that are used to codify cumulative operations. We show how the
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use of macros is helpful in the design of counting strategies on repetitive patterns of a

graph.

Macros were first used as a tool during plan execution and analysis in the area of AI.

A main property of the macros is the possibility to represent accumulative preconditions

and effects by making macros indistinguishable from individual operators, and allowing

them to perform efficiently a series of repetitive operations while the same pattern graph is

found, as it occurs in the case of polygonal chains. In our case, we analyze the structures

lying on polygonal chains Pt, which are generalizations of hexagonal chains, with the

purpose of design efficient algorithms for computing i(Pt). Similar strategy is used to

compute i(TP ) where TP is a polygonal tree.

There are several works analyzing extremal values for the Merrifield-Simmons index

on hexagonal chain graphs, however to the best of our knowledge, none of those works

have presented an efficient algorithm for computing this index.

We present results derived from the application of macros in the determination of

numerical properties on graphs whose topologies consist of repetitive ‘patterns’, such as

the case of polygonal arrays and polygonal trees. We focus on the design of an efficient

procedure for computing the Merrifield-Simmons index for any kind of polygonal arrays,

including polygonal trees formed by polygons.

We show that a polygonal tree TP has a 2-treewidth decomposition, allowing the

application of macros for computing i(TP ) efficiently. Our algorithm could be adapted

as a computational tool in the mathematical chemistry area in order to contribute to the

analysis of intrinsic properties on molecular graphs. In fact, our algorithm can be adapted

to compute also other combinatorial properties on molecular graphs.

This paper is organized as follows. Section 1 presents a brief introduction to the issue

of counting independent sets. In section 2, we present the notation to be used. Section 3

shows procedures for counting independent sets on basic topology graphs. Section 4 intro-

duces the computation of Merrifield-Simmon index for polygonal array graphs. Section

5 shows a linear-time procedure for counting independent sets based on a 2-treewidth

decomposition of polygonal trees. And finally, some conclusions and final remarks are

presented in section 6.
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2 Notation

Let G = (V,E) be an undirected graph with vertices set V and set of edges E. The

neighborhood for x ∈ V is N(x) = {y ∈ V : xy ∈ E}, and its closed neighborhood is

N(x) ∪ {x} which is denoted by N [x]. We denote the cardinality of a set A, by |A|. The

degree of a vertex x, denoted by δ(x), is |N(x)|, and the degree of G is ∆(G) = max{δ(x) :

x ∈ V }.

A path from v to w, denoted as v−w path, is a sequence of the edges: v0v1, v1v2, . . . ,

vn−1vn such that v = v0, vn = w, and vk is adjacent to vk+1, for 0 ≤ k < n. The length of

the path is n. A simple path is a path where v0, v1, . . . , vn−1, vn are all distinct. A cycle is

a non-empty path such that the first and last vertices are identical, and a simple cycle is

a cycle in which no vertex is repeated, with the exception that the first and last vertices

are identical. A graph G is acyclic if it has no cycles. Pn, Cn, Kn, denote respectively, a

path graph, a simple cycle, and the complete graph, all of those graphs have n vertices.

Given a graph G = (V,E), let G′ = (V ′, E ′) be a subgraph of G. If E ′ contains

every edge vw ∈ E where v ∈ V ′ and w ∈ V ′, then G′ is called the induced graph of G.

A connected component of G is a maximal induced subgraph of G, that is, a connected

component is not a proper subgraph of any other connected subgraph of G. If an acyclic

graph is also connected, then it is called a tree. When a vertex is identified as the root of

the tree, it is called a rooted tree.

The distance dG(x; y) from a vertex x to another vertex y is the minimum number

of edges in a x − y path of G. The distance dG(x;S) from a vertex x to a set S is the

miny∈SdG(x; y).

Given a graph G = (V,E), S ⊆ V is an independent set of G if for every two vertices

v1, v2 in S, v1v2 /∈ E. I(G) denotes the set of all independent sets of G. Let v ∈ V (G), we

denote as Iv(G) = {S ∈ I(G) : v ∈ S} and I−v(G) = {S ∈ I(G) : v /∈ S}. Our standard

reference for graph theoretical terminology is Kocay et al. [11].

Let G = (V,E) be a molecular graph that is, a representation of the structural formula

of a chemical compound in tems of graph theory. Denote by n(G, k) the number of ways

in which k mutually independent sets can be selected in G. By definition, n(G, 0) = 1 and

n(G, 1) = |V (G)|, for all graphs. i(G) =
∑

k≥0 n(G, k) is called the Merrifield-Simmons

index of G, that is exactly the number of independent sets of G. i(G) is also called the

Fibonacci number of the graph G.
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A matching of a molecular graph G = (V,E) is a subset M ⊆ E in which any two

edges are not incident. A matching M is called a k-matching if |M | = k. We denote by

m(G) the number of matchings of G, and denote by mk(G) the number of k-matchings of

G. m(G) =
∑

k≥0mk(G) is the Hosoya index of G, which is exactly the number of edges

matching of G.

The corresponding counting problem on independent sets, denoted by i(G), consists of

counting the number of independent sets of a graph G. i(G) is a #P-complete problem for

graphs G where ∆(G) ≥ 3. i(G) remains #P-complete when it is restricted to 3-regular

graphs [8].

3 Counting independent sets on basic topology

graphs

If G is formed by a set of connected components: Gi, i = 1, . . . , k, then i(G) =
∏k

i=1 i(Gi),

and the time complexity for computing i(G), denoted as T (i(G)), is given by the rule of

the maximum: T (i(G)) = max{T (i(Gi)) : Gi is a connected component of G}. Thus, one

helpful decomposition of the graph is done through its connected components, and from

here on, we consider as an input graph only one connected component.

In this section we present two algorithms to compute i(G) for two basic graph patterns:

simple cycles and trees. We start by mentioning the relation between the number of

independent sets of a path and the Fibonacci numbers.

It turns out that the combinatorial meaning of the Fibonacci numbers are closely

related to the number of independent sets of some kind of basic graph patterns. For

example, it is shown in [13] that Fn+2 is equal to the number of subsets (including the

empty set) in {1, 2, ..., n}, such that no two elements are adjacent, i.e. there are not two

consecutive integers in any subset. If we think of {1, 2, ..., n} as the vertice’s set of a

path graph, say Pn, where an edge ei = {i, i + 1}, i = 1, . . . , n − 1 exists for each pair

of sequential vertices, then i(Pn) is equal to Fn+2, , where Fn+2 denotes the n + 2 − th

Fibonacci number.

3.1 Cycles

If we consider that the n-th element in {1, 2, ..., n} is adjacent to the first vertex, then Pn

turns into a simple cycle Cn. Let Cn = (V,E) be a simple cycle graph, so |V | = n = |E| =
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m, i.e. every vertex in V has degree two. We decompose the cycle Cn as: Pn∪{cm}, where

Pn = (V,E ′), E ′ = {c1, ..., cm−1}. Pn is the internal path of the cycle, and cm = vmv1 is

called the frond edge of the cycle.

Let Pn be the internal path of the cycle Cn. Let Fi = {Pi}, i = 1, . . . , n where {Pi} is a

family of induced subgraphs Pi = (Vi, Ei) of Pn each built by the set of vertices {v1, . . . vi}

of V . We associate to each vertex vi ∈ V a pair (αi, βi). αi = |I−vi(Pi)|, which means that

αi is the number of subsets in I(Pi) where vi does not appear. Meanwhile, βi = |Ivi(Pi)|

conveys the number of subsets in I(Pi), where vi appears. Therefore, i(Pi) = αi + βi.

The first pair (α1, β1) is (1, 1) since the induced subgraph P1 = {v1}, I(P1) = {∅, {v1}}.

It is not hard to show (see e.g. De Ita et al. [3]) that a new pair (αi+1, βi+1) is built from

the previous one by a Fibonacci sequence, as it is shown in Equation 1.

(αi+1, βi+1) = (αi + βi, αi) (1)

In order to process the number of independent sets on any path of a graph G, we

will use computing threads or just threads. A computing thread is a sequence of pairs

(αi, βi), i = 1, . . . , n used for computing the number of independent sets on a v1−vn path.

Lemma 1. The number of independent sets in Cn is equal to Fn+1 + Fn−1.

Proof. Note that every independent set in Pn is an independent set in Cn, except for the

sets S ∈ I(G) where v1 ∈ S and vn ∈ S. In order to eliminate those conflicting sets,

we use two computing threads to compute i(Cn). One thread, called the main thread, is

used to compute i(Pn), where Pn is the internal path of the cycle, and the other one, the

secondary thread, is used to compute |{S ∈ I(Pn) : v1 ∈ S ∧ vn ∈ S}|.

The secondary thread begins with (α′
1, β

′
1) = (0, 1), in order to consider only the

independent sets of I(Pn) where v1 appears.

By expressing the computation of i(Cn) in terms of Fibonacci numbers and applying

recurrence (1), we obtain (α′
1,β

′
1) = (0, 1) = (F0, F1) → (α′

2, β
′
2) = (1, 0) = (F1, F0) →

(α′
3, β

′
3) = (1, 1) = (F2, F1), . . . , (α′

n, β
′
n) = (Fn−1, Fn−2), and the value for the final pair

is (0, Fn−2). Therefore, |{S ∈ I(Pn) : v1 ∈ S ∧ vn ∈ S}| = 0 + βn = Fn−2. The last

pair associated to the computation of i(Cn) is (Fn+1, Fn − Fn−2) = (Fn+1, Fn−1). Then,

i(Cn) = Fn+1 + Fn−1, obtaining a well known identity, the n-th Lucas number.

Thus, the computation of i(Cn) is based on the incremental computation of i(Pi), i =

1, . . . , n. If we perform a linear search on the sequential graph Cn starting at an extreme,
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e.g. beginning at v1, and moving to its incident vertices while the recurrence (1) is applied,

then in linear time on the number of vertices (n), we obtain i(Cn) = αn+βn = Fn+1+Fn−1.

In general, given a connected graph G = (V,E), we call the charge of v in G, to the

pair (αv, βv) associated to a vertex v ∈ G, where αv = |I−v(G)| and βv = |Iv(G)|.

3.2 Counting independent sets on trees

Let T = (V,E) be a rooted tree at a vertex vr ∈ V and (αv, βv) the charge of v ∈ V . We

compute i(T ) while traversing T in post-order.

Algorithm 1 Linear Tree(T )

Input: A tree T
Output: i(T)

Traversing T in post-order, and when a node v ∈ T is left, assign:
if v is a leaf node in T then

(αv, βv) = (1, 1)
else if v is the root node of T then
return αv + βv

else if u1, u2, ..., uk are the child nodes of v, as we have already visited all child nodes,
then each pair (αuj

, βuj
) j = 1, ..., k has been determined based on recurrence (1) then

Let αv =
∏k

j=1 αvj and βv =
∏k

j=1 βvj .
end if

The Algorithm 1 returns the number of independent sets of a rooted tree T in time

O(n + m), which is the necessary time for traversing T in post-order.

The above basic topologies; paths, simple cycles, and trees are graphs where its number

of independent sets can be recognized and counted in linear-time. In [3], a polynomial-

time algorithm has been presented for computing i(G), when G has a linear compositions

of the above patterns, meaning that G is a cactus graph, and the algorithm presented is a

hybrid procedure between the last two above procedures: the procedure for simple cycles

and for trees.

4 Polygonal system graphs

Let Ck be a simple cycle graph of length k. Ck is also called a polygon of size k. A

polygonal chain Pk,t is a graph obtained by identifying a finite number of t polygons of

size at least k, such that each polygon, except the first and the last one, is adjacent to

exactly two polygons. When each polygon in Pk,t has the same number of k vertices, then
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Pk,t is a linear array of t k-gons, and is denoted by Pt. In Figure 1 is shown an example

of P8,4.

The way that two adjacent polygons are joined, via a common vertex or via a common

edge, defines different classes of molecular graphs. Let Pt = h1h2 · · ·ht be a polygonal

chain with t polygons, where each hi and hi+1 have exactly one common edge ei, i =

1, 2, . . . , t − 1. A polygonal chain with at least two polygons has two end-polygons: h1

and ht. Meanwhile h2, . . . , ht−1 are the internal polygons of the chain. In a polygonal

chain, each vertex has degree either 2 or 3. The vertices of degree 3 are exactly the end

points of the common edges between two consecutive polygons.

Figure 1. Example of a octagonal zigzag chain

If the array of polygons follows the structure of a tree where instead of nodes we have

polygons, and any two consecutive polygons share exactly one edge, then we call to that

graph a polygonal tree (see the subgraph on the left in Figure 5).

We show in the following section a novel algorithm for computing the Merrifield-

Simmons index for any class of polygonal chains, including hexagonal chains. Our al-

gorithm is based on the use of macros for counting the number of independent sets on

repetitive structural graphs.

4.1 Counting independent sets on polygonal chains

If we apply the procedure showed in Section 3.1, but using only the symbolic variables:

(αv, βv) to represent the associated charge for each vertex v ∈ Ck, then we can compute

i(Ck) via a macro that is codified by a pair of linear equations on the variables αv and βv.

Let us show as an example how to use symbolic variables during the computation of

i(C4). The two computing threads: Lp, Lc, and its associated pairs are expressed as basic

operations between the symbolic variables: α and β, in the following way:
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Lp : (α, β) → (α+ β, α) → (2α+ β, α+ β) → (3α+2β, 2α+ β) ⇒ (3α+ 2β, 2α+ β)
Lc : (0, β) → (β, 0) → (β, β) → (2β, β) ⇒ - (0, β)

——————
(3α+ 2β, 2α)

(2)

The first component of the last pair obtained on the thread Lc is set to 0 since Lc

stores only the independent sets were the edge v1v4 appears. Thus, the value for i(C4)

is obtained summing the two components of the last pair for Lp and Lc, and under the

substitution α = β = 1. This is, i(C4) = 3α + 2β + 2α = 5α + 2β = 5 + 2 = 7.

In fact, any i(Ck) can be computed using symbolic variables to express the pair (α, β).

Applying the recurrence (1) while each vertex in Ck is visited, as we have shown before,

we obtain as the charge of the last vertex vk ∈ Ck the pair: (Fkα + Fk−1β, Fk−1α), where

Fk is the k-th Fibonacci number. Let us call to the pair (Fkα + Fk−1β, Fk−1α) the macro

M1.

M1 is a pair, and each one of its components is a linear system of equations defined

on the variables: α, β. Furthermore,

i(Ck) = (Fk + Fk−1)α + Fk−1β = Fk+1α + Fk−1β. (3)

The process of forming the pair of linear equations is called the formation of the

macro. A relevant property of a macro is the possibility to represent cumulative opera-

tions via symbolic variables, making macros indistinguishable from individual operators.

If subsequences of operators are repeated, a hierarchy of macros can represent a more

compactly plan than a simple operator sequence, replacing each occurrence of a repeating

subsequence with a macro [1].

M1 indicates that it does not matter the values for α and β, these variables can be

substituted by a current pair of values in order to obtain a final pair of linear equations,

which codify the value of i(Ck) applying the recurrence (3).

For example, let P2 = h1h2 be two adjacent polygons with common edge xy, as we

illustrate in Figure 2. i(h1) is computed according to procedure of section 3.1, beginning

at the common vertex (between both polygons) x and using the symbolic variables: α, β.

At the end of the procedure, the macro M1 = (Fkα + Fk−1β, Fk−1α) is obtained after

reaching the other common vertex y. M1 is associated to the common edge xy between

h1 and h2.
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In our case, the expansion of a macro consists in the substitution of the symbolic vari-

ables α and β, appearing in its pair of equations, by the current values already computed

when the common edge is reached at the computation of i(h2). This process of expansion

is well-defined since no macro appears in its own expansion.

Figure 2. Computing i(P2)

When the computation of i(h2) is started, for example at vertex v1 (Fig. 2), two

new threads are created LP = (α, β) and Lc = (0, β). When the node x is reached,

LP = (2α + β, α + β) and Lc = (β, β). When xy is visited, it implies the substitution of

α and β in the macro M1 by the values given at LP , and Lc pairwise. In our example

LP = (Fk(2α + β) + Fk−1(α + β), Fk−1(2α + β)) and Lc = (Fk(β) + Fk−1(β), Fk−1(β)).

The process of computing the charge on each vertex of h2 continues with these new

pairs of linear equations in both threads. Thus, by applying recurrence (1), the charges

are computed until the last vertex vk of h2 is reached.

At the end of this process, we obtain a new pair of linear equations that determine

the value for the new macro that will be associated to the following common edge if it

exists, or it codifies the value for i(Pt). In this way, we can process any polygonal chain

Pt in linear time on the number of edges in the array, in fact, in time O(t · k), assuming

that there are t k-gons in the array.

In an array of polygons, it is important to define the distance between two consecutive

common edges. Therefore, let us consider the counting of adjacent edges in a clockwise

direction. Let P r
t be the polygonal array where there are r edges separating any two

consecutive common edges ei and ei+1. This counting begins from the adjacent edge of ei

and following a clockwise direction on the set of adjacent edges.

For example, let us consider P 1
3 as a polygonal array of three polygons where each pair

of consecutive common edges between adjacent polygons are at distance 1. Let us denote

as e1 and e2 to the two common edges between adjacent polygons. A macro is computed

for each common edge ei = xy, starting at vertex x and ending at y.
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If we compute the macros starting at e1, the macro M1 is associated to the edge e1,

as previously was explained. A macro M1
2 will be assigned to the edge e2 = wx, where

e2 is at distance one from e1. This means that e2 = wx is adjacent to e = xy which is

adjacent to e1 = yz. Between e1 and e2 there are two vertices.

Therefore, by starting at x until e1 is reached, we have:

Lp : (α, β) → (α + β, α), and Lc : (0, β) → (β, 0).

Those last pairs are substituted in the macro M1 resulting in the new pairs: LP :

(Fk+1α + Fkβ, Fk−1α + Fk−1β) and Lc : (Fkβ, Fk−1β). There are (k − 3) vertices in P 1
2

before reaching w, the other vertex of e2. By applying the recurrence (1) to those last

pairs, we obtain:

Lp : (Fk+1α + Fkβ, Fk−1α + Fk−1β)
1→ (Fk+1α + Fk−1α + Fk+1β, Fk+1α + Fkβ)

2→

(2Fk+1α+Fk−1α+Fk+2β, Fk+1α+Fk−1α+Fk+1β)
3→ (3Fk+1α+2Fk−1α+Fk+3β, 2Fk+1α+

Fk−1α+Fk+2β) . . .
i→ (Fi+1Fk+1α+FiFk−1α+Fk+iβ, FiFk+1α+Fi−1Fk−1α+Fk+i−1β), and

after (k−3) iterations . . .
k−3→ (Fk−2Fk+1α+Fk−3Fk−1α+F2k−3β, Fk−3Fk+1α+Fk−4Fk−1α+

F2k−4β).

Lc : (Fkβ, Fk−1β)
1→ (Fk+1β, Fkβ)

2→ (Fk+2β, Fk+1β) . . .
k−3→ (F2k−3β, F2k−4β).

Figure 3. Computing i(P3) for different distances of their common edges e2 and e3
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Then, M1
2 has associated the pair (Fk−2Fk+1α + Fk−3Fk−1α + F2k−3β, Fk−3Fk+1α

+ Fk−4Fk−1α + F2k−4β) − (0, F2k−4β) = (Fk−2Fk+1α + Fk−3Fk−1α + F2k−3β, Fk−3Fk+1α

+ Fk−4Fk−1α).

Notice that i(P 1
2 ) is obtained summing all values in the macro M1

2 and assigning

α = β = 1. For example, i(P 1
2 ) = (Fk−2Fk+1 +Fk−3Fk−1 +F2k−3 +Fk−3Fk+1 +Fk−4Fk−1).

In Figure 3, we illustrate how the value i(P3) changes according to the position of the

common edge e2.

In general, for each common edge ei between two consecutive polygons, a macro Mi

is associated to the edge ei, and such macro can be codified as (Aiα + Biβ, Ciα), holding

that i(Pi) = Ai + Bi + Ci, under the substitution α = β = 1. Since the cumulative

operations for computing i(Pi) are associated as a macro in the common edge of the last

polygon of the array, then it can be used to assemble the following polygon in the array.

This allows us to do the mathematical analysis when Pt has repetitive patterns.

i(P2) is invariant to the distance between the common edges e1 and e2, but the value

i(Pn) changes for n ≥ 3. A general proof of the above claim has been already demonstrated

by Gutman and Zhang [9, 17]. However, their proofs were only for hexagonal chains

applying a different method than ours that is based in the application of macros. In our

method, we can consider any kind of polygonal arrays.

Notice that Pk,t has not restriction on the value of k. The use of macros Mi =

(Aiα + Biβ, Ciα) allows us to compute i(Pk,i), i = 1, . . . , t, and also provides us general

recurrences to express i(Pk,t).

We illustrate how the macros are useful for processing arrays with repetitive structures,

and for computing the general recurrences associated with i(P 1
t ). In this case, P 1

t is a

polygonal array where any two consecutive common edges ei and ei+1 are at distance 1.

And the distance between edges follow a clockwise direction.

Theorem 1. i(P 1
t ), for any t > 1, can be computed as i(P 1

t )= At + Bt + Ct

based on the recurrence:

Ai+1 = (Fk−2(Ai + Bi) + Fk−3Ci), (4)

Bi+1 = (Fk−2Ai + Fk−3Ci), (5)

Ci+1 = (Fk−3(Ai + Bi) + Fk−4Ci), (6)
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with i = 0, . . . , t− 1, and A0 = Fk, B0 = Fk−1, C0 = Fk−1.

Proof. Let Mi = (Aiα+Biβ, Ciα) be the macro computed on P 1
i . If the array is extended

by one polygon, the new macro M1
i+1 = (Ai+1α + Bi+1β, Ci+1α) is formed, and the new

factors Ai+1, Bi+1, Ci+1 are expressed based on the previous one Ai, Bi, Ci, in the following

way.

Since P 1
i+1 has two vertices before finding the macro M1

i , then:

Lp : (α, β) → (α + β, α), and Lc : (0, β) → (β, 0).

Those pairs are substituted in the macro M1
i , resulting in the new pairs: ((Ai+Bi)α+

Aiβ, Ciα+Ciβ) and (Aiβ, Ciβ) for Lp and Lc, respectively. Since there are (k−3) vertices

in P 1
i+1 before finding the following common edge ei+1, then by applying recurrence (1)

to those last pairs, we obtain for the thread Lp:

((Ai +Bi)α+Aiβ, Ciα+Ciβ)
1→ ((Ai +Bi +Ci)α+ (Ai +Ci)β, (Ai +Bi)α+Aiβ)

2→

((2(Ai +Bi) +Ci)α+ (2Ai +Ci)β, (Ai +Bi +Ci)α+ (Ai +Ci)β)
3→ ((3(Ai +Bi) + 2Ci)α+

(3Ai + 2Ci)β, (2(Ai +Bi) +Ci)α+ (2Ai +Ci)β)
j→ ((Fj+1(Ai +Bi) +FiCi)α+ (Fj+1Ai +

FjCi)β, (Fj(Ai + Bi) + Fj−1Ci)α + (FjAi + Fj−1Ci)β), and then after (k − 3) iterations,

. . .
k−3→ ((Fk−2(Ai + Bi) + Fk−3Ci)α + (Fk−2Ai + Fk−3Ci)β, (Fk−3(Ai + Bi) + Fk−4Ci)α +

(Fk−3Ai + Fk−4Ci)β).

Meanwhile, on the second line Lc, we have that (Aiβ, Ciβ)
1→ ((Ai + Ci)β,Aiβ)

2→

((3Ai + 2Ci)β, (2Ai + Ci)β) . . .
k−3→ ((Fk−2Ai + Fk−3Ci)β, (Fk−3Ai + Fk−4Ci)β). Since the

polygon i + 1 is a cycle, then the pair (0, (Fk−3Ai + Fk−4Ci)β) is subtracted to the last

pair of Lp, forming the new macro M1
i+1 = ((Fk−2(Ai + Bi) + Fk−3Ci)α + (Fk−2Ai +

Fk−3Ci)β, (Fk−3(Ai + Bi) + Fk−4Ci)α). In this way, we obtain the new factors for the

macro M1
i+1. The factor in M1

i+1 can be written in terms of the previous factors of M1
i by

the recurrences:

Ai+1 = (Fk−2(Ai + Bi) + Fk−3Ci), (7)

Bi+1 = (Fk−2Ai + Fk−3Ci), (8)

Ci+1 = (Fk−3(Ai + Bi) + Fk−4Ci). (9)

On the other hand, the initial macro M1 = (Fkα + Fk−1β, Fk−1α) is a general macro

independent of the size of the first polygon. Then, we obtain from M1 the initial factors:

A0 = Fk, B0 = Fk−1, and C0 = Fk−1.

For example, considering only hexagonal arrays (k = 6), M1 determines the initial
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factors: A0 = Fk = F6 = 8. B0 = Fk−1 = 5, and C0 = Fk−1 = 5. Then, i(P 1
1 ) =

8 + 5 + 5 = 18, because α = β = 1.

When an array of two hexagons is considered, then A1 = F4(A0 + B0) + F3C0 =

3(8 + 5) + 2 · 5 = 39 + 10 = 49, B1 = (F4A0 + F3C0) = 3 · 8 + 2 · 5 = 34, and C1 =

(F3(A0 + B0) + F2C0) = 2 · 13 + 1 · 5 = 31. Therefore, i(H1
2 ) = 49 + 34 + 31 = 114.

Similarly, if the array has three hexagons, then A2 = F4(A1 + B1) + F3C1 = 3(49 +

34) + 2 · 31 = 249 + 62 = 311, B2 = (F4A1 + F3C1) = 3 · 49 + 2 · 31 = 147 + 62 = 209,

and C2 = (F3(A1 + B1) + F2C1) = 2 · (49 + 34) + 1 · 31 = 166 + 31 = 197. And

i(H1
3 ) = 311 + 209 + 197 = 717.

The following lemma shows the recurrence when r = 2, the distance between common

edges is two. Now, let P 2
t be the polygonal array where any two consecutive common

edges ei and ei+1 are at distance 2. This is, there are two adjacent edges between ei and

ei+1, following a clockwise direction.

Lemma 2. i(P 2
t ), for any t > 1, can be computed as i(P 2

t ) = At + Bt + Ct based on the

recurrence:

Ai+1 = (Fk−2 + Fk−5)Ai + Fk−3Bi + (Fk−3 + Fk−6)Ci, (10)

Bi+1 = Fk−3(Ai + Bi) + Fk−4Ci, (11)

Ci+1 = (Fk−3 + Fk−6)Ai + Fk−4Bi + (Fk−4 + Fk−7)Ci, (12)

with i = 0, . . . , t− 1, and with A0 = Fk, B0 = Fk−1, C0 = Fk−1.

Proof. Let Mi = (Aiα+Biβ, Ciα) be the macro computed on P 2
i . If the array is extended

by one polygon, the new macro M1
i+1 = (Ai+1α +Bi+1β, Ci+1α) is formed. Here, the new

factors Ai+1, Bi+1, Ci+1 are expressed based on the previous one Ai, Bi, Ci, in the following

way.

Since P 2
i+1 has three vertices before finding the macro M2

i , then:
Lp : (α, β) → (α + β, α) → (2α + β, α + β)
Lc : (0, β) → (β, 0) → (β, β)

Those pairs are substituted in the macro M2
i , resulting in the new pairs: ((2Ai +

Bi)α + (Ai + Bi)β, 2Ciα + Ciβ) and ((Ai + Bi)β, Ciβ) for Lp and Lc, respectively. And

since there are (k − 4) vertices in P 1
i+1 before finding the following common edge ei+1,

then by applying recurrence (1) to those last pairs, we obtain for the thread Lp:

((2Ai +Bi)α+(Ai +Bi)β, 2Ciα+Ciβ)
1→ ((2Ai +Bi +2Ci)α+(Ai +Bi +Ci)β, (2Ai +

Bi)α+ (Ai +Bi)β)
2→ ((4Ai + 2Bi + 2Ci)α+ (2(Ai +Bi) +Ci)β, (2Ai +Bi + 2Ci)α+ (Ai +
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Bi + Ci)β)
3→ ((6Ai + 3Bi + 4Ci)α + (3(Ai + Bi) + 2Ci)β, (4Ai + 2Bi + 2Ci)α + (2(Ai +

Bi) + Ci)β)
j→ (2 · Fj+1Ai + Fj+1Bi + 2 · FjCi)α + (Fj+1(Ai + Bi) + FjCi)β, (2 · FjAi +

FjBi + 2 · Fj−1Ci)α + (Fj(Ai + Bi) + Fj−1Ci)β) and then, after (k − 4) iterations, . . .
k−4→

(2 · Fk−3Ai + Fk−3Bi + 2 · Fk−4Ci)α + (Fk−3(Ai + Bi) + Fk−4Ci)β, (2 · Fk−4Ai + Fk−4Bi +

2 · Fk−5Ci)α + (Fk−4(Ai + Bi) + Fk−5Ci)β).

Meanwhile, on the second thread, we obtain after (k − 4) iterations, the pair:

((Fk−3(Ai + Bi) + Fk−4Ci)β, (Fk−4(Ai + Bi) + Fk−5Ci)β).

Since the polygon i + 1 is a cycle, then the pair (0, (Fk−4(Ai + Bi) + Fk−5Ci)β) is

subtracted to the last pair of Lp, forming the new macro M2
i+1 = (2 · Fk−3Ai + Fk−3Bi +

2 · Fk−4Ci)α + (Fk−3(Ai + Bi) + Fk−4Ci)β, (2 · Fk−4Ai + Fk−4Bi + 2 · Fk−5Ci)α).

This results in the new factors for the macro M2
i+1. The factor in M2

i+1 can be written

in terms of the previous factors of M2
i by the recurrences:

Ai+1 = 2 · Fk−3Ai + Fk−3Bi + 2 · Fk−4Ci, (13)

Bi+1 = Fk−3(Ai + Bi) + Fk−4Ci, (14)

Ci+1 = 2 · Fk−4Ai + Fk−4Bi + 2 · Fk−5Ci. (15)

And again, the initial macro M1 = (Fkα+Fk−1β, Fk−1α) determines the initial factors

for the previous recurrence, that is, A0 = Fk, B0 = C0 = Fk−1.

Similar recurrences can be obtained when we consider different values for the constant

r in i(P r
t ), and it holds for any polygonal array Pt without restriction on the number of

edges in its polygons.

Notice that for distances r > 3 between common edges in the polygonal array, it is

necessary to have more than 6 edges forming the polygon. Therefore, if r = 3 + t, t =

1, 2, . . . , k − 3, then the polygon has k ≥ 6 + t edges.

In fact, for any polygonal array Pt, i(Pt) can be computed traversing by each polygon

in the array, even if the distance between consecutive common edges is not a constant.

The first polygon determines the initial factors: A0 = Fk, B0 = C0 = Fk−1. The value for

i(Pi+1) is computed as Ai+1 + Bi+1 + Ci+1, and these factors are computed according to

the recurrence determined by the distance ri between the common edges of Pi and Pi+1.

The application of the previous general recurrences provides a linear-time procedure

on the number of polygons in the array for computing i(Pt), for any polygonal array.
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Thus, the application of macros determines a procedure of order O(t) for computing the

Merrefield-Simmons index for any polygonal array Pt.

As an example, let us consider the compound Dibenzoanthracene P6,5 that consists

in 5 hexagons (see Figure 4), but each consecutive hexagons hold different distances

between consecutive common edges. In Table 1, we show how to apply previous recurrence

for computing i(P6,5). Each macro is generated through the variables Ai, Bi, Ci where

i = 1, . . . , 5. Note that in the compound appears alternate distances, r=0 when M1 is

generated. When r = 1 we apply the recurrences derived in theorem 1, for r = 2 the

recurrences from lemma 2. And it is not hard to derive the recurrences when r = 3

that we have used in the second column of the Table. In this case, the total number of

independent sets is obtained adding i(P6,5) = A5+B5+C5 = 12452+8336+7889 = 28677.

Figure 4. Distances between common edges in the Dibenzoanthracene

Table 1. Computing i(P6,5)

H
HHH

HHVar
Pi i = 1, r = 0 i = 2, r = 3 i = 3, r = 2 i = 4, r = 1 i = 5, r = 1

M1 by ((13,14,15) by (7,8,9) by (7,8,9)
Ai A0 = 8 A1 = 49 A2 = 326 A3 = 1954 A4 = 12452
Bi B0 = 5 B1 = 31 B2 = 194 B3 = 1372 B4 = 8336
Ci C0 = 5 C1 = 34 C2 = 197 C3 = 1237 C4 = 7889

i(P6,i) 18 114 717 4563 28677

In addition, macros can be used to compute i(G) even when G has not repetitive

graph topologies, as it is the case for polygonal trees. We show in the following section

how to use macros for computing the number of independent sets on polygonal trees.
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5 A 2-treewidth decomposition for polygonal

trees

Many hard problems can even be solved efficiently on graphs that might not be trees, but

are in some sense still sufficiently treelike. A formal parameter that is widely accepted to

measure this likeliness is the treewidth of a graph [10].

Treewidth is one of the most basic parameters in graph algorithms. There is a well

established theory on the design of polynomial (or even linear) time algorithms for many

intractable problems where their input is restricted to graphs of bounded treewidth. More

importantly, there are problems on graphs with n vertices and treewidth at most k that

can be solved in time O(ck · nO(1)), where c is a problem dependent constant [7].

Algorithm 2 Count Ind Sets Polygonal trees(G)

Traversing TP in post-order, and consider all vertex forming the current polygon Pi

that is being visited
repeat

1) Form IP ⊆ I be the indices such that v ∈ X(i), i ∈ IP iff x ∈ V (Pi)
2) Let Xa, Xb ∈ X(i), i ∈ IP be initial nodes of T containing a common edge xy
between Pi and its father polygon in TP . Assume Xa as the father node of Xb

3) Apply algorithm 1 on each X(i), i ∈ IP in post-order. The resulting macro is
associated to the common edge xy ∈ Xa

/* If there is a macro (αi, βi) in any X(i), i ∈ IP then a macro-expansion is performed
*/
4) Eliminate X(i), i ∈ IP from T , with exception of Xa

until the root node in TG is evaluated
Substitute α = 1, β = 1 in the last macro obtained, resulting a pair of integers (a, b)
Returns i(TP ) = a + b.

For example, a maximum independent set (a MIS) of a graph can be found in time

O(2k · n), given a tree decomposition of width at most k. Therefore, a quite natural

approach to compute i(G) would be to find a treewidth TG of G, and to determine how

to join the partial results on the nodes of TG. However, for any general graph G, finding

its minimum treewidth is a NP-complete problem.

The treewidth decomposition of TP , when TP is any polygonal tree graph, is based in

the well-known 2-treewidth decomposition of any simple cycle (a polygon), since any two

adjacent polygons have just one common edge, then it is enough to join the 2-treewidth

decomposition of the two contiguous polygons with the nodes containing the common

edge, as it is shown in Figure 5, where the doble edge notation is used to indicate common
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edges between consecutive polygons.

Let TG = (T, F ) be the 2-tree decomposition of TP = (V,E), where T = (I, F ) is a

tree, and I is an index set. Let X be a function, X : I → 2V , satisfying the tree constraints

of any k-tree decomposition [7]. We refer to x ∈ V (G) as a vertex and X(i) ∈ T as nodes

of T . A vertex x is associated with a node i ∈ I, or vice versa, whenever v ∈ X(i). Our

treewidth decomposition of TP keeps the structure of a tree, and then, we can combine

algorithm 1 and algorithm 2 for computing i(T ). Furthermore, i(TP ) = i(T ).

5.1 Processing polygonal trees

Let us consider that we have obtained the 2-treewidth decomposition of the polygonal

tree graph TP , denoted as GT . Now, in order to compute i(TP ), we apply macros for

processing each vertex and common edge in the bags of GT for each node N ∈ GT , based

in the algorithm 2.

In Figures 5 and 6, we show the 2-treewidth decomposition of a polygonal tree graph,

as well as the application of macros for counting independent sets on the nodes of the tree.

Notice that every common edge is visited twice. On the first one, a macro is formed, and

in the second one, an expansion of the macro is performed. This provides a linear-time

algorithm that traverses by all node and edge on the treewidth.
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Figure 5. A 2-treewidth decomposition for Trinaftileno
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Figure 6. Processing the 2-treewidth decomposition of a polygonal tree
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6 Conclusions

One relevant class of graphs used in mathematical chemistry for analyzing the molecular

structure in some chemical compounds, is the polygonal chain. We present here a linear-

time procedure for computing the Merrefield-Simmon index on this class of graphs. Our

procedure applies a common tool used in planning area, which is the use of macros in

order to codify cumulative series of basic operations.

In fact, macros provide efficient procedures to count combinatorial objects on polyg-

onal arrays Pn, because Pn has repetitive graphic patterns. In addition, macros can be

used for processing a graph G even when G has not repetitive graph topologies, but it

has a bounded treewidth decomposition.

We have proposed a 2-treewidth decomposition for any polygonal tree graph TP , where

every common edge between two adjacent polygons will appear exactly in two consecutive

nodes of the treewidth. This structure of the treewidth decomposition allows the efficient

application of macros for solving counting problems on TP .

We have presented a novel linear-time algorithm for counting independent sets on TP .

Our algorithm can be adapted to solve other intrinsic properties on polygonal tree graphs,

impacting directly on the time complexity of the algorithms for solving these problems.
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