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Abstract

In the present paper we develop, for the first time in the literature, a high algebraic order
P–stable symmetric two–step method with eliminated phase–lag and its derivatives up to order
three. The development of the new scheme is based on the following procedure: (1) The necessary
and sufficient conditions for P–stability are satisfied. (2) The condition of the elimination of the
phase–lag is also satisfied and finally (3) The conditions of the elimination of the derivatives of
the phase–lag up to order three are also satisfied.

Based on the above the coefficients of the method is determined.
The result of the above described procedure is the construction, for the first time in the

literature, of a three–stages P–stable tenth algebraic order symmetric two–step method with
vanished phase–lag and its first, second and third derivatives.

The following investigation is also presented, for the new obtained method:
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1. the construction of the scheme (based on the above procedure of three stages),

2. the computation of its local truncation error (LTE),

3. the determination of the asymptotic form of the LTE, which will be based on the radial
Schrödinger equation,

4. the stability analysis of the computation of the stability domain and the interval of peri-
odicity,

5. the determination of the embedded pair for the LTE control procedure and the defini-
tion the change of the stepsize of the integration and determination of the variable step
procedure,

6. the evaluation of the computational effectiveness of the new obtained pair with application
on: (i) the resonance problem of the radial Schrödinger equation and on (ii) the coupled
differential equations arising form the Schrödinger equation.

The above achievements leads to the conclusion that the new obtained P-stable high algebraic
order scheme with vanished phase–lag and its derivatives up to order three is more efficient
methods than the existed ones.

1 Introduction

In this paper and for the first time in the literature we develop a new three stages P–stable

symmetric two–step method with vanished phase–lag and its derivatives up to order three.

The development of the new pair is based on the following steps:

• Satisfaction of the conditions for the P–stability.

• Satisfaction of the conditions for the vanishing of the phase–lag.

• Satisfaction of the conditions for the vanishing of the derivatives of the phase–lag

up to order three.

The efficiency of the new obtained numerical pair is examined via application to the

following problems:

• the radial time independent Schrödinger equation and

• the coupled Schrödinger equations.

The effective solution of the above mentioned problems is critical in Computational

Chemistry (see [7] and references therein) since an important part of the quantum chemical

computations contains the Schrödinger equation (see [7] and references therein). We
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mention also that in problems with more than one particle the numerical solution of the

Schrödinger’s equation is necessary. The efficient numerical solution of the Schrödinger’s

equation gives us the following important information:

• numerical computations of molecular properties (vibrational energy levels and wave

functions of systems) and

• numerical presentation of the electronic structure of the molecule (see for more

details in [8–11]).

An embedded numerical pair is presented also in this paper which is based on an error

control procedure and a variable–step scheme.

The problems studied in this paper belong to the special category of problems with

the general form:

q′′(x) = f(x, q), q(x0) = q0 and q′(x0) = q′0. (1)

with periodical and/or oscillating solutions

The large research which has been done on the general subject of this paper and its

bibliography can be categorized into the following categories:

• Exponentially, trigonometrically and phase fitted Runge–Kutta and Runge–Kutta

Nyström methods: [45], [48], [57], [60] – [65], [54] [76]. In this category of methods,

Runge–Kutta and Runge–Kutta Nyström schemes are obtained. We can divide this

category into two subcategories:

– The numerical pairs have the property of exact integration of functions of the

form:

xi cos (ω x) , i = 0, 1, 2, . . . or xi sin (ω x) , i = 0, 1, 2, . . .

or xi exp (ω x) , i = 0, 1, 2, . . . (2)

or combination of the above functions.

– The numerical pairs have the property of vanishing of the phase–lag.

We note here that ω denotes the frequency of the problem.
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• Multistep exponentially, trigonometrically and phase fitted methods and multistep

methods with minimal phase–lag: [1]– [4], [16]– [19], [23]– [26], [32], [36], [38], [42],

[46]– [47], [51], [56], [58]– [59], [69]– [71], [77]– [80]. In this category of methods,

multistep schemes are developed. We can divide this category into two subcate-

gories:

– The multistep pairs have the property of exact integration of functions of the

form (2) or combination of the functions of the form (2).

– The multistep pairs have the property of vanishing of the phase–lag.

We note here that ω denotes the frequency of the problem.

• Symplectic integrators: [40]– [41], [49], [52], [55], [65]– [68], [74]. In this category of

numerical pairs, algorithms for which the Hamiltonian energy of the system remains

almost constant during the integration procedure, are obtained.

• Nonlinear methods: [50]. In this category of numerical pairs, schemes have nonlinear

form (i.e. the relation betweens several approximations of the function in several

points of the integration domain yn+j, j = 0, 1, 2, . . . is nonlinear) are obtained.

• General methods: [12]– [15], [20]– [22], [33]– [35], [39]. In the category of numerical

pairs, algorithms with constant coefficients are produced.

2 General theory for the symmetric multistep method

The general theory of the symmetric multistep methods is described in this section. We

focus on this theory since the methods which we study in this paper belong to this

category.

Using the methodology of discretization of the integration area [a, b], we can numeri-

cally solve problems of the general form (1) using the 2m-step method presented below

(3). In this case the parameter m denotes the number of the discretization points.

The following symbols will be used in this paper:

• h is stepsize of the integration which is the same with the step length of the dis-

cretization. It is denoted as h = |xi+1 − xi|, i = 1−m(1)m− 1 (i.e. the i is moved

between 1−m and m− 1 with step 1) where
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• xn represents the n-th point on the discretized area.

• qn represents the approximated value of the function q(x) at the point xn. The ap-

proximated value is computed using a numerical pair and in our study the numerical

pair which is used is the 2m-step method (3) presented below

We consider the family of 2m-step methods which they have the following general

form:

∆(m) :
m∑

i=−m

αi qn+i = h2
m∑

i=−m

βi f(xn+i, qn+i) (3)

for the numerical solution of the initial value problem (1) on the in integration domain

[a, b]. We note that αi and βi i = −m(1)m are the coefficients of the 2m-step method.

Definition 1.

∆(m) →
{
βm 6= 0 implicit;
βm = 0 explicit. (4)

Definition 2.

∆(m) with αi−m = αm−i, βi−m = βm−i, i = 0(1)m→ symmetric (5)

Remark 1. We note that the method ∆(m) is associated with the linear operator

L(x) =
m∑

i=−m

αi q(x+ i h)− h2
m∑

i=−m

βi q
′′(x+ ih) (6)

where q ∈ C2 (i.e. C2 ≡ CxC).

Definition 3. [12] The corresponding multistep method (3) is called of algebraic or-

der p, if the linear operator L (6) eliminates for any linear combination of the linearly

independent functions 1, x, x2, . . . , xp+1.

If we apply a symmetric 2m-step method ∆(m) to the test problem

q′′ = −φ2 q (7)

then we obtain the difference equation:
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Υm(v) qn+m + ...+Υ1(v) qn+1 +Υ0(v) qn

+Υ1(v) qn−1 + ...+Υm(v) qn−m = 0 (8)

and its associated characteristic equation:

Υm(v)λ
m + ...+Υ1(v)λ+Υ0(v)

+Υ1(v)λ
−1 + ...+Υm(v)λ

−m = 0. (9)

where

• v = φh,

• h is the stepsize or step length of the integration and

• Aj(v), j = 0(1)m are the stability polynomials.

Definition 4. [13] A symmetric 2m-step method is called that has an non zero interval

of periodicity (0, v20), if its characteristic equation (9), for all v ∈ (0, v20), has the following

roots :

λ1 = eiψ(v), λ2 = e−iψ(v), and |λi| ≤ 1, i = 3(1)2m (10)

where ψ(v) is a real function of v.

Definition 5. (see [13]) A symmetric multistep method is called P-stable it its interval

of periodicity is equal to (0,∞).

Remark 2. A symmetric multistep method considered as P-stable if the following neces-

sary and sufficient conditions are hold:

|λ1| = |λ2| = 1 (11)

|λj| ≤ 1, j = 3(1)2m, ∀v. (12)

Definition 6. A symmetric multistep method is called singularly P-stable if its interval

of periodicity is equal to (0,∞)\S with S a finite set of points.

-220-



Definition 7. [14], [15] The symmetric multistep method with associated characteristic

equation given by (9), has phase-lag which is defined as the leading term in the expansion

of

t = v − ψ(v). (13)

If t = O(vt+1) as v → ∞ then we call that the phase-lag order is equal to t.

Definition 8. [16] A symmetric multistep method is called phase-fitted if it has phase-

lag equal to zero.

Theorem 1. [14] For a symmetric 2m-step method with characteristic equation given

by (9) a direct formula for the computation of the phase-lag order t and the phase-lag

constant c is given by

−cvt+2 +O(vt+4) =
2Υm(v) cos(mv) + ...+ 2Υj(v) cos(j v) + ...+Υ0(v)

2m2Υm(v) + ...+ 2 j2Υj(v) + ...+ 2Υ1(v)
(14)

Remark 3. For the symmetric two–step methods the phase-lag order t and the phase-lag

constant c are computed using the formula:

−cvt+2 +O(vt+4) =
2Υ1(v) cos(v) + Υ0(v)

2Υ1(v)
(15)

assuming that their stability polynomials are equal to Υj(v) j = 0, 1,

3 A P–stable three–stages symmetric two–step method
with vanished phase–lag and its first, second and
third derivatives

We We consider the following family of methods

q̂n+1 = qn+1 − h2
(
c1 fn+1 − c0 fn + c1 fn−1

)
q̃n+1 = qn+1 − h2

(
c3 f̂n+1 − c2 fn + c3 fn−1

)
qn+1 + a1 qn + qn−1 = h2

[
b1

(
f̃n+1 + fn−1

)
+ b0 fn

]
(16)

where fn+i = q′′ (xn+i, qn+i) , i = −1(1)1, f̂n+1 = q′′ (xn+1, q̂n+1), f̃n+1 = q′′ (xn+1, q̃n+1)

and a1, bi, i = 0, 1 and cj, i = 0 (1) 3 are parameters.

Remark 4. We observe that the new scheme has three stages. All the stages of the new
pair are based on the approximation on the point xn+1.
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We investigate the case:

b0 =
5

6
, b1 =

1

12
, c3 =

1

30
. (17)

Remark 5. The above constant values of the coefficients of the family of methods (16)

are denoted requiring the pair to have the maximum possible algebraic order.

Applying the pair (16) with the constant coefficients given by (17) to the test problem

(7) we obtain the difference equation (8) with m = 1 and the corresponding characteristic

equation (9) with m = 1 where:

Υ0 (v) = 1 +
1

12
v2 +

1

360
v4 +

1

360
v6 c1 (18)

Υ1 (v) = a1 +
5

6
v2 − 1

12
v4 c2 −

1

360
v6 c0 (19)

The development of the new pair is based on the flowchart of Figure 1 (for developing

flowcharts in LaTeX one can see [88]):

Development of the New Pair

Achievement of the P–
stability Properties

Achievement of the Elimination
of the Phase–Lag and its

Derivatives up to Order Three

Solution of the Obtained
System of Equations

Figure 1. Flowchart for the development of the new scheme of P–stable three stages
symmetric two–step methods with vanished phase–lag and its derivatives
up to order three

3.1 First step of the construction of the new pair achievement
the P–stability properties

In order to achieve the P–stability properties we follow the methodology first introduced

by Lambert and Watson [13] and Wang [81]:
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• The satisfaction of the characteristic equation given by (9) with m = 1 for λ = eI v,

where I =
√
−1 which leads to the following equation:

(
eI v
)2

Υ0 (v) + eI v Υ1 (v) + Υ0 (v) = 0 (20)

• The satisfaction of characteristic equation given by (9) with m = 1 for λ = e−I v,

where I =
√
−1 which leads to the following equation:

(
e−I v

)2
Υ0 (v) + e−I v Υ1 (v) + Υ0 (v) = 0 (21)

The above mentioned conditions are produced based on the Definition 4 taking into

account that the new proposed pair has the characteristic equation given by (9) with

m = 1.

3.2 Second stage of the construction of the new pair achievement
of elimination of the phase–lag of the pair and its derivatives
up to order three

In order to achieve the elimination of the phase–lag and its derivatives up to order three

for the above scheme (16) with the coefficients given by (17), the following system of

equations is hold:

Phase− Lag(PL) =
1

2

Υ2 (v)

v6c1 + v4 + 30 v2 + 360
= 0 (22)

FirstDerivative of thePhase− Lag =
Υ3 (v)

(v6c1 + v4 + 30 v2 + 360)2
= 0 (23)

SecondDerivative of thePhase− Lag =
Υ4 (v)

(v6c1 + v4 + 30 v2 + 360)3
= 0 (24)

ThirdDerivative of thePhase− Lag =
Υ5 (v)

(v6c1 + v4 + 30 v2 + 360)4
= 0 (25)

where Υj (v) , j = 2(1)5 are given in the Appendix A.

3.3 Final stage of the construction of the new pair solution of the
obtained system of equations

The solution of the system of equations (20), (21), (22)–(25) leads to the determination

of the the rest of the coefficients of the new pair (16):

a1 =
Υ6 (v)

2160 sin (v) v2 − 23760 cos (v) v − 45360 sin (v)
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c0 =
1

3

Υ7 (v)

v6 (sin (v) v2 − 11 cos (v) v − 21 sin (v))

c1 = − Υ8 (v)

v6 (sin (v) v2 − 11 cos (v) v − 21 sin (v))

c2 = − Υ9 (v)

60 v3 (sin (v) v2 − 11 cos (v) v − 21 sin (v))
(26)

where Υj (v) , j = 6(1)9 are given in the Appendix B.

During computations there is the possibility of cancellations or impossibility of defi-

nitions of the determined coefficients (26) (an example of a cancellation is the following

case: the denominators of the determined coefficients lead to zero for some values of |v|).

For these cases we give, in the Appendix C, the truncated Taylor series expansions of the

determined coefficients obtained in (26).

In Figure 2 we present the behavior of the coefficients.

Figure 2. Behavior of the coefficients of the new proposed pair (16) given by (26)
for several values of v = φh.
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In order to complete the development of the new algorithm, we calculate the formula

of its local truncation error (LTE), which is indicated as NM3SPS3DV - Explanation

of the abbreviation NM3SPS3DV is: New Algorithm of Three–Stages P–Stable with

eliminated phase–lag and its first three Derivatives, is given by:

LTENM3SPS3DV = − 1

23950080
h12

(
q(12)n − 9φ4 q(8)n

−16φ6 q(6)n − 9φ8 q(4)n + φ12 qn

)
+O

(
h14
)
. (27)

The determination of the formula of the local truncation error (27) is important for

the definition of the algebraic order of the algorithm. The form of the formula of the LTE

is important in the determination of the asymptotic form of the local truncation error

which is important for the error analysis which is presented below.

4 Error and stability analysis of the new proposed pair

4.1 Comparative local truncation error analysis

The local truncation error of some schemes of similar form In this section is studied in

this section. For this investigation we use as test problem the radial Schrödinger equation

with potential V (x) which is given by:

q′′(x) = (V (x)− Vc + Γ) q(x) (28)

where

• V (x) denotes the potential function,

• Vc denotes a constant approximation of the potential on the specific point x,

• Γ = Vc − E

• Ξ(x) = V (x)− Vc and

• E denotes the energy.

The methods under evaluation are:

4.1.1 Classical method (i.e., method (16) with constant coefficients)

LTECL = − 1

23950080
h12 z(12)n +O

(
h14
)
. (29)
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4.1.2 P–stable linear six–step method of Wang [81]

LTEWANGPSL6S = − 81

44800
h10

(
z(10)n + 10φ10 zn

)
+O

(
h12
)
. (30)

4.1.3 P–stable method with vanished phase–lag and its first and second
derivatives developed in [6]

LTENM3SPS2DV = − 1

47900160
h12

(
2 z(12)n − 9φ4 z(8)n

−8φ6 z(6)n − φ12 zn

)
+O

(
h14
)
. (31)

4.1.4 P–stable scheme with vanished phase–lag and its first, second and third
derivatives developed in section 3

The formula of the Local Truncation Error for this method is given by (27)

The comparative error analysis is based on the following steps:

• For the pairs mentioned above with local truncation error (LTE) formulae given by

(29), (30), (31) and (27) we obtain new expressions for the LTE formuale which are

based on the test problem (28) which is the radial time independent Schrödinger

equation. In order to achieve the new expressions of the LTE formulae given by

(29), (30), (31) and (27), we have to substitute the derivatives of the function q

with the formulae of the derivatives of the function q which are produced based on

the the test problem (28). We present some expressions of the derivatives of the

function q in the Appendix D.

• We obtain the new formulae of LTE for the above mentioned methods, based on the

above step. These new formulae contain the parameter Γ and the energy E.

The general form of the new formulae for LTE is given by:

LTE = hp
k∑
j=0

Kj Γ
j (32)

with Kj are: 1) constant numbers (frequency independent cases i.e. the classical

case) or 2) formulae of v and Γ (frequency dependent cases), p is the algebraic order

of the specific method and k is the maximum possible power of Γ in the formulae

of LTE.
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Investigating the possible cases for the quantity Γ we arrived to the following con-

clusion:

• For the parameter Γ we have two cases:

1. The Potential is closed to the Energy.

Consequently:

Γ ≈ 0 ⇒ Γi ≈ 0, i = 1, 2, . . . . (33)

which leads to the form for the formula (32:

Remark 6.

LTEΓ=0 = hk Λ0 (34)

It is noted that Λ0 is the same for all the methods of the same family, i.e.

LTECL = LTENM3SPS2DV = LTENM3SPS3DV = h12 Λ0, where Λ0 is given in

the Appendix E.

Theorem 2. Based on the formula (33) we conclude that for Γ = Vc −E ≈ 0

the local truncation error for the classical method (constant coefficients - (29)),

the local truncation error for the method with eliminated phase–lag and its first

and second derivatives developed in [6] (with LTE given by (31) and the local

truncation error for the method with eliminated phase–lag and its first, second

and third derivatives developed in Section 3 (with LTE given by (27) are the

same and equal to h12 Λ0, where Λ0 is given in the Appendix E.

2. The Energy and the Potential are far from each other. Consequently,

Γ >> 0 ∨ Γ << 0 ⇒ |Γ| >> 0. Therefore, the most accurate scheme is the

scheme with asymptotic form of LTE which contains the minimum power of Γ

and the maximum value of p in (32).

• The above achievements lead to the following asymptotic expressions of the LTE

formulae for the schemes which are under evaluation.

4.1.5 Classical method

The Classical Method is the method (16) with constant coefficients.
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LTECL = − 1

23950080
h12

(
q (x) Γ6 + · · ·

)
+O

(
h14
)
. (35)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 5.

4.1.6 P–stable linear six–step method of Wang [81]

This is the method presented in Linear Six–step Method presented in [81] (see in [81]

equations (23)-(27). We note also here that there is a missprint in the paper [81]. In

formula (25) 2C3,0 y
′′
k+2 must be replaced by the correct: 2C3,0 y

′′
k+3.

LTEWANGPSL6S = − 81

8960
h10

(
Ξ (x) q (x) Γ4 + · · ·

)
+O

(
h12
)
. (36)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 3.

4.1.7 P–stable method with vanished phase–lag and its first and second
derivatives developed in [6]

This is the P–stable method which we developed in [6].

LTENM3SPS2DV = − 1

997920
h12

(
d4

dx4
Ξ (x) q (x) Γ4

+ · · ·

)
+O

(
h14
)
. (37)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 3.

4.1.8 P–stable scheme with vanished phase–lag and its first, second and third
derivatives developed in section 3

This is the P–stable method which we developed in Section 3.

LTENM3SPS3DV = − 1

997920
h12

[[
4Ξ (x) q (x)

d2

dx2
Ξ (x) + 7 q (x)

d4

dx4
Ξ (x)

+2
d3

dx3
Ξ (x)

d

dx
q (x) + 3 q (x)

(
d

dx
Ξ (x)

)2
]
Γ3 + · · ·

]
+O

(
h14
)
. (38)

-228-



We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 2.

The above analysis leads to the following theorem:

Theorem 3.

• Classical Method (i.e., the method (16) with constant coefficients): For this method

the error increases as the sixth power of Γ.

• P–stable Linear Six–step Method of Wang [81]: For this method the error increases

as the fourth power of Γ.

• P–Stable Tenth Algebraic Order Method with Vanished Phase–Lag and Its First and

Second Derivatives Developed in [6]: For this method the error increases as the

fourth power of Γ.

• P–Stable Tenth Algebraic Order Method with Vanished Phase–Lag and Its First,

Second and Third Derivatives Developed in Section 3: For this method the error

increases as the third power of Γ.

Consequently, for the approximate solution of the time independent radial Schrödinger

equation, on which our analysis was based, the new P–stable tenth algebraic order method

with vanished phase–lag and its derivatives up to order three is the most accurate one

since it satisfies the two necessary conditions of the most accurate method i.e. (i) it has

the minimum power of Γ and (2) it has the maximum value of p, especially in the cases

of large values of |Γ| = |Vc − E|.

4.2 Stability analysis

The stability analysis is based on the test problem:

q′′ = −ω2 q. (39)

where ω 6= φ, where φ is the frequency of the test problem (7) (phase–lag analysis) and

ω is the frequency of the test problem (39) (stability analysis).

If we apply the new constructed pair (16) to the test problem (39) we obtained the

difference equation:
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Ω1 (s, v) (qn+1 + qn−1) + Ω0 (s, v) qn = 0 (40)

and the corresponding characteristic equation:

Ω1 (s, v)
(
λ2 + 1

)
+ Ω0 (s, v) λ = 0 (41)

withy the stability polynomials Ωj (s, v) , j = 0, 1 to be given by:

Ω1 (s, v) = 1 + b1 s
2 + c3 b1 s

4 + c1 c3 b1 s
6

Ω0 (s, v) = a1 + b0 s
2 − c2 b1 s

4 − c0 c3 b1 s
6 (42)

where s = ω h and v = φh. The observation that some coefficients of (42) are dependent

on v, leads to the conclusion that the formulae (42) have dependence on s and v, while

the formulae (19) have dependence only on v.

Substitution of the coefficients bj, j = 0, 1 and c3 from (17) and the coefficients

a1, ci i = 0(1)2 from (26) into the above stability polynomials leads to:

Ω1 (s, v) = −Υ10 (s, v)

Υ11 (s, v)

Ω0 (s, v) = −Υ12 (s, v)

Υ13 (s, v)
(43)

where Υj (s, v) , j = 10(1)13 are given in the Appendix F.

Remark 7. The defined in Section 2 terms of P–stability and singularly almost P–stability

are corresponded with problems having frequency which satisfied the condition ω = φ.

The method (16) has a non zero interval of periodicity if the roots of its characteristic

equation (41) satisfy the following condition:

|λ1,2| ≤ 1 (44)

4.2.1 Construction of s− v domain for the new scheme

The development of the s − v domain for the new scheme is based on the following

flowchart.
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Development of s − v
Plane for the New Scheme

Determination of the char-
acteristic equation (41)

Solution of the equation (41)
for several values of s and v

Examination of the satisfaction
of the condition (44) from the

roots obtained from the above step

Satisfaction of the condition (44) from
the roots of the equation (41) leads to

the plot of the corresponding point (s, v)

Non Satisfaction of the condition
(44) from the roots of the equation
(41) leads to the selection for ex-
amination of another point (s, v)

Figure 3. Flowchart for the development of s− v domain for the new scheme

Based on the flowchart of the Figure 3, we produce the s − v domain mentioned in

Figure 4.

Figure 4. The plot of s− v domain of the new developed P-stable two–stages pair
with vanished phase–lag and its derivatives up to order three.
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Remark 8. The s− v domain mentioned in the Figure 4 leads to the following observa-

tions:

1. The scheme is stable within the shadowed area of the domain.

2. The scheme is unstable within the white area of the domain.

Remark 9. The stability plane on s− v domain of the scheme determines the categories

of problems for which the specific scheme is appropriate:

1. Categories of problems for which ω 6= φ. For these categories of problems we

have to give attention on all the plane of the s − v domain excluding the plane

around the first diagonal of the domain.

2. Categories of problems for which ω = φ (see the Schrödinger equation and

related problems). For these categories of problems we have to give attention on the

plane around the first diagonal of the figure of the s− v domain.

The interval of periodicity of the new obtained scheme is defined as follows:

1. Substitution s = v in the stability polynomials Ωi, i = 0, 1 given by (43).

2. Observation of the plane around the first diagonal of the s − v domain given in

Figure 4.

The above leads to the computation of the interval of periodicity of the new obtained

algorithm which is equal to (0,∞).

Remark 10. The interval of periodicity is a property corresponding to categories of prob-

lems for which s = v (Schrödinger equation and related problems).

The above achievements lead to the following theorem:

Theorem 4. The method obtained in Section 3:

• is of three stages

• is of tenth algebraic order,

• has eliminated the phase–lag and its derivatives up to order three and

• has an interval of periodicity equals to: (0,∞) i.e. is P–stable.
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5 Numerical results

In order to evaluate the efficiency of the new obtained scheme, we apply it to (1) the

approximate solution of the radial time–independent Schrödinger equation and (2) the

approximate solution of coupled differential equations arising from the Schrödinger equa-

tion.

5.1 Radial time–independent Schrödinger equation

The radial time–independent Schrödinger equation has the following model:

q′′(r) = [l(l + 1)/r2 + V (r)− k2] q(r), (45)

where

1. The function Θ(r) = l(l+1)/r2+V (r) denotes the effective potential which satisfies

the following property : Θ(r) → 0 as r → ∞.

2. k2 ∈ R denotes the energy.

3. l ∈ Z denotes the angular momentum.

4. The function V denotes the potential.

The problem (45) is a boundary value problem and consequently we need the deter-

mination of the boundary conditions which are given by:

q(0) = 0

and the boundary condition at the end point of integration domain which is determined

for large values of r from the physical considerations of the specific problem.

Since the new obtained scheme is belonged to the frequency dependent methods (some

of its coefficients are dependent from the v = φh), it is necessary the determination of

the frequency φ, in order to be possible the new scheme to be applied to the numerical

solution of the problem (45). For (45) and for the case l = 0 we have:

φ =
√

|V (r)− k2| =
√

|V (r)− E|

where V (r) denotes the potential and E = k2 denotes the energy.
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5.1.1 Woods–Saxon potential

In order to solve numerically the problem (45), it is also necessary to determine the

potential V (r). For our numerical experiments we use the Wood–Saxon potential which

is given by:

V (r) =
Ψ0

1 + ξ
− Ψ0 ξ

a (1 + ξ)2
(46)

with ξ = exp
[
r−X0

a

]
, Ψ0 = −50, a = 0.6, and X0 = 7.0.

In Figure 5 we present the behavior of the Wood–Saxon potential for several values of

r.

Figure 5. Behavior of the Woods–Saxon potential.

We determine the necessary value of the frequency φ as follows (see for details [18]

and [19]):

φ =



√
−50 + E for r ∈ [0, 6.5− 2h]

√
−37.5 + E for r = 6.5− h

√
−25 + E for r = 6.5

√
−12.5 + E for r = 6.5 + h

√
E for r ∈ [6.5 + 2h, 15].

For the determination of the above mentioned values of the frequency φ we used the

methodology introduced by Ixaru et al. ( [17] and [19]). This methodology consists

from discrete approximation of the continuous function V (r) by constant values on some

critical points within the integration area.

Here we give some examples from the determination of the values of φ:
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1. On the point of the integration area r = 6.5 − h, the value of φ is equal to:
√
−37.5 + E. Consequently, v = φh =

√
−37.5 + E h.

2. On the point of the integration area r = 6.5 − 3h, the value of φ is equal to:
√
−50 + E. Consequently, v = φh =

√
−50 + E h.

We mention here that the potential V (r) is a user defined function. In Chemistry

there are many potentials which are of great interest. Very few potentials in Chemistry

have known their eigenenergies. We selected the Woods–Saxon potential since for this

potential the eigenenergies are known.

5.1.2 The resonance problem of the radial Schrödinger equation

The equation (45) is solved numerically with l = 0 and using the Woods-Saxon potential

(46).

The problem mentioned above has an integration interval equal to (0,∞). Conse-

quently, it is necessary to substitute the infinite interval of integration (0,∞) with a finite

one. This approach leads to the numerical solution of the the above described problem.

For our numerical experiments we request r ∈ [0, 15]. For our numerical tests we apply

the numerical methods to be evaluated on a wide range of energies: E ∈ [1, 1000].

Since for positive energies the potential V (r) vanished faster than the term l(l+1)
r2

for

r → ∞, the radial Schrödinger equation (45) can be expressed by the following model:

q′′ (r) +

(
k2 − l(l + 1)

r2

)
q (r) = 0 (47)

where the linearly independent solutions of the above model are given by k r jl (k r )

and k r nl (k r), with jl (k r) and nl (k r) are the spherical Bessel and Neumann functions

respectively (see [82]). Consequently, the asymptotic form of the solution of equation (45)

(when r → ∞) is given by:

q (r) ≈ Akrjl (kr)−B krnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan δl cos

(
kr − lπ

2

)]
where δl is the phase shift and A, B, AC ∈ R. The direct formula for the computation
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of the phase shift is given by:

tan δl =
q (r2)S (r1)− q (r1)S (r2)

q (r1)C (r1)− q (r2)C (r2)

where r1 and r2 are distinct points in the asymptotic region (we chosen r1 = 15 and

r2 = r1 − h) with S (r) = k r jl (k r) and C (r) = −k r nl (k r). Since the above mentioned

problem is an initial–value one, the values of qj, j = 0, 1 must be computed in order a

two–step scheme to be applied. The value q0 is defined by the initial condition of the

problem. The value q1 is computed using the high order Runge–Kutta–Nyström methods

(see [20] and [21]). The computation of the values qi, i = 0, 1 leads to the computation

of the phase shift δl at the point r2 of the asymptotic region. It is noted that qj is the

approximation of the function q at the point xj.

Since the above mentioned problem is solved for positive energies, there are two pos-

sible outputs:

• the phase-shift δl or

• The energies E, for E ∈ [1, 1000], for which δl = π
2
.

For our numerical tests the second problem is solved, which is known as the resonance

problem.

The boundary conditions are:

q(0) = 0 , q(r) = cos
(√

Er
)

for large r.

The following methods are evaluated for the computation of the the positive eigenen-

ergies of the resonance problem described above:

• Method QT8: the eighth order multi–step method developed by Quinlan and

Tremaine [22];

• Method QT10: the tenth order multi–step method developed by Quinlan and

Tremaine [22];

• Method QT12: the twelfth order multi–step method developed by Quinlan and

Tremaine [22];

• Method MCR4: the fourth algebraic order method of Chawla and Rao with

minimal phase–lag [23];
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• Method RA: the exponentially–fitted method of Raptis and Allison [24];

• Method MCR6: the hybrid sixth algebraic order method developed by Chawla

and Rao with minimal phase–lag [25];

• Method NMPF1: the Phase-Fitted Method (Case 1) developed in [12];

• Method NMPF2: the Phase-Fitted Method (Case 2) developed in [12];

• Method NMC2: the Method developed in [26] (Case 2);

• Method NMC1: the method developed in [26] (Case 1);

• Method NM2SH2DV: the Two-Step Hybrid Method developed in [1];

• Method WPS2S: the Two–Step P–stable Method developed in [81];

• Method WPS4S: the Four–Step P–stable Method developed in [81];

• Method WPS6S: the Six–Step P–stable Method developed in [81];

• Method NM3SPS2DV: the Three Stages Tenth Algebraic Order P–stable Sym-

metric Two–Step method with vanished phase-lag and its first and second derivatives

developed in [6];

• Method NM3SPS3DV: the Three Stages Tenth Algebraic Order P–stable Sym-

metric Two–Step method with vanished phase-lag and its first, second and third

derivatives developed in Section 3.
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Figure 6. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue E2 = 341.495874. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.

CPU time (in seconds)

E
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m
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Figure 7. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue E3 = 989.701916. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.

The maximum absolute error Errmax which is defined by: Errmax = max| log10 (Err) |

where

Err = |Ecalculated − Eaccurate|
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is presented in the Figures 6 and 7.

The absolute error Err is computed based on the calculated eigenenergies and the

accurate eigenenergies (the reference values for the eigenenergies). The accurate eigenen-

ergies are presented as Eaccurate and are computed using the well known two-step method

of Chawla and Rao [25]. The calculated eigenenergies are presented as Ecalculated and are

computed using each of the 16 numerical methods mentioned above.

In Figures 6 and 7 we present the maximum absolute errors Errmax for the eigenen-

ergies E2 = 341.495874 and E3 = 989.701916, respectively, and for the 16 numerical

methods mentioned above for several values of CPU time (in seconds). The denotations

E2 and E3 for the calculated eigenenergies in our numerical example are given since it is

known that the Woods–Saxon potential has also the eigenenergies E0 and E1. We chosen

the eigenenergies E2 and E3 since for these values the solution has stiffer behavior and

consequently the new obtained method can show its efficiency.

5.1.3 Conclusions on the obtained numerical results for the radial Schrödinger
equation

The numerical results lead to the following conclusions:

• Method QT10 is more efficient than Method MCR4 and Method QT8.

• Method QT10 is more efficient than Method MCR6 for large CPU time and

less efficient than Method MCR6 for small CPU time.

• Method QT12 is more efficient than Method QT10

• Method NMPF1 is more efficient than Method RA, Method NMPF2 and

Method WPS2S

• Method WPS4S is more efficient than Method MCR4, Method NMPF1 and

Method NMC2.

• Method WPS6S is more efficient than Method WPS4S.

• Method NMC1, is more efficient than all the other methods mentioned above.

• Method NM2SH2DV, is more efficient than all the other methods mentioned

above.
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• Method NM3SPS2DV, is more efficient than all the other methods mentioned

above.

• Method NM3SPS3DV, is the most efficient one.

5.2 Error estimation

We will use a so called variable–step pair in order to solve numerically the coupled differ-

ential equations of the Schrödinger form.

Definition 9. A numerical pair is denoted of variable–step form if the step length of

integration is changed during the integration process.

Definition 10. Local truncation error estimation (LTEE) is denoted the process which

is used in order a variable–step pair to change the step length during the integration

procedure.

The last decades much research has been taken place on the construction of numerical

pairs of constant or variable step length for the numerical solution of problems of the

Schrödinger equation type (see for example [12]– [81]).

The numerical solution of the coupled Schrödinger equations is based on the variable–

step pairs defined above. As also mentioned above the variable–step pairs are based on

the LTEE procedure defined above. In Figure 8 the categories of LTEE procedures are

presented.

Viariable–Step Schemes

- Embedded Pairs

LTEE Procedure Based

on the Algebraic Order

LTEE Procedure Based

on the the Order

of Derivatives of the Phase–Lag

Figure 8. Categories of LTEE Procedures used for Developing Embedded Pairs for
Problems with Oscillatory and/or Periodical solutions.

We use the following formula for the estimation of the local truncation error (LTE) in

the lower order solution qLn+1:

LTE =| qHn+1 − qLn+1 | (48)

where qLn+1 and qHn+1 are
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• LTEE Procedure based on the algebraic order of the pairs. For this pro-

cedure, qLn+1 denotes the scheme with the lower algebraic order solution and qHn+1

denotes the scheme with the higher algebraic order solution.

• LTEE Procedure based on the order of the derivatives of the phase–lag.

Consider that the higher order of the derivatives of the phase–lag which are vanished

for the schemes which participate in this procedure are p and s respectively, where

p < s. For this procedure qLn+1 denotes the scheme with vanished higher order

derivative of the phase–lag equal to p and qHn+1 denotes the scheme with vanished

higher order derivative of the phase–lag equal to s .

For our numerical tests we use the first LTEE procedure for the estimation of the local

truncation error. Consequently, we use:

As qLn+1 we use the eighth algebraic order method developed in [80] and as qHn+1 we

use the tenth algebraic order method developed in Section 3.

Viariable–Step Procedure

If LTE < acc then

the stepsize is dupli-

cated, i.e. hn+1 = 2 hn

If acc ≤ LTE ≤ 100 acc

then the stepsize remains

constant , i.e. hn+1 = hn

If 100 acc < LTE then the

stepsize is halved and we repeat

the step , i.e. hn+1 =
1

2
hn

Figure 9. Variable–Step Procedure used in our Numerical Experiments.

The variable–step procedure which is used in our numerical tests is presented in Figure

9, where hn is the stepsize which is used for the nth step of the integration and acc is the

accuracy of the local truncation error LTE which is denoted by the user.

Remark 11. In our numerical experiments the known as local extrapolation technique

is used. Based on this technique for the approximation at each point of the integration

domain we use the higher order solution qHn+1 although the local error estimation is based

on the lower order solution qLn+1.

5.3 Coupled differential equations of the Schrödinger type

The coupled Schrödinger equations can be occurred in many scientific disciplines like:

quantum chemistry, material science, theoretical physics, quantum physics atomic physics,

physical chemistry and chemical physics, quantum chemistry, etc.
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The mathematical model of the close-coupling Schrödinger equations is given by:[
d2

dx2
+ k2i −

li(li + 1)

x2
− Vii

]
qij =

N∑
m=1

Vim qmj

for 1 ≤ i ≤ N and m 6= i.

The above problem is a boundary value one and consequently the boundary conditions

are given by (see for details [27]):

qij = 0 at x = 0

qij ∼ ki xjli (kix)δij +

(
ki
kj

)1/2

Kij ki xnli (kix) (49)

Remark 12. The numerical pair obtained in this paper can be applied efficiently in both

open and close channels problem.

Based on the analysis described in [27], the new forms of the asymptotic condition is

given by(49):

q ∼ M+NK′.

where the matrix K′ and diagonal matrices M, N are give by :

K ′
ij =

(
ki
kj

)1/2

Kij

Mij = kixjli(kix)δij

Nij = kixnli(kix)δij

The rotational excitation of a diatomic molecule by neutral particle impact is studied

in this paper. In several scientific areas like quantum chemistry, theoretical chemistry,

theoretical physics, quantum physics, material science, atomic physics, molecular physics,

in technical applications in the analysis of gas dynamics and stratification of chemically

reacting flows, dispersed flows, including with nano-sized particles etc this problem is oc-

curred. The mathematical model of the above mentioned problem contains close–coupling

Schrödinger equations (see [7], [8–11], [83] - [87]). Using the denotations:

• quantum numbers (j, l) which denote the entrance channel (see for details in [27]),

• quantum numbers (j′, l′) which denote the exit channels and

• J = j + l = j′ + l′ which denote the total angular momentum.
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we have:[
d2

dx2
+ k2j′j −

l′(l′ + 1)

x2

]
qJjlj′l′ (x) =

2µ

~2
∑
j′′

∑
l′′

< j′l′; J | V | j′′l′′; J > qJjlj′′l′′(x)

where

kj′j =
2µ

~2

[
E +

~2

2I
{j(j + 1)− j′(j′ + 1)}

]
.

and E denotes the kinetic energy of the incident particle in the center-of-mass system, I

denotes the moment of inertia of the rotator, µ denotes the reduced mass of the system,

Jjl is angular momentum of the quantum numbers (j, l) and j′′ and l′′ are quantum

numbers.

We use the following potential V (see [27]) :

V (x, k̂j′jk̂jj) = V0(x)P0(k̂j′jk̂jj) + V2(x)P2(k̂j′jk̂jj)

and therefore, the coupling matrix contains elements of the form:

< j′l′; J | V | j′′l′′; J >= δj′j′′δl′l′′V0(x) + f2(j
′l′, j′′l′′; J)V2(x)

where f2 coefficients are denoted from formulae presented by Bernstein et al. [28] and k̂j′j

is a unit vector parallel to the wave vector kj′j and Pi, i = 0, 2 are Legendre polynomials

(see for details [29]). We note also that V0(x) and V2(x) are potential functions and are

defined by the user. The above leads to the following new expressions of the boundary

conditions:

qJjlj′l′ (x) = 0 at x = 0 (50)

qJjlj′l′ (x) ∼ δjj′δll′ exp[−i(kjjx− 1/2lπ)]−
(
ki
kj

)1/2

SJ(jl; j′l′) exp[i(kj′jx− 1/2l′π)]

where S matrix. For K matrix of (49) we use the following formula:

S = (I+ iK)(I− iK)−1.

For the numerical solution of the above described problem we follow the procedure

fully described in [27]. The procedure contains the numerical scheme obtained in this

paper for the integration from the initial value point to the matching points.

For our numerical experiments the following parameters for the S matrix are used:

2µ

~2
= 1000.0 ;

µ

I
= 2.351 ; E = 1.1

V0(x) =
1

x12
− 2

1

x6
; V2(x) = 0.2283V0(x).
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For our numerical experiments we chose (see for full details in [27]) J = 6 and for the

excitation of the rotator the value j = 0 state to levels up to j′ = 2, 4 and 6. The above

values of the parameters define sets of four, nine and sixteen coupled Schrödinger

equations, respectively. Based on the theory described in [29] and [27], the potential is

considered infinite for x less than x0. Therefore, the boundary condition (50) is written

now as

qJjlj′l′ (x0) = 0.

For the numerical solution of the above problem, we use the following methods:

• the Iterative Numerov method of Allison [27] which is indicated as Method I2,

• the variable–step method of Raptis and Cash [30] which is indicated as Method

II,

• the embedded Runge–Kutta Dormand and Prince method 5(4) (5(4) means: Runge–

Kutta method of variable step which uses the fourth algebraic order part in order

to control the error of the the fifth algebraic order part) which is developed in [21]

which is indicated as Method III,

• the embedded Runge–Kutta method ERK4(2) developed in Simos [31] which is

indicated as Method IV,

• the embedded two–step method developed in [1] which is indicated as Method V,

• the embedded two–step method developed in [2] which is indicated as Method VI.

• the embedded two–step method developed in [3] which is indicated as Method VII.

• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in [6] which is indicated as Method VIII.

• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in this paper which is indicated as Method

IX.

In Table 2 we present the real time of computation requested by the numerical methods

I-X mentioned above in order to calculate the square of the modulus of the S matrix for
2We note here that Iterative Numerov method developed by Allison [27] is one of the most well-known

methods for the numerical solution of the coupled differential equations arising from the Schrödinger
equation
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the sets of 4, 9 and 16 coupled differential equations respectively. In the same table we

also present the maximum error in the calculation of the square of the modulus of the S

matrix.

All computations were carried out on a x86-64 compatible PC using double-precision

arithmetic data type (64 bits) according to IEEE c© Standard 754 for double precision.

6 Conclusions

A new P–stable symmetric two–step method with vanished phase–lag and its derivatives

up to order three was developed in this paper. The construction of the new method was

done on two stages:

1. In the first stage we satisfied the P–stability conditions introduced by Lambert and

Watson [13] and Wang [81]

2. In the second stage, we satisfied the condition for the vanishing of the phase–lag.

3. In the third stage, we satisfied the conditions for the vanishing of the derivatives of

the phase–lag.

We note here that the above methodology was first introduced in the paper of Medvedev

and Simos [6].

We studied the new obtained method based on the following stages:

• We studied the determination of the local truncation error (LTE)

• We investigated the asymptotic form of the LTE and we compared the asymptotic

form of the LTE of new pair with the asymptotic forms of the LTE of similar

methods.

• We investigated the stability and the interval of periodicity properties of the new

obtained scheme.

• We studied the computational efficiency of the new produced method.

The theoretical, computational and numerical achievements of this paper, proved the

efficiency of the new obtained scheme compared with other well known and recently de-

veloped algorithms of the literature for the approximate solution of the radial Schrödinger

equation and of the coupled Schrödinger equations.
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Table 1. Coupled Differential Equations. Real time of computation (in sec-
onds) (RTC) and maximum absolute error (MErr) to calculate |S|2 for
the variable–step methods Method I - Method VIII. acc=10−6. Note that
hmax is the maximum stepsize. N indicates the number of equations of
the set of coupled differential equations

Method N hmax RTC MErr
Method I 4 0.014 3.25 1.2× 10−3

9 0.014 23.51 5.7× 10−2

16 0.014 99.15 6.8× 10−1

Method II 4 0.056 1.55 8.9× 10−4

9 0.056 8.43 7.4× 10−3

16 0.056 43.32 8.6× 10−2

Method III 4 0.007 45.15 9.0× 100

9
16

Method IV 4 0.112 0.39 1.1× 10−5

9 0.112 3.48 2.8× 10−4

16 0.112 19.31 1.3× 10−3

Method V 4 0.448 0.20 1.1× 10−6

9 0.448 2.07 5.7× 10−6

16 0.448 11.18 8.7× 10−6

Method VI 4 0.448 0.15 3.2× 10−7

9 0.448 1.40 4.3× 10−7

16 0.448 10.13 5.6× 10−7

Method VII 4 0.448 0.10 2.5× 10−7

9 0.448 1.10 3.9× 10−7

16 0.448 9.43 4.2× 10−7

Method VIII 4 0.896 0.04 3.8× 10−8

9 0.896 0.55 5.6× 10−8

16 0.896 8.45 6.5× 10−8

Method IX 4 0.896 0.03 3.2× 10−8

9 0.896 0.50 4.1× 10−8

16 0.896 8.35 5.0× 10−8
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Appendix A: Formulae for the Υi (v) , i = 2(1)5

Υ2 (v) = 2 cos (v) v6c1 − v6c0 + 2 cos (v) v4 − 30 v4c2

+ 60 cos (v) v2 + 300 v2 + 720 cos (v) + 360 a1

Υ3 (v) = − sin (v) v12c1
2 − 2 sin (v) v10c1

+ 30 v9c1c2 − 60 sin (v) v8c1 − v9c0 − sin (v) v8

− 720 sin (v) v6c1 − 60 v7c0 − 600 v7c1 − 60 sin (v) v6 − 1080 v5a1c1

− 1080 v5c0 − 900 v5c2 − 1620 sin (v) v4 − 300 v5 − 720 v3a1 − 21600 v3c2

− 21600 sin (v) v2 − 10800 va1 − 129600 sin (v) + 108000 v

Υ4 (v) = 38880000 + 7560 v10c0c1 − 2700000 v6c1 − 1944000 v4c0

− 23328000 v2c2 − 183600 v6c0 − 972000 v4c2 − cos (v) v12 + 10800 v10c1c2

+ 9720 v8a1c1 + 86400 v6a1c1 − v12c0 − 90 v10c0

+ 2700 v10c1 − 54000 v8c1 + 3600 v6a1 + 97200 v4a1 − 5400 v8c0

+ 2700 v8c2 + 81000 v6c2 + 194400 v2a1 − 91800 cos (v) v6 + 3000 v12c1
2

− 1360800 cos (v) v4 − 11664000 cos (v) v2 + 7560 v10a1c1
2 − 46656000 cos (v)

− 1296000 v4 − 9720000 v2 − 9000 v6 − 3888000 a1 − 90 cos (v) v10

− 3780 cos (v) v8 + 30 v12c1c2 + 3 v14c0c1 + 300 v12c0c1

− 64800 cos (v) v8c1 − 90 v14c1
2c2 − 90 cos (v) v14c1

2 − 3 cos (v) v14c1

− 180 cos (v) v12c1 − 4860 cos (v) v10c1 − 1080 cos (v) v12c1
2

− 3 cos (v) v16c1
2 − 388800 cos (v) v6c1

+ 900 v8 − cos (v) v18c1
3 − 1944000 v4a1c1 + 291600 v8c1c2

Υ5 (v) = −13996800000 v − 21600 v15c1
2 + 1080000 v13c1

2 − 14400 v13c1

+ 6480 v11c0 + 648000 v11c1 − 21600 v9a1 + 453600 v9c0 − 777600 v7a1

+ 6840 sin (v) v12 + 163296000 v3a1 + sin (v) v16 + 120 sin (v) v14

− 18000 v17c1
3 − 1166400000 v3 − 43200 v13c1c2 − 129600 v11a1c1

2

− 82080 v11a1c1 − 712800 v11c1c2 + 4406400 v11c0c1

+ 54432000 v9a1c1
2 − 1296000 v9a1c1 + 54432000 v9c0c1

+ 40435200 v7a1c1 + 1213056000 v7c1c2 + sin (v) v24c1
4

+ 4 sin (v) v22c1
3 + 120 sin (v) v20c1

3

+ 6 sin (v) v20c1
2 + 1440 sin (v) v18c1

3
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+ 360 sin (v) v18c1
2 + 4 sin (v) v18c1

+ 9720 sin (v) v16c1
2 + 367200 sin (v) v12c1

+ 360 sin (v) v16c1 + 129600 sin (v) v14c1
2 + 15120 sin (v) v14c1

+ 360 v19c1
3c2 + 69984000 v9c1c2 + 16796160000 sin (v)

+ 777600 sin (v) v12c1
2 + 373248000 v5a1c1 + 46656000 sin (v) v8c1

− 10800 v11c2 + 40824000 v9c1 − 324000 v9c2 + 15552000 v7c2

+ 5443200 sin (v) v10c1 − 2799360000 v3a1c1 − 12 v19c0c1
2

+ 237600 sin (v) v10 − 2799360000 v3c0 − 16796160000 vc2

− 112320 v13a1c1
2 − 3369600 v13c1

2c2 + 108000 v13c0c1 + 12 v17c0c1

− 60480 v15c0c1
2 + 1440 v15c0c1 − 108000 v15c1

2c2

− 1800 v17c0c1
2 − 60480 v15a1c1

3 − 360 v17c1
2c2

− 279936000 v5c0 + 886464000 sin (v) v4 + 1399680000 v3c2

+ 5598720000 sin (v) v2 + 5475600 sin (v) v8

+ 85536000 sin (v) v6 − 6531840000 v5c1 + 466560000 v5c2

+ 839808000 va1 + 12960000 v7 + 108000 v9 − 3600 v11 + 155520000 v5

+ 186624000 sin (v) v6c1 + 45360000 v11c1
2.

Appendix B: Formulae for the Υj (v) , j = 6(1)9

Υ6 (v) = − (cos (v))2 v7 − 63 v5 (cos (v))2

− 2 v7 + 240 v4 sin (v) cos (v)− 600 sin (v) v4

− 1260 (cos (v))2 v3 − 117 v5 + 10440 sin (v) cos (v) v2

+ 5400 cos (v) v3 + 9000 sin (v) v2

+ 5400 (cos (v))2 v − 900 v3 + 90720 sin (v) cos (v) + 42120 v

Υ7 (v) = (cos (v))2 v7 + 12 sin (v) cos (v) v6

+ 15 v5 (cos (v))2 + 2 v7 + 450 v4 sin (v) cos (v)

− 300 sin (v) v4 + 540 (cos (v))2 v3 + 195 v5

+ 6480 sin (v) cos (v) v2 + 4500 cos (v) v3

+ 17100 sin (v) v2 + 17640 (cos (v))2 v + 3420 v3

+ 32400 sin (v) cos (v)− 14400 cos (v) v − 35640 v
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Υ8 (v) = sin (v) v6 − 5 cos (v) v5 + 35 sin (v) v4

+ 30 cos (v) v3 + 570 sin (v) v2 + 3000 cos (v) v

− 5400 sin (v) + 2400 v

Υ9 (v) = (cos (v))2 v6 + 8 v5 sin (v) cos (v)

+ 55 v4 (cos (v))2 + 2 v6 + 324 v3 sin (v) cos (v)

− 600 v3 sin (v) + 2220 (cos (v))2 v2 + 169 v4

+ 4200 sin (v) cos (v) v + 7800 cos (v) v2

+ 21000 sin (v) v + 37800 (cos (v))2 + 2580 v2 − 37800.

Appendix C: Truncated Taylor Series Expansion Formulae for the

coefficients of the new obtained method given by (26)

a1 = −2 +
v12

47900160
+

443 v14

326918592000

+
5963 v16

31384184832000
+

223579 v18

9146248151040000
+ · · ·

c0 =
15

28
− v4

7392
+

1241 v6

32432400
+

23563 v8

7264857600

+
1858313 v10

4234374144000
+

2313033839 v12

40548366802944000

+
310335550439 v14

41629656584355840000
+

22396738087177 v16

22979570434564423680000

+
13705907211935027 v18

107544389633761502822400000
+ · · ·

c1 =
1

56
− v4

14784
− 709 v6

64864800
− 181 v8

121080960

− 433747 v10

2195601408000
− 190939403 v12

7372430327808000

− 846454904003 v14

249777939506135040000
− 61108949840333 v16

137877422607386542080000

− 1133311624662463 v18

19553525387956636876800000
+ · · ·
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Appendix D: Expressions for the Derivatives of qn

Expressions of the derivatives which are presented in the formulae of the Local Trun-

cation Errors:

q(2) = (V (x)− Vc + Γ) q(x)

q(3) =

(
d

dx
Ξ (x)

)
q (x) + (Ξ (x) + Γ)

d

dx
q (x)

q(4) =

(
d2

dx2
Ξ (x)

)
q (x) + 2

(
d

dx
Ξ (x)

)
d

dx
q (x) + (Ξ (x) + Γ)2 q (x)

q(5) =

(
d3

dx3
Ξ (x)

)
q (x) + 3

(
d2

dx2
Ξ (x)

)
d

dx
q (x)

+ 4 (Ξ (x) + Γ) q (x)
d

dx
Ξ (x) + (Ξ (x) + Γ)2

d

dx
q (x)

q(6) =

(
d4

dx4
Ξ (x)

)
q (x) + 4

(
d3

dx3
Ξ (x)

)
d

dx
q (x)

+ 7 (Ξ (x) + Γ) q (x)
d2

dx2
Ξ (x) + 4

(
d

dx
Ξ (x)

)2

q (x)

+ 6 (Ξ (x) + Γ)

(
d

dx
q (x)

)
d

dx
Ξ (x) + (Ξ (x) + Γ)3 q (x)

q(7) =

(
d5

dx5
Ξ (x)

)
q (x) + 5

(
d4

dx4
Ξ (x)

)
d

dx
q (x)

+ 11 (Ξ (x) + Γ) q (x)
d3

dx3
Ξ (x) + 15

(
d

dx
Ξ (x)

)
q (x)

+
d2

dx2
Ξ (x) + 13 (Ξ (x) + Γ)

(
d

dx
q (x)

)
d2

dx2
Ξ (x)

+ 10

(
d

dx
Ξ (x)

)2
d

dx
q (x) + 9 (Ξ (x) + Γ)2 q (x)

+
d

dx
Ξ (x) + (Ξ (x) + Γ)3

d

dx
q (x)

q(8) =

(
d6

dx6
Ξ (x)

)
q (x) + 6

(
d5

dx5
Ξ (x)

)
d

dx
q (x)
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+ 16 (Ξ (x) + Γ) q (x)
d4

dx4
Ξ (x) + 26

(
d

dx
Ξ (x)

)
q (x)

+
d3

dx3
Ξ (x) + 24 (Ξ (x) + Γ)

(
d

dx
q (x)

)
d3

dx3
Ξ (x)

+ 15

(
d2

dx2
Ξ (x)

)2

q (x) + 48

(
d

dx
Ξ (x)

)

+

(
d

dx
q (x)

)
d2

dx2
Ξ (x) + 22 (Ξ (x) + Γ)2 q (x)

+
d2

dx2
Ξ (x) + 28 (Ξ (x) + Γ) q (x)

(
d

dx
Ξ (x)

)2

+ 12 (Ξ (x) + Γ)2
(
d

dx
q (x)

)
d

dx
Ξ (x) + (Ξ (x) + Γ)4 q (x)

· · ·

We compute the j-th derivative of the function z at the point xn, i.e. z(j)n , substituting in

the above formulae x with xn.

Appendix E: Formula for the quantity Λ0

Λ0 = −
743Ξ (x) q (x)

(
d
dx
Ξ (x)

)2 d2

dx2
Ξ (x)

5987520
−

5 (Ξ (x))2
(

d
dx
q (x)

) (
d
dx
Ξ (x)

)
d2

dx2
Ξ (x)

99792

−
313 (Ξ (x))2 q (x)

(
d
dx
Ξ (x)

)
d3

dx3
Ξ (x)

3991680
−

23Ξ (x)
(

d
dx
q (x)

) (
d4

dx4
Ξ (x)

)
d
dx
Ξ (x)

299376

−
19 (Ξ (x))4 q (x) d2

dx2
Ξ (x)

4790016
−

5
(

d2

dx2
Ξ (x)

)3
q (x)

177408

−

(
d4

dx4
Ξ (x)

)2
q (x)

114048
− (Ξ (x))6 q (x)

23950080
−

37 (Ξ (x))3 q (x) d4

dx4
Ξ (x)

2993760

−
353

(
d
dx
Ξ (x)

)
q (x)

(
d3

dx3
Ξ (x)

)
d2

dx2
Ξ (x)

2395008
−

323Ξ (x) q (x)
(

d5

dx5
Ξ (x)

)
d
dx
Ξ (x)

5987520

−
13Ξ (x) q (x)

(
d4

dx4
Ξ (x)

)
d2

dx2
Ξ (x)

136080
−

73Ξ (x)
(

d
dx
q (x)

) (
d3

dx3
Ξ (x)

)
d2

dx2
Ξ (x)

598752

−
(

d
dx
Ξ (x)

)4
q (x)

85536
−

157 (Ξ (x))2
(

d
dx
q (x)

)
d5

dx5
Ξ (x)

11975040

-251-



−
17
(

d2

dx2
Ξ (x)

)
q (x) d6

dx6
Ξ (x)

1596672
−

13
(

d
dx
Ξ (x)

)
q (x) d7

dx7
Ξ (x)

2395008

−
7
(

d
dx
Ξ (x)

) (
d
dx
q (x)

)
d6

dx6
Ξ (x)

342144
−

23Ξ (x) q (x) d8

dx8
Ξ (x)

11975040

−
19
(

d2

dx2
Ξ (x)

) (
d
dx
q (x)

)
d5

dx5
Ξ (x)

443520
−

31
(

d
dx
Ξ (x)

) (
d
dx
q (x)

) (
d2

dx2
Ξ (x)

)2
266112

−
43Ξ (x) q (x)

(
d3

dx3
Ξ (x)

)2
748440

−
(Ξ (x))4

(
d
dx
q (x)

)
d
dx
Ξ (x)

798336

−
5Ξ (x)

(
d
dx
q (x)

) (
d
dx
Ξ (x)

)3
199584

−
239 (Ξ (x))2 q (x) d6

dx6
Ξ (x)

23950080

−
5 (Ξ (x))3

(
d
dx
q (x)

)
d3

dx3
Ξ (x)

598752
−

Ξ (x)
(

d
dx
q (x)

)
d7

dx7
Ξ (x)

187110

−
1201 (Ξ (x))2 q (x)

(
d2

dx2
Ξ (x)

)2
23950080

−

(
d3

dx3
Ξ (x)

) (
d
dx
q (x)

)
d4

dx4
Ξ (x)

16632

−
31
(

d3

dx3
Ξ (x)

)
q (x) d5

dx5
Ξ (x)

1995840
−

109
(

d
dx
Ξ (x)

)2 ( d
dx
q (x)

)
d3

dx3
Ξ (x)

1197504

−
(

d
dx
Ξ (x)

)2
q (x) d4

dx4
Ξ (x)

19008
−

13 (Ξ (x))3 q (x)
(

d
dx
Ξ (x)

)2
1197504

−

(
d10

dx10
Ξ (x)

)
q (x)

23950080
−

(
d9

dx9
Ξ (x)

)
d
dx
q (x)

2395008

at every point x = xn.

Appendix F: Formulae for the Υj (v) , j = 10(1)13

Υ10 (s, v) = sin (v) s6v6 − sin (v) s4v8 − 5 cos (v) s6v5

+ 11 cos (v) s4v7 + 35 sin (v) s6v4 + 21 sin (v) s4v6 − 30 sin (v) s2v8

+ 30 cos (v) s6v3 + 330 cos (v) s2v7 + 570 sin (v) s6v2

+ 630 sin (v) s2v6 − 360 sin (v) v8 + 3000 cos (v) s6v

+ 3960 cos (v) v7 − 5400 sin (v) s6 + 7560 sin (v) v6 + 2400 s6v

Υ11 (s, v) = 360 v6
(
sin (v) v2 − 11 cos (v) v − 21 sin (v)

)
Υ12 (s, v) = 24 sin (v) cos (v) s6v6 − 24 sin (v) cos (v) s4v8

+ 900 sin (v) cos (v) s6v4 − 972 sin (v) cos (v) s4v6

+ 12960 sin (v) cos (v) s6v2 − 12600 sin (v) cos (v) s4v4

− 9000 sin (v) v8 − 71280 s6v − 90720 sin (v) cos (v) v6 − 5400 (cos (v))2 v7

+ (cos (v))2 v13 − 6660 (cos (v))2 s4v5
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+ 2 (cos (v))2 s6v7 + 35280 (cos (v))2 s6v

− 240 sin (v) cos (v) v10 − 3 (cos (v))2 s4v9

− 23400 cos (v) s4v5 + 1080 (cos (v))2 s6v3

− 28800 cos (v) s6v − 1800 sin (v) s2v8 + 9000 cos (v) s6v3

+ 19800 cos (v) s2v7 + 1800 sin (v) s4v6 + 37800 sin (v) s2v6

+ 34200 sin (v) s6v2 − 600 sin (v) s6v4

− 165 (cos (v))2 s4v7 − 10440 sin (v) cos (v) v8

+ 30 (cos (v))2 s6v5 − 113400 (cos (v))2 s4v3

+ 64800 sin (v) cos (v) s6 − 63000 sin (v) s4v4 − 507 s4v7

− 7740 s4v5 + 113400 s4v3 − 6 s4v9 + 390 s6v5 + 6840 s6v3 + 63 (cos (v))2 v11

+ 600 sin (v) v10 + 1260 (cos (v))2 v9

− 5400 cos (v) v9 + 4 s6v7 + 900 v9 + 117 v11 − 42120 v7 + 2 v13

Υ13 (s, v) = 2160 v6
(
sin (v) v2 − 11 cos (v) v − 21 sin (v)

)
.
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