MATCH MATCH Commun. Math. Comput. Chem. 79 (2018) 215-260

Communications in Mathematical
and in Computer Chemistry ISSN 0340 - 6253

A New High Order Method with
Optimal Stability and Phase Properties

Maxim A. Medvedev®®, Theodore E. Simos!® ¢?

*Group of Modern Computational Methods,
Ural Federal University, 620002, 19 Mira Street,
Ekaterinburg, Russian Federation

bInstitute of Industrial Ecology UB RAS
Sophy Kovalevskoy 20, Yekaterinburg
Russian Federation 620990

¢Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and
Information Science, Neijiang Normal University, Neijiang 641100, PR China

4 Laboratory of Computational Sciences,

Department of Informatics and Telecommunications,
Faculty of Economy, Management and Informatics,
University of Peloponnese, GR-221 00 Tripolis, Greece (Part Time)
tsimos.conf@gmail.com

(Received May 25, 2017)

Abstract

In the present paper we develop, for the first time in the literature, a high algebraic order
P-stable symmetric two—step method with eliminated phase-lag and its derivatives up to order
three. The development of the new scheme is based on the following procedure: (1) The necessary
and sufficient conditions for P-stability are satisfied. (2) The condition of the elimination of the
phase-lag is also satisfied and finally (3) The conditions of the elimination of the derivatives of
the phase-lag up to order three are also satisfied.

Based on the above the coefficients of the method is determined.

The result of the above described procedure is the construction, for the first time in the
literature, of a three-stages P—stable tenth algebraic order symmetric two-step method with
vanished phase-lag and its first, second and third derivatives.

The following investigation is also presented, for the new obtained method:
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Active Member of the European Academy of Sciences Corresponding Member of European Academy of
Arts, Sciences and Humanities
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1. the construction of the scheme (based on the above procedure of three stages),
2. the computation of its local truncation error (LTE),

3. the determination of the asymptotic form of the LTE, which will be based on the radial
Schrédinger equation,

4. the stability analysis of the computation of the stability domain and the interval of peri-
odicity,

. the determination of the embedded pair for the LTE control procedure and the defini-
tion the change of the stepsize of the integration and determination of the variable step
procedure,

wt

6. the evaluation of the computational effectiveness of the new obtained pair with application
on: (i) the resonance problem of the radial Schrédinger equation and on (ii) the coupled
differential equations arising form the Schrédinger equation.

The above achievements leads to the conclusion that the new obtained P-stable high algebraic
order scheme with vanished phase-lag and its derivatives up to order three is more efficient
methods than the existed ones.

1 Introduction

In this paper and for the first time in the literature we develop a new three stages P—stable
symmetric two-step method with vanished phase-lag and its derivatives up to order three.
The development of the new pair is based on the following steps:

e Satisfaction of the conditions for the P—stability.

o Satisfaction of the conditions for the vanishing of the phase-lag.

e Satisfaction of the conditions for the vanishing of the derivatives of the phase-lag

up to order three.

The efficiency of the new obtained numerical pair is examined via application to the
following problems:

e the radial time independent Schrodinger equation and

e the coupled Schrédinger equations.

The effective solution of the above mentioned problems is critical in Computational

Chemistry (see [7] and references therein) since an important part of the quantum chemical

computations contains the Schrodinger equation (see [7] and references therein). We
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mention also that in problems with more than one particle the numerical solution of the
Schrodinger’s equation is necessary. The efficient numerical solution of the Schrédinger’s

equation gives us the following important information:

e numerical computations of molecular properties (vibrational energy levels and wave

functions of systems) and

e numerical presentation of the electronic structure of the molecule (see for more

details in [8-11]).

An embedded numerical pair is presented also in this paper which is based on an error
control procedure and a variable-step scheme.
The problems studied in this paper belong to the special category of problems with

the general form:
¢"(x) = f(2,q9), q(xo) = qo and ¢'(x0) = g5 (1)
with periodical and/or oscillating solutions
The large research which has been done on the general subject of this paper and its

bibliography can be categorized into the following categories:

e Exponentially, trigonometrically and phase fitted Runge-Kutta and Runge-Kutta
Nystrom methods: [45], [48], [57], [60] — [65], [54] [76]. In this category of methods,
Runge-Kutta and Runge-Kutta Nystrom schemes are obtained. We can divide this

category into two subcategories:

— The numerical pairs have the property of exact integration of functions of the

form:

z'cos(wz),i=0,1,2,...0r 2* sin(wz),i=0,1,2,...

or 2t exp(wz),i=0,1,2,... (2)

or combination of the above functions.

— The numerical pairs have the property of vanishing of the phase-lag.

We note here that w denotes the frequency of the problem.



-218-

e Multistep exponentially, trigonometrically and phase fitted methods and multistep
methods with minimal phase-lag: [1]- [4], [16]- [19], [23]- [26], [32], [36], [38], [42],
[46]- [47], [51], [56], [58]- [59], [69]- [71], [77]- [80]. In this category of methods,
multistep schemes are developed. We can divide this category into two subcate-
gories:

— The multistep pairs have the property of exact integration of functions of the

form (2) or combination of the functions of the form (2).

— The multistep pairs have the property of vanishing of the phase-lag.

We note here that w denotes the frequency of the problem.

e Symplectic integrators: [40]- [41], [49], [52], [55], [65]- [68], [74]. In this category of
numerical pairs, algorithms for which the Hamiltonian energy of the system remains

almost constant during the integration procedure, are obtained.

e Nonlinear methods: [50]. In this category of numerical pairs, schemes have nonlinear
form (i.e. the relation betweens several approximations of the function in several

points of the integration domain y,+;, 7 =0,1,2,... is nonlinear) are obtained.

e General methods: [12]- [15], [20]- [22], [33]- [35], [39]. In the category of numerical

pairs, algorithms with constant coefficients are produced.

2 General theory for the symmetric multistep method

The general theory of the symmetric multistep methods is described in this section. We
focus on this theory since the methods which we study in this paper belong to this
category.

Using the methodology of discretization of the integration area [a,b], we can numeri-
cally solve problems of the general form (1) using the 2m-step method presented below
(3). In this case the parameter m denotes the number of the discretization points.

The following symbols will be used in this paper:

e h is stepsize of the integration which is the same with the step length of the dis-
cretization. It is denoted as h = |z;41 — x|, ¢ =1—m(1)m —1 (ie. the ¢ is moved

between 1 —m and m — 1 with step 1) where
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e 1, represents the n-th point on the discretized area.

e ¢, represents the approximated value of the function ¢(x) at the point z,,. The ap-
proximated value is computed using a numerical pair and in our study the numerical

pair which is used is the 2 m-step method (3) presented below

We consider the family of 2m-step methods which they have the following general

form:

A(m): Z Qi Gnyi = h? Z Bi [(Znti, Gnti) (3)

i=—m i=—m
for the numerical solution of the initial value problem (1) on the in integration domain

[a,b]. We note that o; and ; i = —m(1)m are the coefficients of the 2 m-step method.

Definition 1.

Bm £ 0 implicit;
A(m) = { B =0 explicit. ()

Definition 2.
A (m) with Qi—m = Om—i, Biem = Pm—i, t = 0(1)m — symmetric (5)

Remark 1. We note that the method A (m) is associated with the linear operator

m

L) =Y asqle+ih) =Y Biq'(z+ih) (6)

i=—m i=—m

where g € C? (i.e. C* = CzC).

Definition 3. [12] The corresponding multistep method (3) is called of algebraic or-
der p, if the linear operator L (6) eliminates for any linear combination of the linearly

independent functions 1, x, 22, ..., aP*L.

If we apply a symmetric 2m-step method A (m) to the test problem

then we obtain the difference equation:
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Tm(v) Gn-+m + ...+ Tl(v) dn+1 + TO(U) Gn

+Y1(0) o1+ oo + T (V) G =0 (8)

and its associated characteristic equation:

T (0) A" 4+ o+ T1(v) A+ To(v)
T ) AT L T (v) AT = 0. (9)

where
e v=20h,
e h is the stepsize or step length of the integration and
e A;(v), j = 0(1)m are the stability polynomials.

Definition 4. [13]| A symmetric 2m-step method is called that has an non zero interval
of periodicity (0,v3), if its characteristic equation (9), for allv € (0,v3), has the following
T00ts :

A= eV Ny = e ™0 and [N <1,i=3(1)2m (10)

where ¥(v) is a real function of v.

Definition 5. (see [13]) A symmetric multistep method is called P-stable it its interval
of periodicity is equal to (0, 00).

Remark 2. A symmetric multistep method considered as P-stable if the following neces-

sary and sufficient conditions are hold:

Ml =[Xe] =1 (11)
[Nl < 1,5 =3(1)2m, Vo. (12)

Definition 6. A symmetric multistep method is called singularly P-stable if its interval

of periodicity is equal to (0,00)\S with S a finite set of points.
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Definition 7. [14], [15] The symmetric multistep method with associated characteristic
equation given by (9), has phase-lag which is defined as the leading term in the expansion
of
t=v—1(v). (13)

Ift = O(v**) as v — oo then we call that the phase-lag order is equal to t.
Definition 8. [16] A symmetric multistep method is called phase-fitted if it has phase-
lag equal to zero.

Theorem 1. [14] For a symmetric 2 m-step method with characteristic equation given

by (9) a direct formula for the computation of the phase-lag order t and the phase-lag

constant c is given by

20 (v) cos(mv) + ... +27;(v) cos(jv) + ... + To(v)
B 2m2 Y, (v) + ... +2527T;(v) + ... + 271 (v)

—cv'™? + O(v't) (14)

Remark 3. For the symmetric two—step methods the phase-lag order t and the phase-lag

constant ¢ are computed using the formula:

et oyt = LS Tl (15)

assuming that their stability polynomials are equal to Y;(v)j =0,1,

3 A P-stable three—stages symmetric two—step method
with vanished phase-lag and its first, second and
third derivatives

We We consider the following family of methods

(/Z\TL+1 = qn+1 — h2 (Cl f’n+l —Co fn + 1 fn—l)

Gn+1 = Gny1 — h? (C3 for1—cafutcs fn—l)

(16)

Gna1 + 01 Qo + Gy = 1° |:111 (fn+1 + fn—l) +bo fn
where foyi = ¢" (Tnyis uyi) 0 = =1L, far1 = ¢ (Tng1, Gur)s fn+1 = ¢" (Tny1, Gnt1)
and aq, b;, 1 = 0,1 and ¢;, ¢ = 0(1) 3 are parameters.

Remark 4. We observe that the new scheme has three stages. All the stages of the new

pair are based on the approximation on the point T,1.
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We investigate the case:

5
-, 3 = —. 17
6’ 12 30 (17)
Remark 5. The above constant values of the coefficients of the family of methods (16)

are denoted requiring the pair to have the mazimum possible algebraic order.

Applying the pair (16) with the constant coefficients given by (17) to the test problem
(7) we obtain the difference equation (8) with m = 1 and the corresponding characteristic

equation (9) with m = 1 where:

1 . 1
To(v) = 1+ —v*+-—0v!

1 6
— 1
12" 360" T360" @ (18)
Ti(v) = a +§v27iv4c fivac (19)
! - Mg 2 2 360 °

The development of the new pair is based on the flowchart of Figure 1 (for developing

flowcharts in LaTeX one can see [88]):

Development of the New Pair

l

Achievement of the P—
stability Properties

]

Achievement of the Elimination
of the Phase-Lag and its
Derivatives up to Order Three

Solution of the Obtained
System of Equations

Figure 1. Flowchart for the development of the new scheme of P—stable three stages
symmetric two—step methods with vanished phase-lag and its derivatives
up to order three

3.1 First step of the construction of the new pair achievement
the P—stability properties

In order to achieve the P—stability properties we follow the methodology first introduced

by Lambert and Watson [13] and Wang [81]:
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o The satisfaction of the characteristic equation given by (9) with m = 1 for A = ! ¥,

where I = /—1 which leads to the following equation:

(") o (v) + e * Ty (v) + Yo (v) = 0 (20)

e The satisfaction of characteristic equation given by (9) with m = 1 for A = ™17,
where I = +/—1 which leads to the following equation:

(€77)* Yo (v) + 12Ty (v) + To (v) = 0 (21)

The above mentioned conditions are produced based on the Definition 4 taking into
account that the new proposed pair has the characteristic equation given by (9) with

m=1.

3.2 Second stage of the construction of the new pair achievement
of elimination of the phase—lag of the pair and its derivatives
up to order three

In order to achieve the elimination of the phase-lag and its derivatives up to order three
for the above scheme (16) with the coefficients given by (17), the following system of

equations is hold:

1 Tg (U)
Phase — Lag(PL) = — = 22
ase ag(PL) 2 v8¢q + vt + 3002 + 360 0 (22)
T
First Derivative of the Phase — Lag = 3 (V) 5=0 (23)
(v8e; + vt + 3002 + 360)

- Ty (v)

Second Derivative of the Phase — Lag = — - =0 (24)
(v8¢y + v* 4 3002 + 360)

. . . . s (U)

Third Derivative of the Phase — Lag = =0 (25)

(vB¢; + vt + 3002 + 360)"
where T; (v), j = 2(1)5 are given in the Appendix A.

3.3 Final stage of the construction of the new pair solution of the
obtained system of equations

The solution of the system of equations (20), (21), (22)-(25) leads to the determination
of the the rest of the coefficients of the new pair (16):

Y6 (v)

“U'7 2160 sin (v) v% — 23760 cos (v) v — 45360 sin (v)




-224-

o= X 17 (v)

7 306 (sin (v) 0% — 11 cos (v) v — 21 sin (v))
o = — Ts (v)

! v (sin (v) v2 — 11 cos (v) v — 21 sin (v))

B Ty (v)
60 v3 (sin (v) v2 — 11 cos (v) v — 21 sin (v))

c = (26)

where T; (v), j = 6(1)9 are given in the Appendix B.

During computations there is the possibility of cancellations or impossibility of defi-
nitions of the determined coefficients (26) (an example of a cancellation is the following
case: the denominators of the determined coefficients lead to zero for some values of |v|).
For these cases we give, in the Appendix C, the truncated Taylor series expansions of the
determined coefficients obtained in (26).

In Figure 2 we present the behavior of the coefficients.

behavior of the coefficienta_1 behavior of the coefficient ¢ 0
6
5
5 4
In(c 0) 3
4 2
In(a 1)
1
3
o
5 0
-1
2
-2
4.5 5 55 6 6.5 7 75
v 3

behavior of the coefficient c_1

behavior of the coefficient ¢ 2

| | | o
5 1 15 20
In(c2) 4
-2

2

IS

Figure 2. Behavior of the coefficients of the new proposed pair (16) given by (26)
for several values of v = ¢ h.
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In order to complete the development of the new algorithm, we calculate the formula
of its local truncation error (LTE), which is indicated as NM3SPS3DV - Explanation

of the abbreviation NM3SPS3DV is: New Algorithm of Three-Stages P—Stable with

eliminated phase-lag and its first three Derivatives, is given by:

1 .
LT ENacpa: =~ p2( 402 _gpt ®
NM3SPS3DV 23950080 v <q7z " q,
—16¢° ¢ — 9¢% W + 12 qn) +0 (k). (27)

The determination of the formula of the local truncation error (27) is important for
the definition of the algebraic order of the algorithm. The form of the formula of the LTE
is important in the determination of the asymptotic form of the local truncation error

which is important for the error analysis which is presented below.

4 Error and stability analysis of the new proposed pair
4.1 Comparative local truncation error analysis

The local truncation error of some schemes of similar form In this section is studied in
this section. For this investigation we use as test problem the radial Schrodinger equation
with potential V() which is given by:

¢"(z) = (V(z) = Ve +T) q(z) (28)
where

e V(x) denotes the potential function,

e V. denotes a constant approximation of the potential on the specific point z,
e I'=V,— F

o =(x) =V(x) — V., and

e F denotes the energy.

The methods under evaluation are:

4.1.1 Classical method (i.e., method (16) with constant coefficients)

1

ITEy, = —————
L 793050080

W12 2012 4 0 (B (29)
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4.1.2 P-stable linear six—step method of Wang [81]

81
LTEwancpsies = ~ 14800 R' <Z§Lw) +10¢" 2n> +0 (hlz) : (30)

4.1.3 P-stable method with vanished phase-lag and its first and second
derivatives developed in [6]

1
LT En =—— 12209 —94*,®
NM3SPS2DV 17900160 ( Zn @ 2z
—8¢% 29 — 12zn> +0 (h'). (31)

4.1.4 P-stable scheme with vanished phase—lag and its first, second and third
derivatives developed in section 3
The formula of the Local Truncation Error for this method is given by (27)

The comparative error analysis is based on the following steps:

e For the pairs mentioned above with local truncation error (LTE) formulae given by
(29), (30), (31) and (27) we obtain new expressions for the LTE formuale which are
based on the test problem (28) which is the radial time independent Schrodinger
equation. In order to achieve the new expressions of the LTE formulae given by
(29), (30), (31) and (27), we have to substitute the derivatives of the function ¢
with the formulae of the derivatives of the function ¢ which are produced based on
the the test problem (28). We present some expressions of the derivatives of the

function ¢ in the Appendix D.

e We obtain the new formulae of LTE for the above mentioned methods, based on the

above step. These new formulae contain the parameter I' and the energy E.

The general form of the new formulae for LTE is given by:

k
LTE =1 Y K;IV (32)
j=0

with K are: 1) constant numbers (frequency independent cases i.e. the classical
case) or 2) formulae of v and T' (frequency dependent cases), p is the algebraic order
of the specific method and & is the maximum possible power of I" in the formulae

of LTE.
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Investigating the possible cases for the quantity I" we arrived to the following con-

clusion:
e For the parameter I' we have two cases:

1. The Potential is closed to the Energy.

Consequently:

I'~0=I"~0i=12,.... (33)
which leads to the form for the formula (32:

Remark 6.
LTEr—_g = h* Ay (34)

It is noted that Ao is the same for all the methods of the same family, i.e.
LTECL = LTENIV[3SPS2DV = LTENA[BSPSSDV = }L12 AU, where Ao 18 given mn

the Appendix E.

Theorem 2. Based on the formula (33) we conclude that forT' =V, — E ~0
the local truncation error for the classical method (constant coefficients - (29)),
the local truncation error for the method with eliminated phase—lag and its first
and second derivatives developed in [6] (with LTE given by (31) and the local
truncation error for the method with eliminated phase-lag and its first, second
and third derivatives developed in Section 3 (with LTE given by (27) are the

same and equal to h'? Ay, where Ay is given in the Appendiz E.

2. The Energy and the Potential are far from each other. Consequently,
I' >>0VTI << 0= |I'| >> 0. Therefore, the most accurate scheme is the
scheme with asymptotic form of LTE which contains the minimum power of '

and the maximum value of p in (32).

e The above achievements lead to the following asymptotic expressions of the LTE

formulae for the schemes which are under evaluation.

4.1.5 Classical method

The Classical Method is the method (16) with constant coefficients.
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1

ITEpp = ———
L™ 793950080

h'2 <q () T + - > +0(n). (35)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for I'V j = 0(1) 5.

4.1.6 P-stable linear six—step method of Wang [81]

This is the method presented in Linear Six-step Method presented in [81] (see in [81]
equations (23)-(27). We note also here that there is a missprint in the paper [81]. In

formula (25) 2 Csyy,, must be replaced by the correct: 230y, 5.

81 _
LTEIVANGPSL()‘S = —m th <L (l) q (l) F4 + - ) + @] (th) . (36)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for IV j = 0 (1) 3.

4.1.7 P-stable method with vanished phase-lag and its first and second
derivatives developed in [6]

This is the P-stable method which we developed in [6].

1 d* _
LTENu3spsapv = ~ 997920 h'? (dx“: (z)q(x) T

+--->+O(h14)4 (37)
We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for IV j = 0 (1) 3.

4.1.8 P-stable scheme with vanished phase—lag and its first, second and third
derivatives developed in section 3

This is the P-stable method which we developed in Section 3.

— 1 12 = (r . d? = (- . d! =
LT ENwnsspsspv = 997920 h H:4~ (2) q(2) 7 5E(2) + 7q(2) Fave (z)

3 ,

™4...
dz +

+O (R, (38)
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We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for IV j = 0 (1) 2.

The above analysis leads to the following theorem:

Theorem 3.

o Classical Method (i.e., the method (16) with constant coefficients): For this method

the error increases as the sizth power of T'.

o P-stable Linear Siz—step Method of Wang [81]: For this method the error increases

as the fourth power of T.

o P-Stable Tenth Algebraic Order Method with Vanished Phase—Lag and Its First and
Second Derivatives Developed in [6]: For this method the error increases as the

fourth power of .

e P-Stable Tenth Algebraic Order Method with Vanished Phase—Lag and Its First,
Second and Third Derivatives Developed in Section 3: For this method the error

increases as the third power of I'.

Consequently, for the approximate solution of the time independent radial Schridinger
equation, on which our analysis was based, the new P—stable tenth algebraic order method
with vanished phase—lag and its derivatives up to order three is the most accurate one
since it satisfies the two necessary conditions of the most accurate method i.e. (i) it has
the minimum power of T' and (2) it has the mazimum value of p, especially in the cases

of large values of |T'| = |V, — E|.
4.2 Stability analysis
The stability analysis is based on the test problem:
¢ =-wq (39)

where w # ¢, where ¢ is the frequency of the test problem (7) (phase-lag analysis) and
w is the frequency of the test problem (39) (stability analysis).
If we apply the new constructed pair (16) to the test problem (39) we obtained the

difference equation:
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Q1 (57 U) (Qn+1 + %—1) + Q0 (57 U) qn = 0 (40)

and the corresponding characteristic equation:

Qi (s,0) (N+1)+Q(s,0) A =0 (41)

withy the stability polynomials ©; (s,v), j = 0,1 to be given by:

N (s,v) = L+bis® +ezbys* +erezbs s

Qo(s,0) = ay +bys> —coby s —coegby s° (42)

where s = wh and v = ¢ h. The observation that some coefficients of (42) are dependent
on v, leads to the conclusion that the formulae (42) have dependence on s and v, while
the formulae (19) have dependence only on v.

Substitution of the coefficients b;, j = 0,1 and ¢3 from (17) and the coefficients

ay, ¢;1=0(1)2 from (26) into the above stability polynomials leads to:

o) = R
Qo (s,0) = ngfzg (43)

where T; (s,v), j = 10(1)13 are given in the Appendix F.

Remark 7. The defined in Section 2 terms of P—stability and singularly almost P—-stability

are corresponded with problems having frequency which satisfied the condition w = ¢.
The method (16) has a non zero interval of periodicity if the roots of its characteristic
equation (41) satisfy the following condition:
[Mpl <1 (44)
4.2.1 Construction of s — v domain for the new scheme

The development of the s — v domain for the new scheme is based on the following

flowchart.
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Development of s — v
Plane for the New Scheme

|

Determination of the char-
acteristic equation (41)

l

Solution of the equation (41)
for several values of s and v

l

Examination of the satisfaction
of the condition (44) from the
roots obtained from the above step

|

Satisfaction of the condition (44) from
the roots of the equation (41) leads to
the plot of the corresponding point (s, v)
]

Non Satisfaction of the condition
(44) from the roots of the equation
(41) leads to the selection for ex-
amination of another point (s,v)

Figure 3. Flowchart for the development of s — v domain for the new scheme
Based on the flowchart of the Figure 3, we produce the s — v domain mentioned in
Figure 4.

Stablity Region for the Farmily of Three Stages Two-Step P-stable Tenth Algebraic Order Methods with Vanished Phase-Lag and its First, Second and Third Derivatives.
T T T T

v (method)

s (test problem)

Figure 4. The plot of s — v domain of the new developed P-stable two—stages pair
with vanished phase-lag and its derivatives up to order three.
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Remark 8. The s — v domain mentioned in the Figure 4 leads to the following observa-
tions:
1. The scheme is stable within the shadowed area of the domain.

2. The scheme is unstable within the white area of the domain.

Remark 9. The stability plane on s — v domain of the scheme determines the categories

of problems for which the specific scheme is appropriate:

1. Categories of problems for which w # ¢. For these categories of problems we
have to give attention on all the plane of the s — v domain excluding the plane

around the first diagonal of the domain.

2. Categories of problems for which w = ¢ (see the Schridinger equation and
related problems). For these categories of problems we have to give attention on the

plane around the first diagonal of the figure of the s — v domain.
The interval of periodicity of the new obtained scheme is defined as follows:
1. Substitution s = v in the stability polynomials ;, i = 0,1 given by (43).

2. Observation of the plane around the first diagonal of the s — v domain given in

Figure 4.

The above leads to the computation of the interval of periodicity of the new obtained

algorithm which is equal to (0, c0).

Remark 10. The interval of periodicity is a property corresponding to categories of prob-

lems for which s = v (Schrodinger equation and related problems).
The above achievements lead to the following theorem:

Theorem 4. The method obtained in Section 3:

is of three stages

is of tenth algebraic order,

has eliminated the phase-lag and its derivatives up to order three and

e has an interval of periodicity equals to: (0,00) i.e. is P—stable.
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5 Numerical results

In order to evaluate the efficiency of the new obtained scheme, we apply it to (1) the
approximate solution of the radial time-independent Schrodinger equation and (2) the
approximate solution of coupled differential equations arising from the Schrédinger equa-
tion.

5.1 Radial time—independent Schrédinger equation

The radial time-independent Schrédinger equation has the following model:
¢"(r) = [ +1)/r* + V(r) = K] q(r), (45)
where

1. The function ©(r) = I(I+1)/r>+ V(r) denotes the effective potential which satisfies

the following property : ©(r) — 0 as r — oo.
2. k% € R denotes the energy.
3. | € Z denotes the angular momentum.
4. The function V' denotes the potential.

The problem (45) is a boundary value problem and consequently we need the deter-

mination of the boundary conditions which are given by:
q(0) =0

and the boundary condition at the end point of integration domain which is determined
for large values of r from the physical considerations of the specific problem.

Since the new obtained scheme is belonged to the frequency dependent methods (some
of its coefficients are dependent from the v = ¢ h), it is necessary the determination of
the frequency ¢, in order to be possible the new scheme to be applied to the numerical

solution of the problem (45). For (45) and for the case [ = 0 we have:

o=VIV(r) =k =V ()~ El

where V (r) denotes the potential and E = k? denotes the energy.
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5.1.1 Woods—Saxon potential

In order to solve numerically the problem (45), it is also necessary to determine the
potential V' (r). For our numerical experiments we use the Wood—Saxon potential which

is given by:

\ 0%

V)= —— — #52
1+& a(1+9)

with & = exp [T’XU} , Ug=—-50, a =0.6, and Xy =T7.0.

a

(46)

In Figure 5 we present the behavior of the Wood-Saxon potential for several values of

The Woods-Saxon Potential

-40

-s50.4

Figure 5. Behavior of the Woods—Saxon potential.

We determine the necessary value of the frequency ¢ as follows (see for details [1§]

and [19]):
V501 E for rel0,6.5— 25

V=37T5+F for r=65—h

¢ = V=25+E for r=6.5
V=125+FE for r=65+h

VvE for r € [6.5+ 2h,15].

For the determination of the above mentioned values of the frequency ¢ we used the

methodology introduced by Ixaru et al. ( [17] and [19]). This methodology consists
from discrete approximation of the continuous function V' (r) by constant values on some
critical points within the integration area.

Here we give some examples from the determination of the values of ¢:
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1. On the point of the integration area r = 6.5 — h, the value of ¢ is equal to:

V—=37.5+ E. Consequently, v =¢ph =+/—37.5+ Eh.

2. On the point of the integration area r = 6.5 — 3 h, the value of ¢ is equal to:

V=50 + E. Consequently, v =¢h =+/—50+ F h.

We mention here that the potential V (r) is a user defined function. In Chemistry
there are many potentials which are of great interest. Very few potentials in Chemistry
have known their eigenenergies. We selected the Woods—Saxon potential since for this

potential the eigenenergies are known.

5.1.2 The resonance problem of the radial Schrédinger equation

The equation (45) is solved numerically with [ = 0 and using the Woods-Saxon potential
(46).

The problem mentioned above has an integration interval equal to (0,00). Conse-
quently, it is necessary to substitute the infinite interval of integration (0, co) with a finite
one. This approach leads to the numerical solution of the the above described problem.
For our numerical experiments we request r € [0,15]. For our numerical tests we apply
the numerical methods to be evaluated on a wide range of energies: E € [1,1000].

Since for positive energies the potential V' (r) vanished faster than the term 1(%1) for
r — 00, the radial Schrodinger equation (45) can be expressed by the following model:

e (k - M) 1) =0 (47)

r
where the linearly independent solutions of the above model are given by krj (kr)
and krny (kr), with j; (kr) and n; (k) are the spherical Bessel and Neumann functions
respectively (see [82]). Consequently, the asymptotic form of the solution of equation (45)

(when r — c0) is given by:

q(r)

Q

Akrg (kr) — B krny (kr)

AC {sin (k:r — %T) + tan §; cos (kr — %r)}

where ¢; is the phase shift and A, B, AC € R. The direct formula for the computation

Q
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of the phase shift is given by:

q(r2) S(r1) —q(r1) S (r2)
Q(ﬁ) C(Tl) - G(Tz) C(Tz)

where r; and 75 are distinct points in the asymptotic region (we chosen r; = 15 and

tan §; =

ro=r; —h) with S(r) =krj (kr) and C(r) = —krn; (kr). Since the above mentioned
problem is an initial-value one, the values of g;, 7 = 0,1 must be computed in order a
two-step scheme to be applied. The value ¢ is defined by the initial condition of the
problem. The value ¢; is computed using the high order Runge-Kutta-Nystrom methods
(see [20] and [21]). The computation of the values ¢;, ¢ = 0,1 leads to the computation
of the phase shift §; at the point ry of the asymptotic region. It is noted that ¢; is the
approximation of the function ¢ at the point z;.

Since the above mentioned problem is solved for positive energies, there are two pos-

sible outputs:

e the phase-shift d; or

e The energies E, for E € [1,1000], for which ¢; = 3.

For our numerical tests the second problem is solved, which is known as the resonance
problem.

The boundary conditions are:
q(0) =0, g(r)=cos (\/Er) for large r.

The following methods are evaluated for the computation of the the positive eigenen-

ergies of the resonance problem described above:

e Method QTS8: the eighth order multi-step method developed by Quinlan and

Tremaine [22];
e Method QT10: the tenth order multi-step method developed by Quinlan and
Tremaine [22];

e Method QT12: the twelfth order multi-step method developed by Quinlan and
Tremaine [22];

e Method MCRA4: the fourth algebraic order method of Chawla and Rao with

minimal phase-lag [23];
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Method RA: the exponentially—fitted method of Raptis and Allison [24];

Method MCRG6: the hybrid sixth algebraic order method developed by Chawla

and Rao with minimal phase-lag [25];

Method NMPF1: the Phase-Fitted Method (Case 1) developed in [12];
Method NMPF2: the Phase-Fitted Method (Case 2) developed in [12];
Method NMC2: the Method developed in [26] (Case 2);

Method NMC1: the method developed in [26] (Case 1);

Method NM2SH2DV: the Two-Step Hybrid Method developed in [1];
Method WPS2S: the Two-Step P-stable Method developed in [81];
Method WPS4S: the Four-Step P-stable Method developed in [81];
Method WPS6S: the Six-Step P-stable Method developed in [81];

Method NM3SPS2DV: the Three Stages Tenth Algebraic Order P-stable Sym-
metric Two—Step method with vanished phase-lag and its first and second derivatives

developed in [6];

Method NM3SPS3DV: the Three Stages Tenth Algebraic Order P—stable Sym-
metric Two-Step method with vanished phase-lag and its first, second and third

derivatives developed in Section 3.
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Figure 6. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue Fy = 341.495874. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.
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Figure 7. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue F3 = 989.701916. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.

The maximum absolute error Err,,,, which is defined by: Erry., = maz|log,, (Err) |
where

Err = ‘Ecalculated - Eaccurate|
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is presented in the Figures 6 and 7.

The absolute error Err is computed based on the calculated eigenenergies and the
accurate eigenenergies (the reference values for the eigenenergies). The accurate eigenen-
ergies are presented as F,qcyrate and are computed using the well known two-step method
of Chawla and Rao [25]. The calculated eigenenergies are presented as E.qjculated and are
computed using each of the 16 numerical methods mentioned above.

In Figures 6 and 7 we present the maximum absolute errors Err,,,, for the eigenen-
ergies Fy = 341.495874 and Fs = 989.701916, respectively, and for the 16 numerical
methods mentioned above for several values of CPU time (in seconds). The denotations
FEy and Fj for the calculated eigenenergies in our numerical example are given since it is
known that the Woods—Saxon potential has also the eigenenergies Ey and E;. We chosen
the eigenenergies F» and Ej since for these values the solution has stiffer behavior and
consequently the new obtained method can show its efficiency.

5.1.3 Conclusions on the obtained numerical results for the radial Schrédinger
equation

The numerical results lead to the following conclusions:

e Method QT10 is more efficient than Method MCR4 and Method QTS.

e Method QT10 is more efficient than Method MCRG6 for large CPU time and
less efficient than Method MCRS6 for small CPU time.

e Method QT12 is more efficient than Method QT10

e Method NMPF1 is more efficient than Method RA, Method NMPF2 and
Method WPS2S

e Method WPS4S is more efficient than Method MCR4, Method NMPF1 and
Method NMC2.

e Method WPS6S is more efficient than Method WPS48S.
e Method NMC1, is more efficient than all the other methods mentioned above.

e Method NM2SH2DV, is more efficient than all the other methods mentioned

above.
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e Method NM3SPS2DV, is more efficient than all the other methods mentioned

above.

e Method NM3SPS3DV, is the most efficient one.

5.2 Error estimation

We will use a so called variable-step pair in order to solve numerically the coupled differ-

ential equations of the Schrédinger form.

Definition 9. A numerical pair is denoted of variable—step form if the step length of

integration is changed during the integration process.

Definition 10. Local truncation error estimation (LTEE) is denoted the process which
is used in order a wvariable-step pair to change the step length during the integration

procedure.

The last decades much research has been taken place on the construction of numerical
pairs of constant or variable step length for the numerical solution of problems of the
Schrédinger equation type (see for example [12]- [81]).

The numerical solution of the coupled Schrédinger equations is based on the variable—
step pairs defined above. As also mentioned above the variable—step pairs are based on
the LTEE procedure defined above. In Figure 8 the categories of LTEE procedures are

presented.

Viariable-Step Schemes
- Embedded Pairs

on the the Order

of Derivatives of the Phase-Lag

LTEE Procedure Based
on the Algebraic Order

‘ LTEE Procedure Based

Figure 8. Categories of LTEE Procedures used for Developing Embedded Pairs for
Problems with Oscillatory and/or Periodical solutions.

We use the following formula for the estimation of the local truncation error (LTE) in

the lower order solution ¢,
LTE =| q711—,1+] - qy€+1 | (48)

where ¢~ | and ¢/, are
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e LTEE Procedure based on the algebraic order of the pairs. For this pro-
cedure, g%, denotes the scheme with the lower algebraic order solution and ¢/,

denotes the scheme with the higher algebraic order solution.

e LTEE Procedure based on the order of the derivatives of the phase-lag.
Consider that the higher order of the derivatives of the phase—lag which are vanished
for the schemes which participate in this procedure are p and s respectively, where
p < s. For this procedure ¢~ +1 denotes the scheme with vanished higher order

H

derivative of the phase-lag equal to p and ¢,”,; denotes the scheme with vanished

higher order derivative of the phase-lag equal to s .

For our numerical tests we use the first LTEE procedure for the estimation of the local
truncation error. Consequently, we use:
As gF,, we use the eighth algebraic order method developed in [30] and as ¢, we

use the tenth algebraic order method developed in Section 3.

Viariable-Step Procedure

acc then If ace < LTE < 100acc
s dupl then the stepsize remains
constant , i.e. hyq1 = hy,

stepsize is halved and we repeat

If 100acc < LTE then the
the step , i.e. hup1 = 3 hy

Figure 9. Variable-Step Procedure used in our Numerical Experiments.

The variable—step procedure which is used in our numerical tests is presented in Figure
9, where h,, is the stepsize which is used for the nt* step of the integration and acc is the

accuracy of the local truncation error LT E which is denoted by the user.

Remark 11. In our numerical experiments the known as local extrapolation technique
is used. Based on this technique for the approximation at each point of the integration
domain we use the higher order solution ¢, although the local error estimation is based

on the lower order solution qTLLJrl.

5.3 Coupled differential equations of the Schrédinger type

The coupled Schrédinger equations can be occurred in many scientific disciplines like:
quantum chemistry, material science, theoretical physics, quantum physics atomic physics,

physical chemistry and chemical physics, quantum chemistry, etc.
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The mathematical model of the close-coupling Schrédinger equations is given by:
P Ll +1 a
ﬁ‘Fk?*%*Vii} 4 = ZVEm(Imj
m=1
for 1 <i < N and m # i.
The above problem is a boundary value one and consequently the boundary conditions
are given by (see for details [27]):
gj=0atz=0

k; 1/2
qij ~ ki xgi, (kix)ds; + <k—) Kij by xny; (ki) (49)
j

Remark 12. The numerical pair obtained in this paper can be applied efficiently in both

open and close channels problem.

Based on the analysis described in [27], the new forms of the asymptotic condition is
given by(49):
q~M+NK'.

where the matrix K’ and diagonal matrices M, N are give by :

ki 1/2
5= () .

Mij = k‘,I]lz(klI)tsu
Ni; = kizng, (kix)dy;

The rotational excitation of a diatomic molecule by neutral particle impact is studied
in this paper. In several scientific areas like quantum chemistry, theoretical chemistry,
theoretical physics, quantum physics, material science, atomic physics, molecular physics,
in technical applications in the analysis of gas dynamics and stratification of chemically
reacting flows, dispersed flows, including with nano-sized particles etc this problem is oc-
curred. The mathematical model of the above mentioned problem contains close—coupling

Schrédinger equations (see [7], [8-11], [83] - [87]). Using the denotations:
e quantum numbers (7,7) which denote the entrance channel (see for details in [27]),
e quantum numbers (j’,1’) which denote the exit channels and

e J=j+1=j +1 which denote the total angular momentum.
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we have:

&2 I +1)
R T} gy () ZZqz’ TNV 55T > ¢ (@)
YT
where
24
ki =12 E‘*‘*{J(J""l)—](] +1}H-

and F denotes the kinetic energy of the incident particle in the center-of-mass system, I
denotes the moment of inertia of the rotator, ;1 denotes the reduced mass of the system,
Jjl is angular momentum of the quantum numbers (j,1) and j” and {” are quantum
numbers.

We use the following potential V' (see [27]) :

V(a, k) = Vo) Po(kyk;) + Va() Pa(ky k)
and therefore, the coupling matrix contains elements of the form:
<jJ l/ J | \%4 ‘ ]”]” J >= (5] ]anWVO( )+f2( /l/7j//l,l;J)‘/2((I))

where f, coefficients are denoted from formulae presented by Bernstein et al. [28] and k;;
is a unit vector parallel to the wave vector k;;; and P;, i = 0,2 are Legendre polynomials
(see for details [29]). We note also that Vo(z) and Va(z) are potential functions and are
defined by the user. The above leads to the following new expressions of the boundary
conditions:

@@ =0atz=0 (50)

. kl 1/ U
qﬁf<z>~6jjf5wexp[—z<w—1/217)1—(k_) §7(j1: ') expli(hyz — 1/20'm)
J

where S matrix. For K matrix of (49) we use the following formula:
S = (I+iK)(I—iK)™!

For the numerical solution of the above described problem we follow the procedure
fully described in [27]. The procedure contains the numerical scheme obtained in this
paper for the integration from the initial value point to the matching points.

For our numerical experiments the following parameters for the S matrix are used:

21 B ) -~
2z 1000.0  ; 7= 2351 ; E=11
1 1
Volz) = — —2— ; Via(z) =0.2283V(x).

12 26
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For our numerical experiments we chose (see for full details in [27]) J = 6 and for the
excitation of the rotator the value j = 0 state to levels up to j/ = 2,4 and 6. The above
values of the parameters define sets of four, nine and sixteen coupled Schrédinger
equations, respectively. Based on the theory described in [29] and [27], the potential is
considered infinite for x less than xy. Therefore, the boundary condition (50) is written
now as

(Iﬁf(lo) =0.

For the numerical solution of the above problem, we use the following methods:

e the Iterative Numerov method of Allison [27] which is indicated as Method I?,

e the variable-step method of Raptis and Cash [30] which is indicated as Method
11,

e the embedded Runge-Kutta Dormand and Prince method 5(4) (5(4) means: Runge
Kutta method of variable step which uses the fourth algebraic order part in order
to control the error of the the fifth algebraic order part) which is developed in [21]
which is indicated as Method III,

e the embedded Runge-Kutta method ERK4(2) developed in Simos [31] which is
indicated as Method IV,

e the embedded two-step method developed in [1] which is indicated as Method V,
e the embedded two-step method developed in [2] which is indicated as Method VI.
e the embedded two-step method developed in [3] which is indicated as Method VIIL

e the new developed embedded two—step method with error control based on the

algebraic order of the method developed in [6] which is indicated as Method VIII.

e the new developed embedded two—step method with error control based on the
algebraic order of the method developed in this paper which is indicated as Method
IX.

In Table 2 we present the real time of computation requested by the numerical methods

I-X mentioned above in order to calculate the square of the modulus of the S matrix for

2We note here that Iterative Numerov method developed by Allison [27] is one of the most well-known
methods for the numerical solution of the coupled differential equations arising from the Schrédinger
equation
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the sets of 4, 9 and 16 coupled differential equations respectively. In the same table we
also present the maximum error in the calculation of the square of the modulus of the S
matrix.

All computations were carried out on a x86-64 compatible PC using double-precision

arithmetic data type (64 bits) according to IEEE® Standard 754 for double precision.

6 Conclusions

A new P-stable symmetric two—step method with vanished phase-lag and its derivatives
up to order three was developed in this paper. The construction of the new method was

done on two stages:

1. In the first stage we satisfied the P—stability conditions introduced by Lambert and
Watson [13] and Wang [81]

2. In the second stage, we satisfied the condition for the vanishing of the phase-lag.

3. In the third stage, we satisfied the conditions for the vanishing of the derivatives of

the phase-lag.

We note here that the above methodology was first introduced in the paper of Medvedev
and Simos [6].

We studied the new obtained method based on the following stages:

e We studied the determination of the local truncation error (LTE)

e We investigated the asymptotic form of the LTE and we compared the asymptotic
form of the LTE of new pair with the asymptotic forms of the LTE of similar
methods.

e We investigated the stability and the interval of periodicity properties of the new

obtained scheme.
e We studied the computational efficiency of the new produced method.

The theoretical, computational and numerical achievements of this paper, proved the
efficiency of the new obtained scheme compared with other well known and recently de-
veloped algorithms of the literature for the approximate solution of the radial Schrodinger

equation and of the coupled Schrédinger equations.
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Table 1. Coupled Differential Equations. Real time of computation (in sec-
onds) (RTC) and maximum absolute error (MErr) to calculate |S|? for
the variable-step methods Method I - Method VIII. acc=107%. Note that
hmax is the maximum stepsize. N indicates the number of equations of
the set of coupled differential equations

Method N hmax RTC MErr
Method 1 4 0014 325 12x1073
9 0.014 2351 5.7x1072
16 0.014 99.15 6.8x 107!
Method IT 4 0.056 155 89x10~*
9 0.056 843 7.4x1073
16 0.056 43.32 8.6 x 1072
Method IIT 4 0.007 45.15 9.0 x 10°

Method IV 4 0.112 039 1.1x107°

9 0112 348 28x107°*

16 0.112 1931 1.3x107°

Method V. 4 0.448 0.20 1.1x 107

9 0448 207 57x10°°

16 0.448 11.18 87 x 107

Method VI 4 0.448 0.15 3.2x 107"

9 0448 140 4.3 x107"7

16 0.448 10.13 5.6 x 1077

Method VII 4 0.448 0.10 2.5 x 1077
9 0448 1.10 39x10°7

16 0.448 943 42x1077

Method VIII 4 0.896 0.04 3.8x1078
9 089 055 56x10°8

16 0.896 845 6.5x 1078

Method IX 4 0.896 0.03 3.2x10°%

9 0.89 050 4.1x1078

16 0.896 835 5.0x1078
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Appendix A: Formulae for the Y; (v), i = 2(1)5

2 cos (v) v%¢; — v0¢g + 2 cos (v) v* — 30vey

60 cos (v) v* + 300 v% + 720 cos (v) + 360 a;

12 10

—sin (v) v'2¢,2 — 2 sin (v) v'0%

300v%c1cy — 60 sin (v) v3¢; — v7¢p — sin (v) v

720 sin (v) v%¢; — 600 ¢y — 600v7¢; — 60 sin (v) v® — 1080 v5a;c;

1080 v°cy — 900 v°cy — 1620 sin (v) v* — 3000° — 720 v3a; — 21600 v3cy

21600 sin (v) v* — 10800 va; — 129600 sin (v) + 108000 v
38880000 + 7560 010 — 2700000 v0e; — 1944000 v'c,

23328000 v2c, — 183600 v°¢y — 972000 vc, — cos (v) v*2 4 10800 v0¢; ¢,

9720 v¥ay¢q + 86400 v°%a;c; — v1200 —-90 vmco
2700 v'%; — 54000 v3¢1 + 3600 v8a; 4+ 97200 va; — 5400 08¢,
2700 v¥¢y + 81000 v%¢y + 194400 v*a; — 91800 cos (v) v° + 3000 v*2¢;?

1360800 cos (v) v* — 11664000 cos (v) v + 7560 v'%a;c;? — 46656000 cos (v)

1296000 v? — 9720000 v — 9000 v°® — 3888000 a; — 90 cos (v) v'°
3780 cos (v) v® + 30v"2c1cy + 3vMeger + 3000 % coey

64800 cos (v) v8¢; — 90 v e ey — 90 cos (v) v — 3 cos (v) v'ie;
180 cos (v) v'%c; — 4860 cos (v) v'%¢; — 1080 cos (v) v'%¢;?

3 cos (v) v'%;? — 388800 cos (v) vicy

900 v® — cos (v) v'8¢;® — 1944000 v'aic; + 291600 v3¢;cy
—13996800000 v — 21600 v*¢;* + 1080000 v*3¢;* — 14400 v*3¢;
6480 v ¢ + 648000 v c; — 21600 v%a; + 453600 v7cy — 777600 v ay
6840 sin (v) v'? + 163296000 v*a; + sin (v) v*¢ 4+ 120 sin (v) v™*
18000 v*7¢;® — 1166400000 v — 43200 v*'3¢1c — 129600 v ay ¢y 2
82080 vt asc; — 712800 v ey + 4406400 v cpey

54432000 v2a1¢,2 — 1296000 v a1 ¢y 4+ 54432000 v0cocy

40435200 v7ayc; + 1213056000 v” ¢y ey + sin (v) v*e;*

4 sin (v) v*%¢;® 4 120 sin (v) v*°c;?

6 sin (v) v*%¢;? + 1440 sin (v) v'%¢;
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360 sin (v) v'8¢;? + 4 sin (v) v'8¢;

9720 sin (v) v'%¢;? + 367200 sin (v) v'%¢;

360 sin (v) v'%; + 129600 sin (v) v'%¢;? 4 15120 sin (v) v'¢;
360 013y + 69984000 v ¢ o + 16796160000 sin (v)

777600 sin (v) v'2¢;® + 373248000 v®a;¢; + 46656000 sin (v) v5¢;
10800 v ¢; + 40824000 v7¢; — 324000 v2¢cy 4 15552000 v ¢y
5443200 sin (v) v'%; — 2799360000 v3a c; — 120 coc;

237600 sin (v) v'° — 2799360000 v*cy — 16796160000 vcy

112320 v ;612 — 3369600 v'3¢;%cy + 108000 v3cper + 120 cocy
60480 v cocy 2 4 1440 v cpc; — 108000 v12¢y 2cy

1800 ’U17COC12 — 60480 v'%a;¢1% — 360 U17(5]2C2

279936000 v°cy + 886464000 sin (v) v* + 1399680000 vcy
5598720000 sin (v) v? + 5475600 sin (v) v

85536000 sin (v) v® — 6531840000 v°¢; + 466560000 v°c,
839808000 va; + 12960000 v” 4 108000 2° — 3600 v*! + 155520000 v°
186624000 sin (v) v°¢; + 45360000 v''c,?.

Appendix B: Formulae for the Y; (v), j = 6(1)9

Te(v) = —(cos(v))?v” —630° (cos (v))?

— 207 + 240 v" sin (v) cos (v) — 600 sin (v) v*
— 1260 (cos (v))*v® — 117 0% 4 10440 sin (v) cos (v) v?
5400 cos (v) v + 9000 sin (v) v

+ +

5400 (cos (v))*v — 900 v® 4 90720 sin (v) cos (v) + 42120 v

T;(v) = (cos(v))* v 4 12 sin (v) cos (v) v°

150° (cos (v))? + 20" + 450 v* sin (v) cos (v)

+

300 sin (v) v* 4 540 (cos (v))?v* + 195°

6480 sin (v) cos (v) v 4 4500 cos (v) v*
17100 sin (v) v + 17640 (cos (v))* v + 3420 v°

+ + +

32400 sin (v) cos (v) — 14400 cos (v) v — 35640 v
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Tg(v) = sin(v)o® —5 cos (v)v° + 35 sin (v) v*
+ 30 cos (v) v* 4 570 sin (v) v* + 3000 cos (v) v
— 5400 sin (v) + 2400 v
Ty (v) = (cos(v))’v® + 8v°sin (v) cos (v)
+ 550 (cos (v)® 4 20° 4 32447 sin (v) cos (v)
— 6000%sin (v) + 2220 (cos (v))* v* + 169 v*
+ 4200 sin (v) cos (v) v + 7800 cos (v) v?
21000 sin (v) v + 37800 (cos (v))? + 2580 v — 37800.

Appendix C: Truncated Taylor Series Expansion Formulae for the

coefficients of the new obtained method given by (26)

v12 443 ™
—24 +
47900160 326918592000

a; =

5963 v'0 n 223579 v!® n
31384184832000 = 9146248151040000

E vt n 1241 v8 n 23563 v®
28 7392 32432400 = 7264857600

1858313 v10 n 2313033839 v12
4234374144000  40548366802944000

310335550439 v N 22396738087177 v16
41629656584355840000 = 22979570434564423680000

13705907211935027 '8 n
107544389633761502822400000

i, vt B 709 08 B 18108
56 14784 64864800 121080960

c; =

433747 v10 B 190939403 v'2
2195601408000  7372430327808000

846454904003 v'4 _ 61108949840333 v16
249777939506135040000  137877422607386542080000

1133311624662463 v'8 N
19553525387956636876800000
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Appendix D: Expressions for the Derivatives of g,

Expressions of the derivatives which are presented in the formulae of the Local Trun-

cation Errors:
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(

We compute the j-th derivative of the function z at the point x,,, i.e. 27 ) , substituting in

the above formulae x with z,,.

Appendix E: Formula for the quantity Ag

A _MBE@)a() (%E(x))‘zﬁzu)ﬁ(z(z))z (L) (L2(@) L=(2)
o= 5987520 99792
313 (2 (1) g (z) (L2 (1)) L2 (2)  BE@ (Ea@) (L2 @) L2 @)
- 3991630 - ; 299376
W EE) (@ EE@ O (EHE@) @)
47920016 177408
C (EEW) 10 @@)few 3T E@ @) S 6
114048 23950080 2993760
353 (12 (2)) ¢ (2) ((;LE (x)) &5 (r) 32E (dd )
B 2395008 987520
1BE(@)q(0) ({£52@) $52) (@) (La(@) ((;535 (1)) 452 (2)
- 136080 - 598752

L (EE@) @) 157 E@) (L) SE@)
85536 11975040
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17 (HE@) a(@) &HE0) 13 (L2 (@) g (o) L2 ()

1596672 2395008
_ TEEE) W) 5= @) BE@) @) GxE @)
342144 11975040
19 (HE2@) (£0@) H2@) 31 (RE@) (@) (HE@)
- 443520 - 266112
 BE@W (HE26) @) (L) L2
748440 ‘ 798336
C55(0) (L) (£2@)° 239 E@)’q(2) &2 (@)
199584 23950080
5 E@) (L4@) HE@)  E@) (@) SE@)
598752 187110
1201 E(@)q () (SE20@)  (52@) (Ee@) &2 @)
B 23950080 B 16632
31 (% ( ))Q( V= @) 100 (L2 (2)? (Lq () L2 (2)
- 1995840 B 1197504
CEE@) @) SHEE) 13 (E@) @) (EE@)
19008 1197504
(@) ale)  (HE@) L@
- 23950080 2395008

at every point x = z,,.
Appendix F: Formulae for the Y; (v), j = 10(1)13

4 6,5

T (s,0) = sin(v)s%° — sin (v) s70® — 5 cos (v) s%v

11 cos (v) s*0" + 35 sin (v) s + 21 sin (v) s — 30 sin (v) 5%
30 cos (v) s50® + 330 cos (v) s*v7 + 570 sin (v) s

630 sin (v) sv® — 360 sin (v) v® + 3000 cos (v) s%v

(
3960 cos (v) v” — 5400 sin (v) s® + 7560 sin (v) v® + 2400 s%

T11 (s,v) = 3600° (sin (v)v? — 11 cos (v) v — 21 sin (v))

T (s,0) = 24 sin(v)cos (v) s — 24 sin (v) cos (v) sT0®
+ 900 sin (v) cos (v) s°v* — 972 sin (v) cos (v) s*
4+ 12960 sin (v) cos (v) s5v? — 12600 sin (v) cos (v) s*v*
— 9000 sin (@)v — 71280 5% — 90720 sin (v) cos (v) v® — 5400 (cos (v))* o7

+ (cos (U)) — 6660 (cos (v )) st
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+ 2 (cos (v))? s%7 4 35280 (cos (v))* s%

— 240 sin (v) cos (v) V10 = 3 (cos (v))* s%°

— 23400 cos (v) s*v® 4+ 1080 (cos (v))? s%0°

— 28800 cos (v) s%v — 1800 sin (v) s*® 4 9000 cos (v) s5°
(

+ 19800 cos (v) s*v” 4 1800 sin (v) s'v® 4 37800 sin (v) s*v5
+ 34200 sin (v) s®* — 600 sin (v) s®v*

— 165 (cos (v))? s*07 — 10440 sin (v) cos (v) v®

+ 30 (cos (v))? s — 113400 (cos (v))* s'0®

+ 64800 sin (v) cos (v) % — 63000 sin (v) s'v? — 507 50"

— 7740 s*0° + 113400 5% — 6 s%0° + 390 s50° + 6840 5°0° + 63 (cos (v))* v*
+ 600 sin (v) v'° + 1260 (cos (v))* v°
— 5400 cos (v) v 4 4557 490007 + 117 0" — 4212007 + 20"

Ti3(s,v) = 21600° (sin (v) v® — 11 cos (v) v — 21 sin (v)) .
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