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Abstract
Based on the definition of the general geometric-arithmetic index, this article introduces several new
geometric-arithmetic indices (Part One). In Part Three, we have determined the degree of degeneracy
of these new invariants and we have designated the first pairs (or subsets) of molecular graphs having
the same values of a given geometric-arithmetic index. It appears that in many cases the newly
proposed descriptors have a much greater level of uniqueness that the strongly discriminating Balaban
J index. In Part Four, we have demonstrated the applicability of these newly defined molecular
descriptors for QSPR studies. Namely, we have used them to model certain physicochemical
properties of several classes of organic compounds. The results of internal and external validations of
the obtained models have indicated that the models based on the new geometric-arithmetic indices
have high descriptive and predictive capabilities and are externally stable. Also, these results have
testified that the QSPR models based on these new topological indices in many cases outperform

models known in the literature. Therefore, it can be speculated that these new geometric-arithmetic
indices will be used in future QSPR/QSAR studies.

1. Introduction

One of the fundamental topics in all quantitative structure property/activity relationship
(QSPR/QSAR) studies is the transformation of chemical structures into molecular invariants
which, in turn, should be correlated with certain specific physicochemical properties or
biological (or toxicological/pharmacological) activities. Consequently, it is of primary
importance for any future QSPR/QSAR investigations to search for novel highly correlating
and highly discriminating molecular descriptors.

Let G = (V(G),E(G)) denote a molecular graph where V(G) = {v,, v,, ..., 1, } is the vertex
set and E(G) is the edge set. The topological distance between two vertices v;, v; € V(G),
denoted by d; (vi,vj), is identified with the number of edges in any shortest path connecting

them. The eccentricity e;(v;) of a vertex v; € V(G) is the greatest topological distance
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between v; and any other vertex in G. The diameter of a molecular graph G, denoted by

diam(G), is defined as diam(G) = 12‘%) &¢(v;). The symbol deg.(v;) denotes the degree
Vi

(i.e., the number of first neighbors) of the vertex v; € V(G). For two vertices v;, v; € V(G),

v;v; means that v; and v; are adjacent, i.e., v;v; € E(G).

In recent years, a whole novel family of topological invariants has been introduced [11].
These new descriptors are termed as the “geometric-arithmetic indices” and their formal

definition can be expressed as follows:

f)f (Vj)

GA =G4 ©) = N
general general 1
viVjeE(G)j(f(Ui) + f(vj))

where v;,v; € V(G) and f(v;) is some quantity that can be uniquely connected with the
vertex v; of a molecular graph G. The first geometric-arithmetic index (GA;) was suggested
by D. Vukigevi¢ and B. Furtula by postulating f(v;) to be the degree (deg (v;)) of the vertex
v; € V(G) [49]. Hence, this descriptor has the form:

|degs(v)degs (v;)

I .
vivj€E(6) (dE’HG (v;) + dege (Vj))

GA, @)=

To present further geometric-arithmetic descriptors, let us recall the subsequent terminology:
for any edge v;v; € E(G), let us define the following two quantities:

ny, = |{x eV(G)|dg(x,v) < dG(x, vj)}|
and

ny; = |{x eV(G)|ds(x,v;) > dG(x, v]-)}|.

Thus, n,,, is equal to the number of vertices of the molecular graph G which are located closer
to v; € V(G) than to v; € V(G). On the other hand, the quantity ny, is equal to the number of
vertices of the molecular graph G which are located closer to v; € V(G) than to v; € V(G)

[13]. Then, the second geometric-arithmetic index, introduced by G. Fath-Tabar et al. [19],

can be expressed as follows:



Ty, My,

GAy(G) = 1
vjEEG) 3 (nvi + an)

Suppose that h = st is an edge linking two vertices s,t € V(G). The distance between any
vertex v; € V(G) and the edge h in the molecular graph G is defined as: dg(v;, h) =

min{d;(v;, s), d¢ (v;, t)}. Then, the subsequent two quantities:
my, = |{h € E(®)|ds(h,v) < dg(h,v))}|
and
m,, = |{h € E@ldg(h,v) > dg(h,v)))]

correspond to the number of edges of the molecular graph G which are located closer to v; €
V(G) than to v; € V(G) and to the number of edges of the molecular graph G which are
situated closer to v; € V(G) than to v; € V(G), respectively [13]. Now, the third geometric-

arithmetic index, defined by B. Zhou et. al. [50], has the form:

My, My,

GA3(G) =
vivjEE(@) 7 (mv,- + mvj)

Later on, M. Ghorbani et al. [21] suggested the fourth geometric-arithmetic index whose

formula is as follows:

e (v)eg (”j)

GAG) = T
viv;€E(G) (SG W) + ¢ (vj))

and A. Graovac et al. [22] considered the fifth geometric-arithmetic descriptor of the form:

86 ()66 (Uj)

GA4(G) = 1 . .,
v €EG) 3 (5(; ) + 8¢ (”j))

where 85 (v;) = Yy uer(e) dege(W).

Also, the edge and total versions of geometric-arithmetic index were introduced [33, 34].
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Some mathematical properties (e.g., lower and upper bounds, extremal graphs, inequalities,
Nordhaus-Gaddum-type results, spectral characteristic) of these indices are treated in [8, 9,
10, 11, 12, 13, 44, 45].

Also, it was demonstrated that GA,, GA, and GA; descriptors possess relatively good
descriptive as well as predictive capabilities with respect to some selected properties of
octanes and benzenoid hydrocarbons [11, 49]. The degeneracy of GA;, GA, and GA; indices
was studied in [14].

The contribution of the present report is fourfold. Firstly, we will define 9 new geometric-
arithmetic indices. Secondly, we will determine the degree of degeneracy of these newly
proposed invariants. Thirdly, we will designate minimal pairs (or subsets) of molecular graphs
having the same values of a given geometric-arithmetic index. Fourthly, we will build several
representative QSPR models to demonstrate the usefulness for chemical research of these
newly defined molecular descriptors.

To formally introduce these novel descriptors, let us recall the following terminology [24, 26,
27, 48]: the distance matrix of any molecular graph G = (V(G),E(G)) where |V(G)| = n,
denoted by D(G), is a real symmetric nxn matrix whose entries [D];; correspond to the
topological distance between the vertices v;, v; € V(G), the Harary matrix (also known as
the reciprocal distance matrix) of any molecular graph G with n vertices, denoted by RD(G),

is a real symmetric nxn matrix whose elements [RD];; are given by [RD];; = m ifv, #
v; and [RD];; = 0 otherwise. On the other hand, the reverse Wiener matrix (also known as
the reverse distance matrix) of any molecular graph G where |V(G)| = n, denoted by
RW(G), is a real symmetric nxn matrix whose entries [RW];; are given by [RW];; =
diam(G) — d¢ (v, v;) if v; # v; and [RW];; = 0 otherwise. The Randié matrix (also known
as the product connectivity matrix) of a molecular graph G with n vertices, denoted by x(G),

is identified with a real symmetric nxn matrix whose elements [x];; are given by [x];; =
L
(dega(vi)degs(v}-)) 2ifv; 2 v; and [x];; = 0 otherwise.

For any molecular matrix M(G) associated with a molecular graph G = (V(G),E(G)), the

Vertex Sum operator (also known as the Row Sum operator) for the vertex v; € V(G),



-O-

denoted by VS(M(G))i, is defined as the sum of the entries in the row i of the graph-
theoretical matrix M(G), i.e.,

n

vs(M(®)), = Z[M(G)]ij-

=

If M(G) is the distance matrix D(G), then the operator VS(M(G))i gives the distance sum of
the vertex v; € V(G). If M(G) is the Harary matrix RD(G), then the operator VS(M(G))l,
gives the reciprocal distance sum corresponding to the vertex v; € V(G) and if M(G) is the
reverse Wiener matrix RW (G), then the operator VS(M(G))i produces the reverse distance

sum of the vertex v; € V(G) [25, 48].

Consequently, it can be easily observed that for any molecular graph G and any vertex v; €
V(G) it is possible to define the following vertex invariants: VS(D(G))i, VS(RD(G))i,

VS(RW (), and VS(x(6)),. These quantities correspond to the row sums of the distance

matrix, the reciprocal distance matrix, the reverse Wiener matrix and the product connectivity

matrix associated with the molecular graph G.

Based on the notion of the distance sum of a vertex v; € V(G), A. A. Dobrynin and A. A.
Kochetova introduced the so-called degree distance of v; € V(G) [15]. For any molecular
graph G = (V(6),E(G)) and any vertex v; € V(G), this novel vertex invariant, denoted by

D'(v;), is defined as follows:
D'(vy) = degs(v)VS(D(G)),.

Other quantities which can be uniquely connected with a vertex v; € V(G) include the so-
called centrality measures. Such measures determine the most important elements in a given
graph G. They are mainly studied in the field of Social Network Analysis. In the present
article, we will be concerned with such centrality metrics as the eigenvector centrality, the
parameterized exponential subgraph centrality, the parameterized total subgraph

communicability, the resolvent subgraph centrality as well as with the Katz centrality.

The eigenvector centrality EC; of any vertex v; € V(G) is identified with the i-th component
of the eigenvector associated with the largest eigenvalue of the adjacency matrix A(G) of G,

ie.,
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EC;=q,()

where q, is the dominant eigenvector of A(G) [48]. A vertex v; € V(G) possesses the high
value of the eigenvector centrality if it is adjacent to many other vertices or if it is linked to

other nodes that themselves have high value of this centrality measure.

Such centralities as the parameterized exponential subgraph centrality and the parameterized
total subgraph communicability are based on the notion of the parameterized matrix

exponential which is defined for any molecular graph G by the condition
£BA@
where A(G) is the adjacency matrix connected with G and g > 0 [3, 16, 30]. The eigenvalues

of eP4© are given by ef1, ef2 . eFin where Ay, A,, ..., A, are the eigenvalues of the

adjacency matrix A(G). The power series expansion of e#4( is given by

o510 = 14 pacey + EUCO" P __:E:ﬁ @)

The parameterized exponential subgraph centrality of a vertex v; € V(G) is given by
SC(B) =[P4

It is well known in the field of Graph Theory that if A(G) is the adjacency matrix of a graph
G, then the entry (A(G))Z, is equal to the number of walks of length k between two vertices
v;, v; € V(G). Recall that a walk of length k defined on a molecular graph G = (V(G),E(G))
is identified with a sequence of vertices v;, vy, ..., Vx41 Such that v;v;,, € E(G) forall 1 <
i <k. A closed walk is identified with a walk that begins and ends at the same node.
Consequently, it follows that the exponential subgraph centrality of a vertex v; € V(G)

(which is equal to [eBA(G)]u,) identifies the number of closed walks centered at v;. This

k
centrality metrics weights a walk of length equal to k by a factor % Roughly speaking, the

exponential subgraph centrality estimates the number of subgraphs a node v; € V(G)

participates in, weighting them with respect to their size.
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On the other hand, the quantity [eﬁA(G)]L_]_ characterizes the communicability between the

vertices v; and v; in any molecular graph G. Therefore, the row sum of the matrix ePA©) for g

vertex v; € V(G) given by

TC(B) = VS(eF4@), = Z

j:1[9BA(G)]i1'

identifies all walks between the vertex v; and all other vertices in the graph G (including the
vertex v;). In this context, the quantity TC;(B) is referred to as the parameterized total

subgraph communicability of the node v; € V(G). This centrality weights walks of length

equal to k by a factor ﬁk—l: [3, 30].

The above-listed two centrality measures which are defined in terms of the diagonal entries or
the row sums of the parameterized exponential of the adjacency matrix of any graph G (i.e.,
ePA@) were successfully used, for instance, in protein biochemistry (e.g., the identification
of crucial proteins in proteomic maps) [17, 18], pathophysiology (e.g., the description of
malignant tissues)[39] and neurophysiology (e.g., the characterization of healthy and stroke-
damaged brain networks) [6].

The second class of centrality measures whose formal definitions are also expressed in terms
of the matrix function f(A(G)) where A(G) is the adjacency matrix linked with a molecular

graph G are the so-called matrix resolvent-based centrality metrics. Recall that a matrix
resolvent of A(G) for a molecular graph G = (V(G), E(G)) is given by (I — ocA(G))_1 where
I is the nxn identity matrix and 0 < <A—11 . Here, A; denotes the spectral radius of the
adjacency matrix A(G) [3, 30]. This matrix function possesses eigenvalues of the form 1_;“[
where A; are the eigenvalues of the adjacency matrix A(G). The power series expansion of
(I - 2A(G)) ™" is given by:

(I1-aA(6)) " =1+ aA(G) + a?(A6))" + ..+ a*(A@) + .= z ak ()",
k=0

The constraints imposed on the value of a (i.e,, 0 < a < %) imply that the matrix I — aA(G)
1
is invertible and that the above geometric series is convergent to its inverse. Such selection of

a also implies that the matrix (I — ocA(G))_1 is non-negative. Based on the notion of the
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matrix resolvent (I — aA(G))_1 it is possible to formulate the following two definitions [3,
30]: the resolvent subgraph centrality for a vertex v; € V(G) of a molecular graph G =
(V(G),E(G)), denoted by RC;(a), is equal to the diagonal entries of the matrix resolvent of

the adjacency matrix A(G), i.e.,
RCi(a) = [(I — aA(G))_l]”;

the Katz centrality for a vertex v; € V(G) of a molecular graph G = (V(G),E(G)), denoted

by K;(a), is equal to the row sums of the matrix resolvent of the adjacency matrix A(G), i.e.,

K(a) =VS ((1 - aA(G))_l)i = i [(1 - aA(G))_l]i.

The first centrality metrics RC;(«) identifies the number of closed walks centered at the
vertex v; € V(G) whereas the second centrality metrics K;(«) identifies the total number of
walks between the vertex v; € V(G) and all other vertices in the molecular graph G. Both

measures weights walks of length equal to k by a*.

Thus, we have obtained for any molecular graph ¢ = (V(6), E(G)) and any node v; € V(G)
the following vertex invariants: VS(D(G))i, VS(RD(G))L,, VS(RW(G))i, VS()((G))i, D'(vy),
ECi, SCL(B)! TCL(ﬁ), RCl(a) and Ki(a).

Based on the above considerations and on the definition of the general geometric-arithmetic
index, the following definition seems to be justified:
VS(M(G))iVS(M(G))

6A,(6) = d

oz (VS(M©), +vsM(©)),)

where M(G) is any molecular matrix associated with G. Thus, in the case of the sixth
geometric-arithmetic index (GA4(G)), the quantity f(v;) uniquely connected with v; € V(G)
is identified with the row sum of M(G) corresponding to the vertex v;1. Consequently, in this

paper, we will single out the following subtypes of the sixth geometric-arithmetic index:

1 Undoubtedly, if M(G) is an adjacency matrix then we obtain the first geometric-arithmetic index. But when
M (G) is not an adjacency matrix then we will get new interesting topological indices.
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/VS(D (G))iVS(D(G))J_

GAgq (G) = 1 B
it 7 (VS(D@®), +vs(D(©)),)

\/VS(RD(G))iVS(RD(G))j
GAgy(G) =

ViVjEE(G)%(VS(RD(G))i + VS(RD((;))j).

J VS(RW(G))iVS(RW(G))/,
GAg (G) =

wEE(G)%(Vs(RW(G))i + VS(RW(G))j).

VS(X(G))iVS()((G))].
GAsa(G) =

v €E(G) % (VS(X(G))i + VS(X(G));‘) ’

A TANT Y VS(gﬁA(G))iVS(gﬁA(G)) .
GAse(G) = Z TCL(B)TC} (ﬁ) = Z !

1 1
viEE(G) (Tci(ﬁ) + TCj(ﬁ)) v €EG) 3 (VS(ePA@);4+VS(eP4®);)

forg >0,

JE@K, @) Jrs(@=a@) ™) vs (- ea@) ™),

G (@)= )

w03 (K@ + K@) wwidtoz (s (- aa@)™) +vs((1-aa@)™) )

for0<a< li where A, is the spectral radius of A(G).
1

In the above cases, the quantity f(v;) uniquely associated with v; € V(@) is identified with
the row sums (corresponding to v;) of the following molecular matrices: the distance matrix
(GAgq(B)), the reciprocal distance matrix (GAg,(G)), the reverse Wiener matrix (GAg.(G)),
the Randi¢ matrix (GAgq(G)), the parameterized matrix exponential of A(G) (i.e., the
parameterized total subgraph communicability of the node v; € V(G)) (GAg.(G)), the matrix
resolvent of A(G) (i.e., the Katz centrality of the node v; € V(G)) (GAgf(G)).

In the case of molecular matrices without zeros on the main diagonal, the following general
geometric-arithmetic index is proposed:

M(&)]u[M(G)]};

G4,(G) = < .
v EE©) Y (M@ + M(B)]}5)
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In the above expression [M(G)];; denotes the diagonal element corresponding to the vertex
v; € V(G). Therefore, in this work, we will single out the following subtypes of the seventh

geometric-arithmetic index:

SC.(B)SC(B) [eP4@];[eP4@]

GA7q(G) = SO EE o
1 1
w7 (SCB) +SGB)) vtz (1FA@], + [P )

forp >0,

’7RCi(a)RCj(a) \/[(1 - aA(G))‘l]ii [(1 - aA(G))_l]/.j

Gan(G) = Y AT o

wifto 3 (RG(@ + RG(@)  wfetio 3 ([0 - ea@) ] + [ - aa@)™] )

for0<a< Ai where 1, is the spectral radius of A(G).
1

Thus, in the cases of these subtypes, the quantity f(v;) uniquely associated with v; € V(G) is
identified with the parameterized exponential subgraph centrality of the node v; (GA,,(G)) or

with the resolvent subgraph centrality of the node v; (GA5,(G)).

Also, it seems possible to introduce the eighth geometric-arithmetic index as well as the ninth
geometric-arithmetic index. Their formal definitions are listed below:

}D’(vi)D'(vj)

64a(6) = —
vw,-EE(G)j(D'(Vi) + D'(”j))
JECEC;
GAy(G) = vy

ViVI'EE(G) ViVI'EE(G)%(ECi + EC}) .
In these cases, the quantity f(v;) uniquely connected with v; € V(G) is given by the degree
distance of the vertex v; (GAg(G)) or by the eigenvector centrality of the vertex v; (GAo(G)).

2. Datasets and computational methods

All numerical experiments were performed on a synthetic dataset of all exhaustively
generated non-isomorphic, undirected and connected graphs having up to 7 vertices with the
exception of the unique graph with |[V(G)| = 1 and |E(G)| = 0. This dataset, denoted by g,
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contains 995 graphs (1 graph with |V(G)| = 2, 2 graphs with |[V(G)| = 3, 6 graphs with
[V(G)| = 4, 21 graphs with |V (G)| = 5, 112 graphs with |V(G)| = 6 and 853 graphs with
|[V(G)| = 7). These quantities are in agreement with the Pélya enumeration theory [40].

Graphs from the dataset G are numbered from 1 (the graph K,) to 995 (graph K).

In order to quantitatively assess the uniqueness (i.e., the degree of degeneracy) of a particular
molecular descriptor T1, the sensitivity index S(TI) introduced by E. V. Konstantinova was
used [31]. This index is defined as

G| — |degen(G)|

S ="

where |G| denotes the cardinality of any graph dataset G on which TT was tested (in our case
|Gl = 995) and |degen(G)| is equal to the number of degeneracies of TI within G. It is
immediately apparent that when S(TI) =1, then the analyzed graph dataset G does not
contain any pair of non-isomorphic graphs with the same values of T1. Also, it can be easily
demonstrated that the sensitivity index S(TI) of a given topological descriptor TI is
dependent on the selected decimal places. Consequently, in this work all molecular invariants

were calculated with an accuracy of 9 decimal places.

When calculating GA, index, the eigenvector centrality is scaled so that the maximum score is
equal to 1.

The publicly available dataset of octane isomers was downloaded from the webpage

www.moleculardescriptors.eu. The dataset of 39 saturated alkanes with their experimental

boiling points (Table 12) was taken from [42]. The dataset of 29 aliphatic alcohols with their
experimental enthalpies of combustion (Table 15) was borrowed from [4, 20, 36, 38, 47]. The
dataset of 42 aliphatic alcohols with their experimental molar volumes (Table 20) was taken
from [37]. The dataset of 41 aliphatic alcohols with their experimental molar refractions
(Table 20) was also borrowed from [37]. The dataset consisting of 22 aldehydes and 24
ketones with their experimental molar refractions (Table 23) was taken from [43]. The dataset
composed of 3 aldehydes and 15 ketones with their experimental gas heat capacities (Table
26) was also borrowed from [43]. The dataset of 20 monocarboxylic acids with their
experimental enthalpies of formation and combustion (Table 31) was taken from [1, 32, 38,
46].
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In order to establish QSPR models, Linear Regression (simple and multiple) as well as Power
Regression have been used [5]. To monitor the descriptive capabilities (i.e., the goodness of
fit) of the obtained regression equations, the correlation coefficient (r), the coefficient of
determination (R?), the standard deviation (s) and the Fisher ratio (F) were utilized as
statistical parameters [5, 29, 48]. As postulated by Z. Mihali¢ and N. Trinajsti¢ [35], a good
QSPR model must have a value of r > 0.99 while the values of s depend on the property
under study. To test the predictive capabilities (i.e., the goodness of prediction) of the
obtained regression models, the leave-one-out procedure of cross-validation (Q2) was
employed. Also, the standard deviation error in prediction (SDEP) was calculated [29, 48].
To exclude the possibility of chance correlation, the y-randomization (y-scrambling) test was
used. As suggested in [29], if R}Z,mnd < 0.2 and Qf,mnd < 0.2, then there is no chance
correlation. Here, Rﬁmnd and Qf,mnd stand for the basic statistics of the randomized models.
For each final regression equation, the y-randomization test was repeated 1000 times. To
verify if the obtained model has satisfactory predictive abilities with respect to external data,
we used a procedure in which the entire dataset is randomly divided into three subsets (A, B
or C) and each subset (A or B or C) is predicted by using the other two subsets (BC or AC or
AB) as the training set [28]. The quality of fit between the predicted values and the

experimental data was monitored by the values of R? and s.

All simulations and computations contained in the following paper were conducted in the R

programming language [7, 23, 41].

3. Degeneracy of the geometric-arithmetic indices

It is well known that when two molecular graphs are topologically identical, i.e., isomorphic,
then they also possess identical values of all graph invariants. Although, the reverse
correspondence is not universally true. This means that the identical values of any given
graph descriptors do not imply the isomorphism of the molecular graphs. Generally speaking,
any topological descriptor is said to be degenerate when there exist at least two non-
isomorphic graphs having identical values of that invariant. The uniqueness of the graph-
theoretical descriptors has been studied many times in the field of computational chemistry.
For instance, it has been observed that the level of degeneracy is high for the Wiener index

(W), the Harary index (H), the Hosoya index (Z) and the Zagreb indices (Z;and Z,), lower for
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the Randi¢ connectivity index (y) and very low for the Balaban J index [2, 14]. In order to
diminish the degree of degeneracy of first- and second-generation molecular descriptors, D.
Bonchev and N. Trinajsti¢ developed the so-called information-theoretical indices [2].

To sum up, it can be uttered that the discriminative power is one of the fundamental
properties of each topological index. This characteristic quantitatively evaluates the capability

of molecular descriptors to distinguish non-isomorphic chemical graphs.

In the present section, our main aim is to scrutinize the extent to which the newly introduced
topological indices are degenerate as well as find the smallest pairs (or subsets) of graphs for
which the given geometric-arithmetic descriptor has the same value. The following studies are
carried out on the dataset G of all exhaustively generated non-isomorphic, undirected and
connected graphs having from 2 to 7 vertices. Table 1 presents the values of the sensitivity
index for GAy, GA,, GAea, GAep, GAsc, GAga, GAse, GAgs, GAzq, GAzp, GAg and GAg
indices, the first pairs (or subsets) of the graphs from G having the same value of the given
geometric-arithmetic index as well as the values of that index for those minimal
indistinguishable graphs. The graphs from Table 1 are shown in Figure 1. To make our results
more illustrative, let us recall that the values of the sensitivity index S(TT) evaluated on the
same dataset G for the aforementioned topological descriptors are equal to S(W) = 0.011,
S(H) =0.043, S(Z2) =0.017, S(Z,) =0.015, S(Z,) =0.103, S(x¥) =0.472 and S(J) =
0.83, respectively.

Table 1. Degeneracy of twelve geometric-arithmetic indices.

The first pair (or subset) of ~ The value of GA for

Index |degen(g)| S(GA) the graphs from G having the  the graphs from the
same value of GA fourth column
GA, 448 0.550 43, 45 5.691642602
GA, 926 0.069 8,13 4771236166
Gl 173 0.826 9,49 6
GAgp 171 0.828 9,49 6
GAge 179 0.820 28, 88, 90 7.958973274
GAgq 70 0.930 9,49 6
GAg, (B=0.005) 177 0.822 21, 46 5.999987716

GAge (B=0.03) 50 0.95 9,49 6




GAg,
(0.055<B<0.105)

GAg, (0.132$<9.98)

GAgy (0=0.0025)
GAgy (0=0.005)

GAey
(0.0075<a<0.0175)

GAgy
(0.02<0<0.0325 and
a=0.7725)

GAgr (0.035<0=0.77
and
0.775<0<0.9975)

GAq (B=0.005)
GAyq (B=0.03)
GAyq (B=0.055)
GAzq (B=0.08)

GAy,
(0.105<p<3.78)

GAyy
(3.805<B<7.58)

GAy,
(7.605<p<9.98)

GAp
(0.0025<a<0.3275)

GA7y
(0.33<a=<0.9975)

GAg

GAq
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46 0.954
42 0.958
98 0.902
59 0.941
46-48 0.954-0.952
44 0.956
42 0.958
983 0.012
219 0.78
49 0.951
12 0.988
4 0.996
6 0.994
8-14 0.992-0.986
4-991 0.004-0.996
4 0.996
169 0.830
42 0.958

9,49

9,49

9,49
9,49

9,49

9,49

9,49

3,4,5
43, 45, 151
22,48
22,48

9,49

9,49

9,49

Many different
pairs/subsets of graphs

9,49

9,49
9,49

3
5.999999747
5.999998292
5.999992393

From Table 1, it can be seen that the degree of degeneracy of GA, index is very high, lower

for GA, and very low for GAg,, GAgp, GAge, GAgq, GAg and GAq indices. It was hypothesized
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that the degree of uniqueness of the geometric-arithmetic indices whose formulae include the
adjustable parameters B or a strongly depends on these parameters. Therefore, in our
computational studies, in the case of GAg, and GA,, indices, the adjustable parameter § had
the form of a sequence of real numbers from 0.005 to 9.98 with an increment equal to 0.025.
On the other hand, in the case of GAs; and GA,), indices, the adjustable parameter a had the
form of a sequence of real numbers from 0.0025 to 0.9975 with an increment equal to 0.0025.
The relationship between the adjustable parameters (B and ) and the values of S(TI) where
TI € {GAge, GAgs, GA7q, GA7p} is detailed in Figure 2. From this plot, it can be seen that the
values of S(GAg.) and S(GAss) range from 0.822 to 0.958 and from 0.902 to 0.958,
respectively. On the other hand, GA,, index has the very degenerate form (for $=0.005) as
well as many forms with extremely low levels of degeneracy (for 0.08<p<9.98) whereas
GA;, index has several very degenerate forms as well as many forms with extremely low

degrees of degeneracy.
Thus, in many cases we obtained the topological indices with very low level of degeneracy.

43 45 151 90 pal 46

S~ R VAN

M-
T
<$

< Y

49 28 88 2 48

P

Figure 1. Graphs from Table 1.
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5
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Namely, note that the degree of degeneracy of GA, index is comparable to the degree of
degeneracy of the Wiener index (or the Harary index or two Zagreb indices) whereas the level
of degeneracy of GA, index is comparable to the level of degeneracy of the Randi¢ index. On
the other hand, the values of the sensitivity index for GAgq, GAgp, GAg. and GAg indices are

very close to S(J) whereas GAgq, GAge, GAgy, GA7q, GA7p and GA, indices are significantly
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less degenerate than the Balaban J index or

uniqueness than J index.
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Figure 1. Correlations between adjustable parameters (B and o) and values of sensitivity
index for four geometric-arithmetic descriptors.

4. Correlations to physical properties

It is widely recognized that topological descriptors based on molecular graphs can be easily

computed using current computer techniques. Therefore, graph-theoretical approaches are

often employed in QSAR/QSPR studies. In this section, we will demonstrate the applicability

of the newly introduced topological descriptors in modelling certain physicochemical

properties of several selected classes of organic compounds.
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4.1 The dataset of octane isomers

Saturated alkanes constitute an especially attractive family of organic compounds which are
often used as a starting point for any QSAR/QSPR investigations. One of the methodologies
employed in such studies is to select a certain class of alkanes (for instance, Cs, Co or Cio
isomers) in order to obtain comparable results. In our study, we have used the dataset of
octane isomers. This reference dataset consists of 18 octane isomers and contains 16
physicochemical properties of these compounds. The dataset of octane isomers have been
used repeatedly in QSAR/QSPR research and its use for any initial assessment of modelling
properties of newly proposed topological descriptors is recommended by International
Academy of Mathematical Chemistry. Note that using the dataset of octane isomers as some

benchmark dataset it is possible to avoid the so-called size effect.

Table 2. Correlation coefficient (r) between twelve geometric-arithmetic indices and nine properties of

octanes!?.
Index Property
BP S DENS HVAP  DHVAP HFORM ACENFAC MON MV

GA, 0.823 0912  -0.553 0.941 0.966 0.858 0.912 -0.777 0.538
GA, 0.358 0.804  -0.601 0.616 0.674 0.314 0.877 -0.729 0.617
GAgq, 0459 0923  -0.739 0.691 0.784 0.483 0.980 -0.905 0.752
GAg, 0.693 0954  -0.640 0.871 0.927 0.721 0.987 -0.922 0.639
GA¢. 0466 0.886  -0.887 0.621 0.716 0.498 0.850 -0.813 0.880
GAg¢q 0905 0793  -0.423 0.945 0.938 0.920 0.771 -0.565 0.396
GAge 0783 0962  -0.671 0.906 0.939 0.846 0.996 -0.943 0.673

B) (0.005)  (0.555) (0.68) (0.005) (0.055) (0.005) (1.005) (1.355) (0.805)
GAgy 0835 0959  -0.660 0.937 0.955 0.889 0.996 -0.942 0.666

(@) (0.0025) (0.5875) (0.7775)  (0.0025)  (0.075)  (0.0025) (0.805) (0.865) (0.82)
GA,, 0784 0960 -0.647 0.908 0.944 0.847 0.995 -0.928 0.652

B) (0.03) (1.93) (2.33) (0.555) (0.88) (0.005) (2.605) (3.28) (2.655)
GA;, 0884 0948  -0.645 0.957 0.958 0.930 0.992 -0.938 0.653

(o) (0.005)  (0.93)  (0.9725)  (0.005) (0.51) (0.005) (0.97) (0.9825)  (0.9775)
GAg 0915 0.773  -0.366 0.947 0.931 0.946 0.742 -0.526 0.338
GAq 0551 0.906  -0.624 0.757 0.834 0.563 0.975 -0.922 0.636

The values of |r| greater than 0.8 are in bold.
2 In the case of GAg,, GAgf, GAyzq, GAy, indices, the optimal values of the adjustable parameter (B or o)
are in parentheses below the value of the correlation coefficient.
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For the present study, we selected the following properties of octanes: the boiling point (BP),
the entropy (S), the density (DENS), the enthalpy of vaporization (HVAP), the standard
enthalpy of vaporization (DHVAP), the enthalpy of formation (HFORM), the acentric factor
(ACENFAC), the motor octane number (MON) and the molar volume (MV). The reason for
choosing these properties is that for this collection of physicochemical parameters at least one
of the tested descriptors exhibits a relatively good linear correlation(i.e., || > 0.8). From
Table 2, it can be seen that GAgf and GA,,, indices exhibit relatively satisfactory correlations
with seven properties of octanes, GA,, GAq, and GA,, indices with six properties of octanes,
GAgp and GAg. indices with five properties of octanes, GAg,, GAg and GAq indices with four
properties of octanes, GAg, index with three properties of octanes as well as GA, index with
two properties of octanes. In order to further compare the descriptive and predictive abilities
of these descriptors, we constructed for each of the properties of octanes a single regression
model using only invariants with |r| > 0.8. Thus, Table 3 contains the values of s and Q2 of

five equations of the general form BP = a + bGA.

Table 3. Statistical parameters of equation BP = a + bGA for five geometric-arithmetic indices™.

GA, GAgq GAgy GAp GAg

(0=0.835) (0=0.005)
s 3581 2.684 3.469 6.117 2.551
Q? 0.539 0.713 0.588 -0.121 0.759

 The best model is in bold.

In this case, the model based on GAg index outperforms all other models. In the case of the
model based on GAg, the improvement in the statistical deviation is equal to 28.76 %
compared to the model based on GA, index. Note that while the linear correlation between
GAp index at 0=0.005 and the values of BPs is is greater than 0.8, the regression model
based on this descriptor is devoid of any predictive capabilities. Table 4 presents the statistical

parameters of ten equations of the general form S = a + bGA.

Table 4. Statistical parameters of equation S = a + bGA for ten geometric-arithmetic indices®.

GA,  GA, GAg, GAg, GAg.  GAg, GAes GA;,  GAy,  GAg
(B=0555) (4=0.5875) (B=1.93) (0=0.93)

s 1915 2771 1792 1389 2160 1266 1.327 1307 1476  1.967

Q> 075 0516 0793 0866 0679  0.895 0.880 0882 0845 0735

tThe best model is in bold.
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In this case, the model based on GAg4, index at f=0.555 surpasses all other models. The
improvement in the standard deviation is equal to 33.89 % relative to the model based on the
first geometric-arithmetic index. All models exhibit good predictive abilities. In the case of
the dataset of octane isomers, the density is satisfactorily linearly correlated only with GAg.
index. The regression model of the form DENS = a + bGAg. has the values of s and Q2
equal to 0.014 and 0.368, respectively. Table 5 includes the statistical metrics of eight
regression equations of the general form HVAP = a + bGA. In this case, the model based on

GAg index possesses the best statistical characteristics.

Table 5. Statistical parameters of equation HVAP = a + bGA for eight geometric-arithmetic indices®.

GA, GAgp GAgq GAge GAgf [ GAyy GAg
(B=0.005) (a=0.0025) (B=0.555) (0=0.005)

s 0.704 1.025 0.686 0.884 0.729 0.876 2.026 0.670

Q? 0.802 0.680 0.831 0.716 0.821 0711 -0.121 0.855

! The best model is in bold.

The improvement in the standard deviation is equal to 4.83 % relative to the model based on
GA; index. The model based on GA,, descriptor at ¢=0.005 has unsatisfactory predictive
abilities. The standard enthalpy of vaporization is satisfactorily linearly correlated with nine
geometric-arithmetic indices. The values of s and Q2 of nine regression equations of the
general form DHVAP = a + bGA are reported in Table 6:

Table 6. Statistical parameters of equation DHVAP = a + bGA for nine geometric-arithmetic indices™.

GA;  GAg,  GAg GAge GAgy  GAyq  GAyp GAg GA,
(B=0055) (a=0.075) (B=0.88) (a=0.51)

s 0103 0149 0137  0.36 0117 0431 0114 0144 0218

Q? 0895 0819 0845  0.823 0879 0833 0891 0831 0629

! The best model is in bold.

In this case, the model based on GA; index has the best statistical parameters. In the case of
this model, the improvement in the standard deviation is equal to 52.75 % versus the model
based on GA, index (the worth statistical parameters). Table 7 presents the values of s and Q2

of seven regression equations of the general form HFORM = a + bGA.

Table 7. Statistical parameters of equation HFORM = a + bGA for seven geometric-arithmetic indices™.

GA, GAsq GAge GAgs GA,, GA,p GAg
(=0.005)  (a=0.0025) (B=0.005)  (a=0.005)

s 0.661 0.5043 0.688 0.590 1.251 1.251 0.418

Q? 0.685 0.806 0.653 0.752 -0.121 -0.121 0.867

tThe best model is in bold.
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In this case, the model based on GAg index is superior to all other models. The improvement
in the standard deviation is equal to 36.76 % in comparison with the model based on the GA,
index. Two models (i.e., the model based on GA,, index at $=0.005 and the model based on
GA;p, index at 0=0.005) lack any predictive abilities. The accentric factor is satisfactorily

linearly correlated with ten geometric-arithmetic indices.

Table 8. Statistical parameters of equation ACENFAC = a + bGA for ten geometric-arithmetic indices®.

GA;  GA, GAgy GAg, GAge  GAge GAes GAyq GA;,  GAg
(B=1.005) (a=0.805) (B=2.605) (0=0.97)

s 0.015 0.018 0.007 0.006 0.019 0.0032 0.0033 0.0037 0.0046  0.008
Q? 0.798 0.698 0955 0.970 0.345 0.990 0.990 0.986 0.979 0.933

tThe best model is in bold.

The statistical parameters of ten regression equations of the general form ACENFAC = a +
bGA corresponding to these descriptors are listed in Table 8. In this case, the best statistical
parameters are exhibited by the model based on GAg, index at =1.005. The improvement in
the standard deviation is equal to 78.67 %. All models possess very good predictive abilities.
The motor octane number is linearly correlated with || > 0.8 with eight geometric-arithmetic
indices. The values of s and Q2 of eight regression equations of the general form MON = a +

bGA are presented in Table 9.

Table 9. Statistical parameters of equation MON = a + bGA for 8 geometric-arithmetic indices®.

GAgq GAgp GAge GAq, GAgr GAzq GAyp GAq
(B=1.355) (0=0.865) (B=3.28) (0=0.9825)

s 10.91 9.924 14.92 8.541 8.594 9533 8.884 9,904

2 0.751 0.803 0.556 0.846 0.846 0.810 0.837 0.802

 The best model is in bold.

The best statistical parameters are possessed by the model based on GAg, index at B=1.355.
The improvement in the value of s is equal to 42.75 % compared to the model based on the
GAg. index (the worth statistical metrics). All models have good predictive capabilities. The
molar volume is satisfactorily linearly correlated with only one geometric-arithmetic index,
i.e., with GAg, descriptor. The regression equation of the form MV = a + bGA¢. has the

values of s and Q2 equal to 2.872 and 0.42, respectively.

From Tables 2-9, it can be inferred that in many cases the regression models based on the new

geometric-arithmetic indices perform considerably better than the regression models based on
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the first geometric-arithmetic descriptor. In the case of the dataset of octane isomers, GA;
index does not exhibit any satisfactory linear correlations with such properties as the density,
the motor octane number and the molar volume. On the other hand, these properties are
linearly correlated with || > 0.8 with GA,. invariant (DENS and MV) or with GAg,, GAgp,
GAge, GAge (at P=1.355), GAgr (at 0=0.865), GA;, (at p=3.28) and GA,, (at f=0.9825)
indices (MON). In the case of such properties of octanes as the boiling point, the entropy, the
enthalpy of vaporization, the enthalpy of formation and the acentric factor regression models
based on one of the newly proposed geometric-arithmetic descriptors exhibit the improvement
in the standard deviation from 4.83 % (HVAP) to 78.67 % (ACENFAC) compared to models

based on the first geometric-arithmetic index.

The Pearson correlation coefficients between geometric-arithmetic indices (whose formulae
do not include the adjustable parameters o or ) defined on the dataset of octane isomers are
listed in Table 10.

The lowest linear correlation is noted between GAg and GA, indices (0.493) while the highest

linear correlation is observed between GAg and GAgq indices (0.995).

Table 10. Correlation coefficients between eight geometric-arithmetic indices defined on the dataset of octane

isomers.
GA, 1
GA, 0.700 1
GAga 0.829 0.890 1
GAgp 0.961 0.822 0.948 1
GAgc 0.786 0.805 0.848 0.831 1
GAgq 0.960 0.531 0.651 0.848 0.690 1
GAg 0.949 0.493 0.613 0.827 0.640 0.995 1
GAq 0.852 0.839 0.976 0.958 0.767 0.688 0.662 1
GA, GA, GAgqa GAgp GAge GAgq GAg GAq

4.2 Correlations to the boiling points of saturated alkanes

Our initial studies have indicated that in the case of the boiling points of C-Co saturated
alkanes, the polynomial regression produces better models that the single regression.
Consequently, we obtained twelve equations of the general form BP = a + b;GA + b,GA?
whose statistical parameters are presented in Table 11.
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Table 11. Regression and statistical parameters of equation BP = a + b, GA + b,GA? for twelve geometric-
arithmetic indices®.

No GA index a by b, R? F s Q? SDEP

1b GA, 78.6559  300.7592  -33.7264 g g959 441741 32198 09952 3.3728

(+0.5156) (+3.2198) (+3.2198)

78.6559  299.6998  -27.5201
2b GA, (£0.9948) (£62126) (4+6.2126) 0.9849 1173.381 6.2126 0.9816  6.5951

78.6559  299.7704  -27.2038
3b GAg, (£0.9858) (+6.1565) (£6.1565) 0.9852 1195.204 6.1565 0.9825 6.4196

78.6559  299.8800  -26.0422
4b GAgp (£0.9844) (+6.1477) (46.1477) 0.9852 1198.667 6.1477 0.9826  6.4005

83.0581  249.1928  -16.1779
5b GAg, (+08167) (£5.0343) (5.0343) 0.9860 1230.23 5.0343 0.9837 5.2038

78.6559  301.1991  -32.0946
6b GAgq (£03921) (£2.4486) (42.4486) 0.9977 7651.634 24486 0.9966 2.8426

b (B:G(fgeSS) (13?32?.2) (1)335](_);:) (ﬁ:;i;ﬁ) 0.9889 1607.098 5.3194 0.9870 5.5378
wo Sl TR MM o gy ses ome s
9b (B:Gﬁzl((l)S) (1323292) (31(‘);-3:53) (jgggig) 0.9945 3232915 3.761 0.9936  3.874
10b GAzp 78.6559 3005712 -31.2275 0.9929 2534.331 4.2446 0.9918 4.3913

(0=0.9425) (+£0.6797) (+4.2446) (+4.2446)

78.6559  301.4876  -24.1181
11b GAg (£0.5910) (+3.6907) (+3.6907) 0.9947 3357.778 3.6907 0.9934  3.9307

78.6559  300.4553  -24.6235
12b GAq (£0.8799) (£54952) (45.4952) 0.9882  1504.75 5.4952 0.9862 5.7038

 The best model is in bold.

With respect to the goodness of fit, the models from Table 11 can be ordered as follows:

Eq 6b (GAgs) > Eq 1b (GA,) > Eq 11b (GAg) > Eq 9b (GA,, (B=1.405)) > Eq 10b (GA;,
(0=0.9425)) > Eq 7b (GAg, (B=0.855)) > Eq 12b (GAg) > Eq 8b (GAes (0=0.9975)) > Eq 5b
(GAgc) > Eq 4b (GAgp) > Eq 3b (GAeq) > Eq 2b (GA4)

The best statistical parameters are possessed by the model based on GAg,; index. The

improvement in the statistical deviation is 23.95 % relative to the model based on GA; index.

The results of t-test demonstrated that all variables in this model are significant. The model of
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Eq 6b explains more than 99.76 % of the variance in the experimental values of BP for 39
alkanes. Table 12 shows the values of GAg, index, the experimental boiling points of 39
saturated alkanes as well as the calculated (using Eq 6b) boiling points for this set of

compounds.

Table 12. Experimental and calculated (with Eq 6b) boiling points (BPs) of 39 saturated alkanes with values of

GAggq index.
BP(°C)
Subset Compound GAgq
Exptl Calcd

A ethane -88.630 -84.956 1
C propane -42.070 -44.794 1.886
A butane -0.500 -1.609 2.931
A 2-methylpropane -11.730 -14.856 2.598
B pentane 36.075 35.150 3.922
C 2-methylbutane 27.852 28.568 3.736
C 2, 2-dimethylpropane 9.503 8.789 3.200
C hexane 68.740 68.087 4.922
A 2-methylpentane 60.271 60.979 4.695
C 3-methylpentane 63.282 65.769 4.847
B 2, 3-dimethylbutane 57.988 57.628 4.590
A 2, 2-dimethylbutane 49.741 51.300 4.396
A heptane 98.427 96.858 5.922
B 2-methylhexane 90.052 90.819 5.699
A 3-methylhexane 91.850 93.886 5.811
B 3-ethylpentane 93.475 96.824 5.920
B 2, 4-dimethylpentane 80.500 83.796 5.450
A 2, 2-dimethylpentane 79.197 80.452 5.334
C 2, 3-dimethylpentane 89.784 90.415 5.685
A 3, 3-dimethylpentane 86.064 87.456 5.579
C 2, 2, 3-trimethylbutane 80.882 78.889 5.281
A octane 125.655 121.462 6.922
B 2-methylheptane 117.647 116.350 6.699
A 3-methylheptane 118.925 119.053 6.816
B 4-methylheptane 117.709 118.128 6.776
B 2, 5-dimethylhexane 109.103 111.087 6.479
C 3-ethylhexane 118.534 120.772 6.891
B 2, 4-dimethylhexane 109.429 113.252 6.569
B 2, 2-dimethylhexane 106.840 107.687 6.341
B 2, 3-dimethylhexane 115.607 115.229 6.652
C 3, 4-dimethylhexane 117.725 118.295 6.783
C 3, 3-dimethylhexane 111.969 112.073 6.520
A 3-ethyl-2-methylpentane 115.650 117.202 6.736
C 2, 2, 4-trimethylpentane 99.238 100.951 6.077
B 2, 3, 4-trimethylpentane 113.467 111.904 6.513
A 3-ethyl-3-methylpentane 118.259 117.339 6.742
C 2, 2, 3-trimethylpentane 109.840 108.250 6.364
B 2, 3, 3-trimethylpentane 114.760 110.455 6.453
C 2, 2, 3, 3-tetramethylbutane 106.470 98.640 5.989

The results of the y-randomization (after 1000 repetitions) produced the average value of

Rﬁmnd equal to 0.0241 and the average value of Qﬁmnd equal to -0.0824. Therefore, the
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model based on GAg, index does not include chance correlations. The results of external

validation of this model are presented in Table 13.

Table 13. Results of external validation of model based on GA¢, index.

Training set Prediction set s R?
BC A 2.9788 0.9988
AC B 2.6556 0.9917
AB C 3.1727 0.9970
Average 2.8690 0.9958

The high average value of R? and the relatively low average value of s indicate that the model
of Eq 6b has good predictive abilities with respect to external data. The calculated BPs versus

the experimental data are depicted in Figure 3.

From the statistical considerations and Figure 3, we can see that the model based on GAg¢q
index is quite excellent. Note that the model of Eq 6b exhibits a lower standard deviation
than models based on Xu index (s = 5.791), the Randi¢ index y (s=7.908), the molecular
topological index (abbreviated as MTI) (s=17.975) and on the Hosoya Z index (s=22.924)
[35, 41].

Calculated BP

T T T T
-50 0 50 100

Experimental BP
Figure 3. Plot of calculated boiling points (BP) of 39 alkanes versus experimental data.

4.3 Correlations to the enthalpies of combustion of aliphatic alcohols

Our preliminary studies have demonstrated that the enthalpies of combustion of aliphatic

alcohols can be adequately modelled by the single regression. Thus, we obtained twelve
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equation of the general form A.H" = a + bGA. The statistical parameters of these models are
detailed in Table 14.

Table 14. Regression and statistical parameters of equation A H" = a + bGA for twelve geometric-arithmetic

Indices?.

No GA index a b R? F s Q? SDEP

1c GA, ég::?ig; Ei?éolse%i 0.9991 3172622 110431  0.9990  114.0153
2c GA, (5961516254[; Ei‘&ﬁg{; >0.9999 5075452  27.6208 >0.9999  29.481

3c GAsq (i(gsgzgif; (220658212) >0.9999 8893825  20.8657 >0.9999  22.5035
4c GAgp (:g:gggg) (2215692412(; >0.9999 1202765  17.9428  >0.9999  19.402

5¢ GAg, ('ilgiggg% ii‘?'li?g; 0.9994  41911.15 931386  0.9993  97.1657
6c GAgq églggi’) 62‘237313%2) 0.9992  35268.79 1047426  0.9991  108.2022
7c ( ﬁiﬁf{’}) é:ggﬁ) (250255221:2) 209999 oea000 157344 509999 17.0682
8c (uf:;‘; ) (J_f::fig) (22253;%{355; >0.9999 1570980  15.6999  >0.9999  17.0682
9% ( B:Gg;‘(‘) ) (:Sﬁgj) (12254270%1) 209999 oea706 157108 509999 17.0606
10¢ (af(‘:;:’) 5 (ﬁs:fsgg) (12252179721) >0.9999 1578171 15664  >0.9999  17.0784
11c GAg ('ilfj:g;jé) (25’1243197327) 0.9999 2119108 427445  0.9999  44.1835
12¢ GAq (ilfégggé) (251502‘:3121) >0.9999 357596.6  32.9057 >0.9999  34.0676

 The best model is in bold.

With respect to the goodness of fit, the models from Table 14 can be put in the following

order:

Eq 10c (GA7;, (0=0.605)) > Eq 8¢ (GAgf (a=0.275)) > Eq 9¢ (GA74 (B=0.505)) > Eq 7¢ (GAge
(B=0.13)) > Eq 4c (GAgp) > Eq 3¢ (GAg,) > Eq 2¢ (GA,) > Eq 12¢ (GAy) > Eq 11c (GAg) >
Eq 5¢ (GAg.) > Eq 6¢ (GAgq) > Eq 1c (GA,).
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The best results are obtained by the model based on GA,;, index at 0=0.605. The relationship

between the coefficient of determination (R?) and the adjustable parameter o (of GA,,

descriptor) is shown in Figure 4.

09990 09992 09994 09996 09998 1.0000

00 02 04

06 0.8

Figure 4. Plot of coefficient of determination (R?) of equation 10c versus adjustable parameter a.

In the case of the model of Eq 10c, the improvement in the standard deviation is 85.82 %

relative to the model based on the first geometric-arithmetic index. This model explains more

than 99.99 % of the variance in the experimental data of A.H° for 29 aliphatic alcohols. Table

15 contains the values of GA,, index at 0=0.605, the experimental enthalpies of combustion

of 29 aliphatic alcohols as well as the calculated (with Eq 10c) enthalpies of combustion for

this set of compounds.

Table 15. Experimental and calculated (with Eq 7b) the enthalpies of combustion (A.H") of 29 aliphatic alcohols

with values of GA,, index at 0=0.605.

Subset Compound AcH_(K/mol) GA7p
Exptl Calcd (2=0.605)

B methanol -725.7 -721.54 1
A ethanol -1367.6 -1367.18 1.990
A 1-propanol -2019.4 -2020.98 2.992
Cc 2-propanol -2006.9 -2007.11 2971
A 1-butanol -2677.4 -2674.51 3.994
B 2-butanol -2660.6 -2664.52 3.979
A 2-methyl-1-propanol -2669.6 -2664.52 3.979
C 2-methyl-2-propanol -2644 -2645.14 3.949
A 1-pentanol -3324.6 -3327.46 4.995
C 2-pentanol -3315.4 -3318.91 4.982
C 3-pentanol -3312.3 -3320.25 4.984
C 2-methyl-1-butanol -3325.9 -3320.25 4.984
B 3-methyl-1-butanol -3326.2 -3318.91 4.982
B 2-methyl-2-butanol -3303.1 -3303.43 4.958
B 3-methyl-2-butanol -3315.1 -3313.85 4.974
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B 1-hexanol -3982.6 -3980.12 5.996
C 1-heptanol -4642.52 -4632.62 6.996
A 1-octanol -5295.5 -5285.05 7.996
B 1-nonanol -5940.8 -5937.43 8.996
A 1-decanol -6599.63 -6589.78 9.997
C 1-undecanol -7253.7 -7242.12 10.997
B 1-dodecanol -7909.4 -7894.44 11.997
B 1-tridecanol -8517.8 -8546.75 12.997
Cc 1-tetradecanol -9167 -9199.05 13.997
B 1-pentadecanol -9817.7 -9851.35 14.997
A 1-hexadecanol -10468.9 -10503.65 15.997
A 1-octadecanol -11820 -11808 17.997
A 1-eicosanol -13130 -13112.81 19.997
C 1-docosanol -14450 -14417.38 21.997

Table 16. Results of external validation of model based on GA;), index at 0=0.605.

Training set Prediction set s R?
BC A 15.6270 >0.9999
AC B 18.6632 >0.9999
AB C 18.9087 >0.9999
Average 17.7330 >0.9999

The average values of Rf,mnd and Qf,mnd after 1000 repetitions of the y-randomization are
equal to 0.0345and  -0.1166, respectively. Thus, the model of Eq 10c does not have chance
correlations. The results of external validation of the model based on GA,;, index at 0=0.605
are shown in Table 16. These values testify that the above model possesses satisfactory
predictive capabilities with respect to external data. The calculated enthalpies of combustion
of 29 aliphatic alcohols versus the experimental data are presented in Figure 5.
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Figure 5. Plot of calculated enthalpies of combustion (A.H") of 29 aliphatic alcohols versus experimental data.
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From the above facts, it can be deduced that the model of Eq 10c is very good.

4.4 Correlations to the molar volumes of alcohols

From our preliminary data, it can be seen that the molar volumes of aliphatic alcohols can be
satisfactorily modelled by the single regression. Therefore, we obtained twelve linear
equations of the general form MV = a + bGA whose statistical characteristics are included in
Table 17.

Table 17. Regression and statistical parameters of equation MV = a + bGA for twelve geometric-arithmetic

indices®.
No GA index a b R? F s Q? SDEP
.84. 16.251
1d GA, 33.8438 6.2510 0.9846 2564.548 4.8806 0.9821 5.1362

(+2.1054)  (+0.3209)

28.1097 16.3053
2d GA, (£0.7179)  (+0.1044) 0.9984 24376.14 1.5940 0.9980 1.7020

27.7540 16.3631
3d GAgq (£06842) (+0.0996) 0.9985 26996.75  1.5148 0.9982 1.6287

27.1336 16.4368
4d GAgp (£0.7045)  (+0.1025) 0.9984 25731.94  1.5516 0.9981 1.6759

30.8099 15.9997
5d GAge (£1.2233) (+0.1787) 0.9950 8016.497  2.7750 0.9943 2.9134

32.4192 16.2830

6d GAgq (£2.0855) (4+0.3146) 0.9853 2679.673  4.7762 0.9829 5.0249
7d (B:G(f(é)?)S) é%%iii) (i%égzi) 0.9987 31669.18  1.3988 0.9985 1.4997
8d (a=c(;)1,4(;(§25) é%i;ii) (i%ézg:;) 0.9987 31674.03  1.3987 0.9985 1.4996
9d (BS::S'(‘)S) (if)zzsli) (i%éegiz) 0.9987 3167439  1.3987 0.9985 1.4996
10d Az 259755 16.4683 0.9987 3167439  1.3987 0.9985 1.4996

(@=0.0025)  (+0.6411) (+0.0925)

27.7760 16.6742
11d GAg (+14485) (+0.2149) 0.9934 6017.976  3.2002 0.9920 3.4372

28.0739 16.6984
12d GA, (£0.9590) (+0.1428) 0.9971 13665.28  2.1276 0.9963 2.3259

1 The best models are in bold.

With respect to the descriptive properties, the models from Table 17 can be ordered as

follows:

Eq 9d (GA7, (B=0.005)) = Eq 10d (GA;p (¢=0.0025)) > Eq 8d (GAs; (0=0.0025)) > Eq 7d
(GAg. (B=0.005)) > Eq 3d (GAgq) > Eq 4d (GAgp) > Eq 2d (GA,) > Eq 12d (GAo) > Eq 5d
(GAg.) > Eq 11d (GAg) > Eq 6 (GAgy) > Eq 1d (GA,).
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The best statistical parameters are possessed by the models based on GA,, index at p=0.005
and on GA,, index at a=0.0025. The relationship between the coefficient of determination
(R?) and the adjustable parameters B (of GA,, invariant) or o (of GA, invariant) is presented
in Figure 6.

Note that the values of GA,, index at $=0.005 and GA;; index at 0=0.0025 are equal to the
number of edges of a molecular graph. Consequently, it can be concluded that the molar
volumes of 42 aliphatic alcohols are adequately modelled by a simple molecular descriptor,
i.e., the number of edges of the corresponding H-depleted graph. In the cases of the models of
Egs 9d and 10d, the improvements in the standard deviation are equal to 71.34 % relative to

the model based on GA; descriptor.
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Figure 6. a/ Plot of coefficient of determination (R?) of equation 9d versus adjustable parameter B, b/ Plot of
coefficient of determination (R?) of equation 10d versus adjustable parameter a.

These models account for more than 99.87 % of the variance in the experimental values of
MVs of 42 alcohols. Table 20 presents the values of GA, index at =0.005 (or GA,, index at
0=0.0025), the experimental molar volumes of 42 aliphatic alcohols as well as the calculated

(with Egs 9d or 10d) molar volumes for this set of compounds.

After 1000 repetitions, the y-scrambling produced the average values of Rﬁmnd and Qﬁmnd
equal to 0.0246 and -0.0762, respectively. Consequently, the above models do not have
chance correlations. Table 18 presents the results of external validation of the models of Eqs
9d and 10d.
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Table 18. Results of external validation of the model based on GA,, index at =0.005 (or on GA,,, index at

0=0.0025).
Training set Prediction set s R?
BC A 1.2300 0.9993
AC B 1.5429 0.9990
AB C 1.9416 0.9986
Average 1.5715 0.9990

The high average value of R? and the low average value of s indicate that these models
exhibit very good predictive abilities for external data. The plot of the calculated MVs of 42
aliphatic alcohols versus the experimental data is shown in Figure 7. It can be observed that
the calculated values of MVs agree very well with the experimental data. Judging from the
statistical parameters and plot in Figure 7, it can be uttered that the regression models based

on GA,, index at $=0.005 or on GA,;, index at 0=0.0025 represent excellent QSPR models.

Calculated MV

50 100 150 200 250

Experimental MV

Figure 7. Plot of calculated molar volumes (MV) of 42 aliphatic alcohols versus experimental data.

For this same dataset, L. Mu et al. obtained the three-parameter regression model (with two
edge connectivity indices, ie., °F, F and the alcohol-type parameter §) with a slightly

higher standard deviation (s=1.504) [37].
4.5 Correlations to the molar refractions of alcohols

The molar refraction (MR) is a measure of the total polarizability of molecules. This property
is a particularly important physical characteristic in chemistry, biochemistry and
pharmaceutical sciences. Our initial results have indicated that in the case of 41 aliphatic
alcohols this property can be adequately described by the single regression. Therefore, we
obtained twelve linear regression equations of the general form MR = a + bGA. The

statistical parameters exhibited by these models are listed in Table 19.




-35-

Table 19. Regression and statistical parameters of equation MR = a + bGA for twelve geometric-arithmetic

indices®.
No GA index a b R? F s Q? SDEP
le GA,4 57455 4.5620 0.9888 3437.633 1.1745 0.9871 1.2263

(£0.5141) (40.0778)

4.2815 4.5599
2e GA, (£0.0974) (20.0141) 0.9996  104834.8  0.2138 0.9996 0.2244

4.1675 4.5774
3e GAgq (£0.0861) (+0.0125) 0.9997  135036.8  0.1884 0.9997 0.1984

3.9960 4.5979
4e GAgp (£0.0881) (£0.0127) 0.9997  130301.7  0.1918 0.9996 0.2041

5.0053 4.4782
5e GAgc (£0.2649) (+0.0385) 0.9971  13564.76  0.5937 0.9967 0.6201

5.3520 4.5705

6e GAgq (+04969) (t0.074q 0989 8760446 11221 09882 11728
7e (ﬁf(fﬁ)s) (fd?ggfs) (gﬁ?gffh 09997 1545626 0.1761 09997  0.1849
8e (af:;g 5 ( 136?55124) ( ;6?513117) 0.9997  154622.6  0.1761  0.9997  0.1851
% (B:G:;‘gs) ( fgg;fﬁ) ( ;6?83137) 09997 154037  0.764 09997  0.1854
10e GAzp 8.7963 45997 9997 1528408 01771 09997  0.1858

(0=0.5875)  (+0.0818) (+0.0118)

4.1199 4.6715
1le GAg (£0.3068) (+0.0452) 0.9964 10661.6 0.6694 0.9956 0.7138

4.2377 4.6736
12e GA, (£0.1789) (40.0265) 0.9987  31131.43  0.3922 0.9985 0.4221

! The best model is in bold.
With regard to the goodness of fit, the models from Table 19 can be ordered as follows:

Eq 8e (GAes (0=0.235)) > Eq 7e (GAg, (B=0.105)) > Eq 9 (GA,, (B=0.455)) > Eq 10e (GAyp
(0=0.5875)) > Eq 3e (GAsq) > Eq 4e (GAqp) > Eq 2e (GA,) > Eq 12e (GAy) > Eq 5e (GAg.) >
Eq 11e (GAg) > Eq 6e (GAgq) > Eq 1e (GA;).

09988 09990 009992 09994 0.9996
L

Figure 8. Plot of coefficient of determination (R?) of equation 8e versus adjustable parameter o.
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The model of Eq 8e shows the best statistical parameters. The relationship between the
coefficient of determination (R?) and the adjustable parameter o (of GAg # invariant) is plotted
in Figure 8. In the case of this model, the improvement in the statistical deviation is equal to
85.01 % relative to the model of Eq le. The model based on GAgy index at 0=0.235 is
responsible for more than 99.97 % of the variance in the experimental MRs of 41 aliphatic
alcohols. The values of GAgf index at a=0.235, the experimental values of MRs as well as the
calculated (with Eq 8e) values of MRs for this set of compounds are presented in Table 20.

Table 20. Experimental and calculated (with Eq 9d/10d (MV) or Eq 8e (MR)) the molar volumes (MVs) and the
molar refractions (MRs) of aliphatic alcohols with values of GA,, index at $=0.005 (or GA;; index at 6=0.0025)
and GAgy index at 0=0.235.

MV (cm3/mol) GAzq MR(cm3mol)
Subset Compound (p=0.005) GAsy
Exptl Calcld GAzp Exptl Caled  (0=0.235)
(0=0.0025)

A ethanol 58.368 58.912 2 12.927 12.959 1.996
C 1-propanol 74.798 75.380 3 17.565 17.561 2.995
B 2-propanol 76.561 75.380 3 17.613 17.504 2.983
C 1-butanol 91.529 91.849 4 22.145 22.166 3.996
B 2-methyl-1-propanol 92.338 91.849 4 22.182 22.117 3.985
C 2-butanol 91.903 91.849 4 22.144 22.117 3.985
B 2-methyl-2-propanol 94.216 91.849 4 22.033 22.014 3.963
A 1-pentanol 108.160 108.317 5 26.798 26.771 4.996
B 3-methyl-1-butanol 108.559 108.317 5 26.770 26.725 4.986
B 2-pentanol 108.962 108.317 5 26.724 26.725 4.986
B 2-methyl-1-butanol 108.027 108.317 5 26.753 26.730 4.987
A 3-pentanol 107.265 108.317 5 26.565 26.730 4.987
A 3-methyl-2-butanol 107.631 108.317 5 26.638 26.687 4.978
B 2-methyl-2-butanol 108.962 108.317 5 26.718 26.633 4.966
B 2, 2-dimethyl-1-propanol 108.559 108.317 5 - - -
C 1-hexanol 125.590 124.785 6 31.636 31.375 5.996
A 2-methyl-1-pentanol 123.795 124.785 6 31.262 31.337 5.988
C 2-ethyl-1-butanol 122.401 124.785 6 31.130 31.344 5.990
C 4-methyl-2-pentanol 126.774 124.785 6 31.497 31.292 5.978
C 2, 3-dimethyl-2-butanol 124.065 124.785 6 31.239 31.213 5.961
B 3, 3-dimethyl-1-butanol 124.005 124.785 6 31.224 31.242 5.968
B 3, 3-dimethyl-2-butanol 124.838 124.785 6 31.268 31.213 5.961
A 3-hexanol 124.716 124.785 6 31.297 31.337 5.988
A 3-methyl-3-pentanol 123.391 124.785 6 31.134 31.251 5.969
A 1-heptanol 141.345 141.253 7 36.015 35978 6.996
C 2-heptanol 142.176 141.253 7 36.077 35.934 6.987
B 3-heptanol 141.535 141.253 7 35.981 35.942 6.988
A 4-heptanol 142.002 141.253 7 35.928 35.944 6.989
A 2, 4-dimethyl-3-pentanol 140.101 141.253 7 35.794 35.875 6.974
C 1-octanol 157.473 157.722 8 40.679 40.582 7.996
A 2-octanol 158.720 157.722 8 40.668 40.538 7.987
C 4-octanol 158.972 157.722 8 40.649 40.548 7.989
A 2-ethyl-1-hexanol 156.357 157.722 8 40.514 40.554 7.990
C 2, 2, 4-trimethyl-1-pentanol 155.221 157.722 8 40.097 40.432 7.964
A 3, 5-dimethyl-1-hexanol 156.960 157.722 8 40.135 40.510 7.981
B 1-nonanol 174.417 174.190 9 45.266 45.185 8.997
B 2, 6-dimethyl-4-heptanol 177.638 174.190 9 45,244 45.078 8.973




A 5-nonanol 172.642
B 1-decanol 190.252
C 1-undecanol 207.652
C 2, 6, 8-trimethyl-4-nonanol 227.438
C 1-tridecanol 236.965
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174.190
190.658
207.127
223.595
240.063

10
11
12
13

44.589
49.734
54.640
59.289
63.375

45.152 8.989
49.788 9.997
54.392 10.997
58.862 11.968
63.598 11.997

In the case of the model of Eq 8e, the average values of Rf,mnd and Qﬁmnd after 1000

repetitions of the y-scrambling are

equal

to 0.0253 and

-0.0792, respectively.

Hence, the model of Eq 8e does not contain chance correlations. The results of external

validation of the model based on GAgf index at a=0.235 are shown in Table 21.

Table 21. Results of external validation of model based on GAgf index at a=0.235.

Training set Prediction set s R?
BC A 0.2452 0.9996
AC B 0.0992 >0.9999
AB C 0.2588 0.9998

Average 0.2011 0.9998
z 8
= -
g .| .
= T T T T T T T
10 20 30 40 50 60 70

Experimental MR

Figure 9. Plot of calculated molar refractions (MR) of 41 aliphatic alcohols versus experimental data.

The values of R? and s suggest that the above model exhibits satisfactory predictive

capabilities with respect to external data. From the plot in Figure 9, it can be seen that the

calculated values of MRs of 41 alcohols are very close to the experimental data. To sum up,

the model based on GAgf index at 0=0.235 can be referred as very good. For this same

dataset, L. Mu et al. obtained the three-parameter model (with °F, 'F and & as variables)
with a higher standard deviation (s=0.446) [37].
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4.6 Correlations to the molar refractions of aldehydes and ketones

Also, the molar refractions of the set of compounds composed of 22 aldehydes and 24 ketones
are properly modelled by the single regression. So, twelve linear regression equations of the
form MR = a + bGA with their statistical parameters are presented in Table 22.

Table 22. Regression and statistical parameters of equation MR = a + bGA for twelve geometric-arithmetic
indices!.

No GA index a b R? F N Q? SDEP

3.7920 4.6280
1f GA, (£0.3721) (£0.0515) 0.9946  8072.622 0.8642 0.9942 0.8780

2.7239 4.5891
2f GA, (4£0.0950) (£0.0127) 0.9997 131361.6 0.2148 0.9996 0.2222

2.6377 4.6017
3f GAgq (£0.0848) (£0.0113) 0.9997 165811.4 0.1912 0.9997 0.1962

2.4783 4.6217
Af GAgp (£0.0817) (20.0109) 0.9998 179960.2 0.1835 0.9997 0.1877

3.0954 4.5479
5f GAge (£0.1501) (20.0200) 0.9991  51605.61 0.3426 0.9990 0.3569

3.4270 4.6299
6f GAgq (4£0.3650) (20.0500) 0.9949  8559.956 0.8394 0.9945 0.8515

7f (ﬁiA(;_éleg) (izozg;f?) (;06517;8) 0.9998 182187.6 0.1824 0.9997 0.1869
8f (uftf;fl 5) (503;;(?8) (1406§f57) 0.9998 186003.6 0.1805 0.9997 0.1849
of (ﬁi?)?:g) (jozgggz) (;0651?59) 0.9998 180232.9 0.1834 0.9997 0.1879
10f GAzp 2:3344 46226 0.9998 182320.5 0.1823 0.9997 0.1869

(0=0.64) (+0.0815)  (+0.0108)

24545 47090
11f . . . A .
GAg (102317) (to0a1s) 0990 2241953 05195 09979 05264

2.6683 4.7015
12f GAy (£0.1527)  (+0.0208) 0.9991 51000.95 0.3446 0.9991 0.3515

! The best model is in bold.

With respect to the decreasing goodness of fit, the models from Table 22 can be put in the

following order:
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Eq 8f (GAgs (0=0.315)) > Eq 10f (GA;p, (0=0.64)) > Eq 7f (GAg (B=0.13)) > Eq 9f (GA7,
(B=0.48)) > Eq 4f (GAgp) > Eq 3f (GAg,) > Eq 2f (GA,) > Eq 5f (GAg.) > Eq 12f (GAs) > Eq
11f (GAg) > Eq 6f (GAgq) > Eq 1 (GA,y).

Also, in this case, the best parameters are possessed by the model based on GAgy index at
a=0.315. Figure 10 presents the mutual relation between the coefficient of determination (R?)

and the adjustable parameter a (of GAgf descriptor).
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Figure 10. Plot of coefficient of determination (R?) of equation 8f versus adjustable parameter o.

In the case of the model of Eq 8f, the improvement in the standard deviation is equal to 79.11
% compared to the model based on GA; index. This model elucidates more than 99.97 % of
variance in the experimental data of MRs for this set of compounds. Table 23 presents the
values of GAgf index at a=0.315, the experimental values of the molar refractions of 22
aldehydes and 24 ketones as well as the calculated (with Eq 8f) values of MRs for this set of
compounds.

Table 23. Experimental and calculated (with Eq 8f ) the molar refractions of 22 aldehydes and 24 ketones with
values of GAg index at 0=0.315.

3
Subset Compound MR(cmrmal) Aoy
Exptl Calcd (a=0.315)
C acetaldehyde 11.5829 11.5377 1.993
B propionaldehyde 16.1632 16.1597 2.992
A butyl aldehyde 20.8011 20.7878 3.993
A 2-methyl propanal 20.8219 20.7092 3.976
B pentaldehyde 25.4983 25.4161 4.993
B 2-methyl butanal 25.3943 25.3473 4.978
A 3-methyl butanal 25.5327 25.3431 4.977
B hexanal 30.0928 30.0438 5.993
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B 2-methylpentanal 29.8497 29.9803 5.980
B 2-ethylbutanal 29.9981 29.9870 5.981
A 2, 3-dimethylbutanal 30.0640 29.9172 5.966
B heptanal 34.7004 34.6710 6.994
A 2, 2-dimethylpentanal 34.7537 34.4780 6.952
C octanal 39.4396 39.2979 7.994
C 2-ethylhexanal 39.2395 39.2480 7.983
C 2-ethyl-3-methylpentanal 38.9423 39.1985 7.972
C nonanal 44.2669 43.9246 8.994
A 3, 5, 5-trimethylhexanal 43.9887 43.6785 8.941
B decanal 48.6737 48.5512 9.994
A 2-methyldecanal 53.0003 53.1163 10.981
C dodecanal 58.0913 57.8041 11.994
C 2-methylundecanal 57.9284 57.7426 11.981
B acetone 16.2963 16.0722 2.973
C 2-butanone 20.6039 20.7092 3.976
A 2-pentanone 25.2926 25.3431 4.977
B 3-pentanone 25.2487 25.3473 4.978
A 3-methyl-2-butanone 25.2603 25.2765 4.963
B 2-hexanone 29.9308 29.9728 5.978
A 3-hexanone 29.7251 29.9803 5.980
C 3-methyl-2-pentanone 29.9453 29.9172 5.966
C 4-methyl-2-pentanone 29.9877 29.9100 5.964
A 3, 3-dimethyl-2-butanone 29.6748 29.7793 5.936
B 2-heptanone 34.5463 34.6008 6.978
C 3-heptanone 34.4230 34.6092 6.980
B 4-heptanone 34.3083 34.6126 6.981
A 5-methyl-2-hexanone 34.5773 34.5360 6.964
A 2-octanone 39.1959 39.2280 7.979
C 4-octanone 39.0616 39.2410 7.981
C 6-methyl-3-heptanone 38.9478 39.1724 7.967
A 2-nonanone 43.3542 43.8549 8.979
C 5-nonanone 43.8710 43.8692 8.982
A 2, 6-dimethyl-4-heptanone 43.8902 43.7491 8.956
B 2-decanone 48.5304 48.4816 9.979
C 2-undecanone 52.7129 53.1082 10.979
C 6-undecanone 53.2109 53.1230 10.982
B 2-methyl-4-undecanone 57.7027 57.6878 11.969

In the case of the model of Eq 8f, the y-randomization (after 1000 repetitions) gave the
average value of R}Z,mnd equal to 0.0229 and the average value of Qf,mnd equal to -0.0703.

The results of external validation of this model are presented in Table 24:

Table 24. Results of external validation of model based on GA4y index at 0=0.315.

Training set Prediction set s R?
BC A 0.2189 0.9995
AC B 0.1257 0.9999
AB C 0.2158 0.9998

Average 0.1868 0.9997
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The values from Table 24 indicate that the model based on GAgf index at =0.315 has good
predictive ability for external data. The plot of the calculated values of MRs of 22 aldehydes
and 24 ketones versus the experimental data is depicted in Figure 11. This figure as well as all
statistical conditions support the view that the model of Eq 8f can be considered as excellent.
For this same dataset, B. Ren obtained the six-parameter model (with the modified Xu index,
i.e.,, Xuy* and five atom-type-based Al topological indices) with a slightly lower standard
deviation (s=0.1598) [43].

Calculated MR

Experimental MR

Figure 11. Plot of calculated molar refractions of 22 aldehydes and 24 ketones versus experimental data.

4.7 Correlations to the gas heat capacities of aldehydes and ketones

In the case of the gas heat capacities of the set of compounds composed of 3 aldehydes and 15
ketones, our preliminary studies have demonstrated that the power regression produces better
models than any linear regression. Thus, we obtained twelve nonlinear equations of the

general form Cy = cGA". The statistical metrics of these models are presented in Table 25.

Table 25. Regression and statistical parameters of equation C{f = cGA" for twelve geometric-arithmetic indices®.

No GA index c t R? F s Q? SDEP

exp(3.6482) 0.8214

1g GA, (vo0s02)  (t001s) 09923 2051123 0023 09903 00249
exp(35678)  0.8376

2g GA, (to0a2l) (t00244 09806 117975 00310 09837 00323

3g GAse exp(35527) - 08465 — oaeg 1204717 00306 09833 00326

(+0.0421)  (+0.0244)
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59

69

79

8g

99

109

119

129

GAgp

GAge

GAgq

GAge
(B=1.505)

GAgs
(0=0.9975)

GAy
(B=31.205)

GA,,
(@=0.97)

GAg

GA,

exp(3.5378)
(+0.0437)

exp(3.6362)
(+0.0352)

exp(3.6345)
(£0.0345)

exp(3.5484)
(£0.0355)

exp(3.5420)
(£0.0364)

exp(3.6338)
(£0.0258)

exp(3.6410)
(£0.0255)

exp(3.5387)
(£0.0385)

exp(3.5418)
(£0.0364)

0.8540
(0.0253)

0.8033
(40.0205)

0.8221
(40.0205)

0.8588
(40.0208)

0.8645
(0.0214)

0.8617
(£0.0161)

0.8291
(£0.0154)

0.8643
(£0.0226)

0.8647
(£0.0214)
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0.9862

0.9897

0.9901

0.9907

0.9903

0.9945

0.9945

0.9892

0.9903

1141.826

1536.597

1603.255

1702.669

1637.899

2873.417

2915.997

1465.186

1639.367

0.0315

0.0272

0.0266

0.0258

0.0263

0.0199

0.0198

0.0278

0.0263

0.9823

0.9867

0.9877

0.9878

0.9874

0.9924

0.9927

0.9863

0.9874

0.0336

0.0290

0.0280

0.0279

0.0284

0.0220

0.0216

0.0295

0.0284

 The best model is in bold.

With respect to the descriptive properties, the models from Table 25 can be ordered as

follows:

Eq 10g (GA,, (0=0.97)) > Eq 99 (GA,, (B=31.205)) > Eq 19 (GA,) > Eq 79 (GAg,. (B=1.505))
> Eq 129 (GAs) > Eq 89 (GAgr (0=0.9975)) > Eq 69 (GAsq) > EQ 59 (GAsc) > Eq 119 (GAs)
> Eq 39 (GAsa) > EQ 29 (GA4) > Eq 49 (GAep).

The model based on GA,, index at 0=0.97 outperforms all other models. The relationship

between the coefficient of determination (R?) and the adjustable parameter o (of GA,,

descriptor) is presented in Figure 12.
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Figure 12. Plot of coefficient of determination (R?) of equation 10g versus adjustable parameter o.

In the case of the model based on GA;;, index at 0=0.97, the improvement in the standard
deviation is equal to 16.10 % versus the model of Eq 1g. More than 99.45 % of the variance
in the experimental data of the gas heat capacities of the considered set of compounds is
explained by this model. The values of GA,, index at a=0.97, the experimental gas heat
capacities of the set of 3 aldehydes and 15 ketones as well as the calculated (with Eq 10g)

values of Cf for this set of compounds are listed in Table 26.

Table 26. Experimental and calculated (with Eq 10g) gas heat capacities (C,?) of 3 aldehydes and 15 ketones
with values of GA, index at a=0.97.

G
Subset Compound Cy Qfmolk) GA7p
Exptl Calcd (a=0.97)
B propanal 90.03 90.64 2.842
A pentanal 144.07 140.21 4.809
A 2, 2-dimethylpropanal 132.42 127.62 4.293
B acetone 83.99 86.04 2.668
C 2-butanone 110.02 110.64 3.614
A 2-pentanone 136.23 135.57 4.618
C 3-pentanone 133.54 134.35 4.568
B 3-methyl-2-butanone 131.09 130.98 4.430
C 2-hexanone 161.50 159.99 5.639
A 3-hexanone 157.82 158.61 5.581
B 4-methyl-2-pentanone 155.68 156.34 5.484
C 3, 3-dimethyl-2-butanone 149.64 148.12 5.139
A 2-heptanone 189.55 183.69 6.662
C 4-heptanone 180.63 182.21 6.597
B 2-methyl-3-hexanone 173.25 178.28 6.426
B 2, 4-dimethyl-3-pentanone 171.98 174.70 6.270
A 2-octanone 209.54 206.70 7.680
C 5-nonanone 221.35 228.05 8.648
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Table 27. Results of external validation of model based on G4, index at 0=0.97.

Training set Prediction set s R?
BC A 0.0388 0.9925
AC B 0.0333 0.9987
AB C 0.0222 0.9975
Average 0.0314 0.9962

In the case of the model based on GA,, index at a=0.97, the y-scrambling (after 1000
repetitions) produced the average value of R}z,mnd equal to 0.0562 and the average value of

Q3 rana qual to -0.2065. Thus, this model does not possess chance correlations.

Table 27 presents the results of external validation of the model based on GA-, index at
a=0.97. The high average value of R? and the low value of s testify that this model can be
reckoned as having very good predictive abilities with regard to external data. From the plot
in Figure 13, it can be deduced that there exists agreement between the calculated (with Eq

10g) gas heat capacities and the experimental data. All aforementioned facts indicate that the

model based on GA,;, index at 0=0.97 is of high quality.

CalculatedC;
L i 1 L 1 Il

100 120 140 160 180 200 220

80 100 120 140 160

Experimental C[:

Figure 13. Plot of calculated gas heat capacities (Cg) of 3 aldehydes and 15 ketones versus experimental data.

For this same dataset, B. Ren obtained the two-parameter model (with Xu;* index and one Al

index) with a higher standard deviation (s=2.48) [43].

T T
180 200

T
220
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4.8 Correlations to the enthalpies of formation of monocarboxylic acids

Our introductory findings suggest that the enthalpies of formation of 20 monocarboxylic acids
can be satisfactorily modelled by the single regression. Hence, we obtained twelve linear
regression equations of the general form A;H® = a + bGA whose statistical characteristics are
presented in Table 28. With regard to the decreasing goodness of fit, the models from Table
28 can be arranged as follows:

Eq 11h (GAg) > Eq 7h (GAee (B=9.98)) > Eq 9h (GA,, (B=0.005)) = Eq 10h (GAy
(0=0.0025)) > Eq 8h (GA4y (0=0.0025)) > Eq 12h (GA) > Eq 4h (GAgp) > EQ 3h (GAgq) >
Eq 2h (GA,) > Eq 6h (GAg4) > Eq 1h (GA,) > Eq 5h (GAg.).

Table 28. Regression and statistical parameters of equation AsH" = a + bGA for twelve geometric-arithmetic
Indices®.

No GA index a b R? F s Q? SDEP

-385.6264  -30.3508
1h GA; (£4.9250) (£0.3922) 0.9970  5989.068  10.0878 0.9962 10.8284

-379.1959  -30.1233
2h GA, (£4.8123) (£0.3747) 0.9972 6463.31 9.7118 0.9965 10.2969

-378.328 -30.181
3h GAgq (£4.7790) (£0.3720) 0.9973  6581.389  9.6245 0.9966 10.2119

-377.7639  -30.2505
4h GAgp (£4.7006) (+0.3663) 0.9974  6818.995  9.4558 0.9967 10.0279

-381.1407  -29.9850
5h GAg. (£5.3052) (£0.4131) 0.9966  5269.862  10.752 0.9957 11.5199

-384.6374  -30.3259
6h GAgq (£4.9118) (+0.3899) 0.997 6049.15  10.0378 0.9962 10.7668

7h (ﬁigijg) (396?6372) ('jg_'gé;g) 0.9974 7027406  9.3149 09968  9.9111
8h (u:ffoéézs) (166‘11979) (ﬁg:sgfg) 0.9974 700377  9.3305  0.9968  9.8741
oh (ﬁfgl_(’)'gs) (1166?7{; (ﬁg:ggfg) 0.9974 700378 93305 09968  9.8741
10h GAz 376.2198 - 302804 0000 700378 93305 09968 9.8741

(0=0.0025)  (+4.6547) (+0.3618)

-379.3122  -30.6458
11h GAg (+45586) (+0.3612) 0.9975 7199.21 9.2033 0.9969 9.799

-379.7984  -30.4641
12h GAg (+46184) (+0.3642) 0.9974  6998.026  9.3343 0.9968 9.9293

t The best model is in bold.
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The model based on GAg index has the best descriptive properties. In the case of this model,
the improvement in the standard deviation is equal to 8.77 % versus the model of Eq 1h. This
model elucidates more than 99.75 % of the variance in the experimental values of AfH° of 20
monocarboxylic acids. Table 31 presents the values of GAg index, the experimental enthalpies
of formation of 20 monocarboxylic acids as well as the calculated (with Eq 11h) values of
AfH° for this set of compounds. In the case of the model of Eq 11h, the y-randomization (after

1000 repetitions) produced the average value of Rf,mnd equal to 0.0551 and the average value

of Qﬁmnd equal to -0.1734. Thus, it can be claimed that the above model is devoid of any

chance correlations. The results of external validation of the model based on GAg descriptor
are listed in Table 29. These values indicate that the above model has a very good ability to

predict external data.

The correlation between the calculated enthalpies of formation of 20 monocarboxylic acids
and the experimental data is presented in Figure 14. In summary, it can be said that the model

of Eq 8h is first-class.

Table 29. Results of external validation of the model based on GAg index.

Training set Prediction set s R?
BC A 11.8822 0.9985
AC B 14.6203 0.9960
AB C 9.2483 0.9985
Average 11.9169 0.9977

-600  -500
I I

CalculatedA -
70

-800

-900
1

-1000

T T T T T T
-1000 -900 -800 -700 -600 -500

Experimental AH°

Figure 14. Plot of calculated enthalpies of formation (A;H") of 20 monocarboxylic acids versus experimental
data.
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The enthalpies of formation of monocarboxylic acids were modelled using the Randi¢ and
Harary indices by F. Shafiei [46]. But the dataset from [46] does not include formic acid.
Also, this reference does not report the values of s for the obtained models. Nevertheless, it
can be established here that for the dataset from Table 31, the single regression for A;H"
produces the models with s=14.223 and R?=0.9940 (using H index) and with s=10.3252 and
R2=0.9969 (using 7 index). If we discard from this dataset formic acid, the single regression
for AfH° gives the models with s=8.6373 and R? = 0.9967 (using GAg index), with s=9.9256
and R?=0.9968 (using H index) and with $=9.3424 and R?=0.9971° (using y index).
Consequently, it can be seen that regardless of whether the dataset contains formic acid or

not, the models based on GAg index have lower values of the standard deviation.

4.9 Correlations to the enthalpies of combustion of monocarboxylic acids

Our initial studies have revealed that the enthalpies of combustion of 20 monocarboxylic
acids can be adequately modelled by the single regression. Consequently, we obtained twelve
linear regression equation of the general form A.H® = a + bGA. The statistical parameters of
these models are included in Table 30. With respect to the goodness of fit, the models from

Table 30 can be put in the following order:

Eq 3i (GAg,) > Eq 10i (GA7p (0=0.745)) > Eq 4i (GAep) > Eq 8i (GAgs (0=0.39)) > Eq 9i
(GA5, (B=0.63)) > Eq 7i (GAs. (B=0.205)) > Eq 2i (GA,) > Eq 12i (GA,) > Eq 11i (GAg) > Eq
6i (GAgq) > Eq 1i (GA,) > Eq 5i (GAg)-

The best results are obtained by the model based on GAg, index. In this case, the
improvement in the standard deviation is equal to 78.98 % compared to the model of Eq 1i.
This model explains more than 99.99 % of the variance in the experimental enthalpies of
combustion of 20 monocarboxylic acids.

Table 30. Regression and statistical parameters of equation A.H® = a + bGA for twelve geometric-arithmetic
Indices?.

No GA index a b R? F s Q? SDEP

. 855.2810 -650.691
li GA; (+15581)  (+1241) >0.9999  275039.1 31.9143  >0.9999  36.2354

. 992.5140 -645.758
2i GA, (£7.912) (£0.616) >0.9999 1098804  15.9673  >0.9999 17.6785

2 R?=0.9971 [46].
3 R?=0.9981 [46].




. 1010.9791  -646.9847
3i GAgq (+£33308)  (40.2593) >0.9999 6224582 6.7087 >0.9999 6.9075

. 1022.7190  -648.442
4i GAgp (+39770)  (£0310) >0.9999 4376603 8.007 >0.9999 8.2433

. 952.770 -642.963
5i GAgc (£20.919)  (+1.629) 0.9999 155842 42.3964 0.9998 47.3893

. 876.412 -650.150
6i GAgq (+144000) (+1.143) >0.9999  323477.2  29.4281  >0.9999  33.3352

7i ( Bf(f;ﬂo 9 gﬁ%g (3)93232422) >0.9999 3757957  8.6341  >0.9999  8.9478
8i (:;012 %) ziielilSlG; (12931222097) >0.9999 4040626  8.3267  >0.9999  8.6069
9 ( BG:A(;&) 13822352‘;' (1‘1)932331166) >0.9999 3833134 85491  >0.9999  8.8403
10i Gz 1020.7715 648517 0999 5014927  6.8821 509999  7.0205

(0=0.745)  (+3.4205) (+0.2667)

. 988.849 -656.855
11i GAg (+13.689)  (+1.085) >0.9999 3667529 27.6375  >0.9999  29.8392

. 978.7565  -652.9905
12i GAy (+109781) (+0.8656) >0.9999 569048.8 22.1878  >0.9999  24.1843

! The best model is in bold.
The values of GAg, invariant, the experimental enthalpies of combustion of 20

monocarboxylic acids as well as the calculated (with Eq 3i) values of A,H® for this set of
compounds are listed in Table 31. In the case of the model of Eq 3i, the y-scrambling (after
1000 repetitions) gave the average values of R>,,,4 and Q2,44 equal to 0.0536 and -0.1768,
respectively. The results of external validation of the model based on GA4, index are

contained in Table 32.
Table 31. Experimental and calculated (with Eq 11h or Eq 3i) the enthalpies of formation (AfH°) and the
enthalpies of combustion (A.H") of 20 monocarboxylic acids with values of GAg and GA, indices.

AH® (kiimol) A H (kJ/mol)
Subset Compound GAyp GAg
Exptl Calcd Exptl Calcd
B formic acid -425.5 -439.98 1.979 -253.8 -256.85 1.960
A ethanoic acid -484.5 -467.42 2.875 -874.2 -868.34 2.905
C propanoic acid -510.8 -498.48 3.889 -1527.3 -1526.28 3.922
A butanoic acid -533.9 -527.75 4.844 -2183.5 -2184.75 4.939
B pentanoic acid -558.9 -557.37 5.810 -2837.8 -2839.69 5.952
B hexanoic acid -583.58 -587.26 6.786 -3492.4 -3492.07 6.960
A heptanoic acid -608.5 -617.35 7.767 -4146.9 -4142.86 7.966
C octanoic acid -634.8 -647.56 8.753 -4799.9 -4792.63 8.970
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B nonanoic acid -658 -677.86 9.742 -5456.1 -5441.74 9.974
B decanoic acid -714.1 -708.23 10.733 -6079.3 -6090.40 10.976
C undecanoic acid -736.2 -738.65 11.726 -6736.5 -6738.74 11.978
B dodecanoic acid -775.1 -769.11 12.719 -7377 -7386.84 12.980
A tridecanoic acid -807.2 -799.60 13.714 -8024.2 -8034.76 13.981
B tetradecanoic acid -834.1 -830.11 14.710 -8676.7 -8682.55 14.983
A pentadecanoic acid -862.4 -860.63 15.706 -9327.7 -9330.24 15.984
A hexadecanoic acid -892.2 -891.18 16.703 -9977.2 -9977.83 16.985
C heptadecanoic acid -924.4 -921.73 17.700 -10624.4 -10625.35 17.985
A octadecanoic acid -948 -952.30 18.697 -11280.1 -11272.82 18.986
C nonadecanoic acid -984.1 -982.87 19.695 -11923.4 -11920.24 19.987
C eicosanoic acid -1012.6 -1013.45 20.693 -12574.2 -12567.61 20.987

The high average value of R? and the low average value of s testify that the above model is
reliable with respect to external data. From the plot in Figure 15, it can be inferred that the
calculated values (with Eq 3i) are in agreement with the experimental enthalpies of

combustion of 20 monocarboxilic acids.

Table 32. Results of external validation of the model based on GAg4, index.

Training set Prediction set s R?
BC A 6.8620 >0.9999
AC B 10.3101 >0.9999
AB C 7.0395 >0.9999
Average 8.0705 >0.9999

Figure 15 and all statistical metrics suggest that the model of Eq 3i is very good. The
enthalpies of combustion of monocarboxylic acids were modelled using the Randi¢ and
Harary indices by F. Shafiei [46]. But in [46], formic acid is excluded from studies. Also, this
reference does not contain the values of the standard deviation for the models based on these

invariants.

0
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-12000
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-12000 -10000  -8000 -6000 -4000 -2000 0
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Figure 15. Plot of calculated enthalpies of combustion (A.H") of 20 monocarboxylic acids versus experimental
data.
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Nevertheless, it can be demonstrated here, that for the dataset from Table 31, the single
regression for A.H° produces the model with s=248.075 and R?=0.9946 (using H index) and
with s=40.5239 and R2=0.9999 (using y index). If we remove from this dataset formic acid,
the single regression for A.H" produces the models with s=6.8545 and R?>0.9999 (using
GAg, index), with s=248.075 and R?=0.9956* (using H index) and with s=10.5151 and
R?>0.9999° (using y index). Therefore, it can be seen that regardless of if the dataset includes
formic acid or not, the models based on GAg, index have lower values of the standard

deviation.

In the above paragraphs (b-i), we have presented eight QSPR models based on the newly
defined topological indexes. All final models exhibited the values of R? and Q2 above 0.99
and relatively low values of s. In all cases, the best statistical parameters were possessed by
the model based on any of the newly defined molecular descriptors. Namely, the
improvement in the standard deviation was in the range of 8.77 % (Eq 11h) to 85.82 % (Eq
10c) compared to the models based on the first geometric-arithmetic index. In four cases, the
best models were based on the sixth geometric-arithmetic index (on its GAgq (EQ 6b), GAgf
(at a=0.235, Eq 8e), GAgy (at a=0.315, Eq 8f) and GA4, (Eq 3i) versions). In three cases, the
best models were based on the seventh geometric-arithmetic index (on its GA;, (at a=0.605,
Eq 10c), GA,, (at p=0.005 Eq 9d) or GA,; (at 0=0.0025, Eq 10c) and GA,, (at a=0.97 Eq
10g) versions). In one case, the best model was based on the eighth geometric-arithmetic
index (Eq 11h). On the other hand, in four cases the worst models were based on the first
geometric-arithmetic index (Eq 1c, Eq 1d, Eq le and Eq 1f). In two cases, the worst models
were based on the fourth geometric-arithmetic index (Eq 2a and Eq 2g). Also in two cases, the
worst models were based on the sixth geometric-arithmetic index (on its GA¢. (Eq 5h and Eq
5i) version). All final models explain more than 99 % of the variance in the experimental data.
In all cases, the y-randomization (after 1000 repetitions) applied to the final models gave the
average value of R? from 0.0229 (Eq 8f) to 0.0562 (Eq 10g) and the average value of Q2
from -0.2065 (Eq 10g) to -0.0703 (Eq 8f). Therefore, it can be claimed that all final models
are devoid of any chance correlations. In the procedure of external validation, all predictions
were made with the value of R? above 0.99. Hence, all final models have very good

predictive capabilities relative to external data.

4 R?=0.9934 [46].
5 R%=1[46].
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In conclusion, it can be stated that all the above presented models according to the criteria

cited in Part Two are excellent and reliable with respect to external data.

5 Concluding remarks

In this work, we have introduced several new geometric-arithmetic indices. We have

demonstrated that these newly defined descriptors have an extremely low level of degeneracy

(Part Three) as well as in many cases exhibit better correlation properties than the first

geometric-arithmetic index (Part Four).

It is hoped that the newly proposed molecular invariants will be widely used in QSAR/QSPR

studies.
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