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Abstract

Group hierarchy for characterizing a prismane skeleton with six substitution po-
sitions has been discussed by defining the point group (PG), the RS -stereoisomeric
group (RS -SIG), the stereoisomeric group (SIG), and the isoskeletal group (ISG)
successively as follows: PG D3h (order 12) ⊂ RS -SIG D

3hσ̃Î
(order 24) = SIG (the

same as D
3hσ̃Î

) ⊂ ISG S
[6]

σÎ
(order 1440). On the basis of combined-permutation

representations (S. Fujita, MATCH Commun. Math. Comput. Chem. 76 (2016)
379–400), Fujita’s proligand method (S. Fujita, Combinatorial Enumeration of Gra-
phs, Three-Dimensional Structures, and Chemical Compounds, University of Kragu-
jevac, Faculty of Science, Kragujevac, 2013) is modulated and applied to the enu-
meration of prismane derivatives under the group hierarchy. A set of three ligand-
inventory functions is introduced into cycle indices with chirality fittingness (CI-
CFs) to give generating functions for the enumeration of 3D structures under PG
and RS -SIG. On the other hand, a single ligand-inventory function is introduced
into CI-CFs to give generating functions for the enumeration of 2D structures un-
der SIG and ISG. The enumeration results are discussed systematically in terms of
isomer-classification diagrams.
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1 Introduction

Prismane (IUPAC name: tetracyclo[2.2.0.02,6.03,5]hexane) is called Ladenburg’s benzene,

because it was proposed in 1869 by Ladenburg [1] as a possible structure of benzene, which

is a hydrocarbon with the molecular formula C6H6. Nowadays, Kekulé’s benzene [2] is

recognized as the correct structure of benzene. Prismane itself was synthesized as a

tetracyclic compound in 1973 [3].

During the elucidation of the correct structure of benzene, it was examined whether or

not a possible structure (Kekulé’s benzene [2], Ladenburg’s benzene [1], Dewar’s benzene

[4], or more) is capable of rationalizing the number of benzene derivatives with two or

more substituents. For a historical description on the elucidation of the benzene structure,

see Chapter 12 of [5].

The number of benzene derivatives has been systematically investigated in the first

stage of Pólya’s enumeration method [6–9]. The legacy of Pólya’s paper [9] has been dis-

cussed by Read in its English translation [10], where the enumeration of benzene deriva-

tives has been adopted as a typical example of the application of Pólya’s enumeration

method to chemical problems.

The comparison between a prismane skeleton and a benzene skeleton in terms of

Pólya’s enumeration method has been conducted by Pólya himself in Chapter 6 of [11],

where the same cycle index (CI) has been assigned to both of the skeletons. The same

CI stems from the implicit standpoint of Pólya’s approach [11], in which the point group

D3h (order 12) for characterizing the prismane skeleton is interpreted as a permutation

group, where rotations and reflections (containing rotoreflections) are mixed up in terms of

permutations. Note that the dihedral group D6 (order 12) for characterizing the benzene

skeleton consists of rotations only and is interpreted as the same permutation group.

Pólya’s theorem has been concluded to be deficient in the concept of sphericities, as

discussed in a review of the author (Fujita) [12].

The concept of sphericities has originally been proposed to explain the behaviors

of equivalence classes (orbits) during the development of the unit-subduced-cycle-index

(USCI) approach proposed by the author (Fujita) [13, 14]. Fujita’s USCI approach sup-

ports symmetry-itemized enumeration of 3D structures, where unit subduced cycle indices

with chirality fittingness (USCI-CFs) are used to treat chiral proligands as well as achiral

proligands. Among the four methods supported by Fujita’s USCI approach, the fixed-
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point-matrix (FPM) method and the partial-cycle-index (PCI) method have been applied

to the smmetry-itemized enumeration of prismane derivatives [15].

The concept of sphericities for orbits has been extended into the concept of sphericities

for cycles, which gives theoretical foundations to the proligand method proposed by the

author (Fujita) [16, 17]. Fujita’s proligand method supports gross enumeration of 3D

structures, where cycle indices with chirality fittingness (CI-CFs) are used to treat chiral

proligands as well as achiral proligands. The remaining task is the application of Fujita’s

proligand method to gross enumeration of prismanes, which will be discussed in the present

article.

For the purpose of integrating chirality (geometric features of stereochemistry) and

stereogenicity (stereoisomeric features of stereochemistry), the author (Fujita) has devel-

oped the stereoisogram approach [18–20], which is based on RS -stereoisomeric groups

for mathematical treatments and on stereoisograms as their diagrammatic expressions.

Fujita’s stereoisogram approach has been applied to prismane derivatives [21].

During the above-mentioned investigations on Fujita’s USCI approach [14, 22], Fu-

jita’s proligand method [17], and Fujita’s stereoisogram approach [20], each ligand reflec-

tion is explicitly represented by an overbar to express the behaviors of chiral proligands

as well as those of achiral proligands [22–24]. As a result, a reflection is totally repre-

sented by a permutation with an overbar (e.g., σh ∼ (1 4)(2 5)(3 6)), whereas a rota-

tion and an RS -permutation are represented by permutations without an overbar (e.g.,

σ̃h ∼ (1 4)(2 5)(3 6)). However, this type of representations are unsuitable for practical

computer-manipulation by such computer systems as GAP [25].

As computer-oriented representations suitable for practical calculations, combined-

permutation representations (CPRs) have recently been developed by the author (Fujita)

[26]. The CPRs have been used to treat point groups [26,27] and RS -stereoisomeric groups

[28]. For the purpose of gaining a wider outlook on computer-oriented representations,

enumeration using such CPRs should be investigated by referring to the following group

hierarchy:

point groups (PG) ⊆ RS -stereoisomeric groups (RS -SIG)

⊆ stereoisomeric groups (SIG) ⊆ isoskeletal groups (ISG), (1)

where each symbol ⊆ can be altered to represent a net subset (⊂) or an equality (=) in

accord with a skeleton to be examined. Part 1 of this series has investigated enumeration
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based on a cyclopropane skeleton of ligancy 6 by referring to Eq. 1, where there appear

no equality symbols in Eq. 1. The next task assigned to Part 2 is systematic examination

of a prismane skeleton of ligancy 6 by referring to the group hierarchy of Eq. 1, where

there appears an equality symbol between RS -SIG and SIG.

2 Group hierarchy for prismane derivatives

2.1 Point groups for characterizing prismane derivatives

As shown in the left part of Figure 1, a prismane skeleton 1 belongs to the point groupD3h

(order 12), which has been also assigned to a cyclopropane skeleton in Part 1 of this series.

The six positions of 1 construct an orbit (an equivalence class) controlled by the coset

representation (Cs\)D3h, each element of which is represented by a permutation of degree

6. For the purpose of discriminating a reflection from a rotation, the expression of such a

coset representation as (Cs\)D3h has been devised (cf. [23, 24] and Chapter 6 of [22]) to

be a permutation with an overbar for representing a reflection (e.g., σh ∼ (1 4)(2 5)(3 6))

in comparison with a permutation without an overbar for representing a rotation (e.g.,

C3 ∼ (1 2 3)(4 5 6)). In this article, the term reflection is used to mean rotoreflections

(e.g., S3 and S2
3) as well as (pure) reflections.

The point group D3h exhibits the following coset decomposition:

D3h = D3 +D3hσh, (2)

where the horizontal reflection σh is selected as a transversal. Then, the coset D3I (=

D3) contains six rotations (the upper-left part of Figure 1), while the other coset D3σh

contains six reflections (the lower-left part of Figure 1).

To treat a ligand reflection represented by an overbar, a mirror-permutation represen-

tation is introduced by considering the action on the domain χ = {7, 8}. For example, the

reflection σh (∼ (1 4)(2 5)(3 6)) acts on the domain χ to give a 2-cycle (7 8). Thereby,

a product of cycles (1 4)(2 5)(3 6)(7 8) is obtained by substituting a 2-cycle (7 8) for an

overbar of (1 4)(2 5)(3 6). In the GAP system, the resulting product of cycles is expressed

to be (1,4)(2,5)(3,6)(7,8) by the addition of commas.

On the other hand, a rotation (e.g., C3 ∼ (1 2 3)(4 5 6)) contained in the point group

D3h acts on the domain χ to give a product of 1-cycles (7)(8). Thereby, a product of

cycles with (7)(8) (e.g., (1 2 3)(4 5 6)(7)(8)) is obtained to show no ligand reflections (no
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Figure 1. RS -Stereoisomeric group D
3hσ̃Î

(= D3h +D3hσ̃h) derived from a coset
representation of D3h for characterizing a prismane skeleton. The
RS -Stereoisomeric group D

3hσ̃Î
is coincident with the corresponding

stereoisomeric group in the case of the prismane skeleton.
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overbars). The resulting product of cycles is expressed to be (1,2,3)(4,5,6), where 1-

cycles are omitted according to the mathematical convention adopted by the GAP system.

The procedures described above are applied to the rotations and the reflections of

D3h. This means the combination of the coset representation (Cs\)D3h (or D3h(/Cs))

with a mirror-permutation representation ({(7)(8), (7 8)}). The resulting representation

is designated by the symbol P (Xχ)

D3h
(D3h), which is called the combined-permutation rep-

resentation (CPR), as described in Part I of this series. The CPR P (Xχ)

D3h
(D3h) can be

regarded as a permutation group of degree 8 (= 6 + 2), which is suitable for handling by

the GAP system.

By relying on the combined-permutation representations (CPRs), the coset decompo-

sition represented by Eq. 2 is practically calculated by the GAP system as follows:

gap> D3 := Group([(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]);

Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])

gap> D3h := Group([(2,3)(5,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6)(7,8)]);

Group([ (2,3)(5,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6)(7,8) ])

gap> CosetDecomposition(D3h,D3);

[ [ (), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5), (1,5)(2,4)(3,6), (1,6)(2,5)(3,4) ],

[ (1,4)(2,5)(3,6)(7,8), (1,5,3,4,2,6)(7,8), (1,6,2,4,3,5)(7,8), (2,3)(5,6)(7,8), (1,2)(4,5)(7,8),

(1,3)(4,6)(7,8) ]

]

gap> Elements(RightTransversal(D3h,D3));

[ (), (1,4)(2,5)(3,6)(7,8) ]

Note that the CPRs P (Xχ)

D3
(D3) and P (Xχ)

D3h
(D3h) for the point groups D3 and D3h are

generated from the respective sets of generators described in the GAP function Group (cf.

Part I of this series). The GAP function CosetDecomposition gives the coset decom-

position in the form of a GAP list, in which an inner pair of square brackets is a list of

elements contained in each coset. Thus, the first inner pair of square brackets contains

six permutations with omitted 1-cycles ((7)(8)), while the second inner pair contains

six permutations with an explicit 2-cycle (7,8). The GAP function RightTransversal

generates a list of transversals (I and σh).

2.2 RS -stereoisomeric group for prismane derivatives

2.2.1 Reflections and RS -permutations for prismane derivatives

The top row of Figure 2 illustrates the effect of a horizontal reflection σh applied to

the numbered skeleton 1 of prismane, where a shadowed triangle shows a mirror plane

for specifying σh (∼ (1 4)(2 5)(3 6)). Thereby, the reflection σh converts the numbered

skeleton 1 into the corresponding mirror-numbered skeleton 1. Each locant number with

an overbar (i.e., 1, 2, . . ., or 6) indicates a ligand reflection, where the corresponding
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position accommodates a proligand after the alternation of its chirality sense.

Fujita’s stereoisogram approach has defined an RS -permutation by starting from a

reflection contained in a point group [20]. For example, an RS -permutation σ̃h (∼

(1 4)(2 5)(3 6)) is defined by omitting ligand reflections from the corresponding reflection

σh (∼ (1 4)(2 5)(3 6)). The effect of the resulting RS -permutation σ̃h is illustrated in

the bottom row of Figure 2, where the numbered skeleton 1 is converted into the corre-

sponding RS -numbered skeleton 2. The RS -permutation σ̃h can be interpreted by the

intervention of a graph 1g, where the lift of the outer triangle (attached by 4, 5, and 6)

gives the RS -numbered skeleton 2 without accompanying ligand reflections.

Figure 2. Reflections and RS -permutations applied to a prismane skeleton. The
plane containing a shadowed triangle is a mirror plane for specify-
ing a horizontal reflection σh. The acronym CPR denotes combined-
permutation representation.

In a similar way to the rotation C3 described above, the RS -permutation σ̃h (∼

(1 4)(2 5)(3 6)) acts on the domain χ to give a product of 1-cycles (7)(8). Thereby,

a product of cycles (1 4)(2 5)(3 6)(7)(8) is obtained to show no ligand reflections (no

overbars). The resulting product of cycles is expressed to be (1,4)(2,5)(3,6), where

1-cycles are omitted according to the criteria of the GAP system.
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2.2.2 Construction of RS -stereoisomeric group for prismane derivatives

In part 1 of this series, the RS -stereoisomeric groupD3hσ̃Î (Figure 1) has been constructed

by considering the following coset decomposition:

D3hσ̃Î = D3h +D3hσ̃h. (3)

As shown in Table 1 of Part 1 of this series, however, the GAP system has resulted in the

formation of the following D3hsI:

D3hsI := Group([ (7,8), (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6) ]);

This means that the resulting set of generators for D3hsI has been obtained in accord

with the following coset decomposition:

D3hσ̃Î = D3σ̃ +D3σ̃ Î , (4)

because the first element (7,8) in the source list of D3hsI corresponds to a net ligand

reflection Î (= σhσ̃h ∼ (1)(2)(3)(4)(5)(6)) and because the RS -permutation group D3σ̃ is

represented as follow:

D3σ̃ = D3 +D3σ̃h. (5)

Thus, the elements of D3σ̃ shown in the upper-left and upper-right parts of Figure 1 is

generated by the following generators:

D3s := Group([ (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6) ]);

This set of generators for the RS -permutation groupD3σ̃ (D3s) has appeared in the source

list of D3hsI. Thus, the adition of (7,8) to the set of generators for D3s results in the

formation of the set of generators for D3hsI.

Because D3h in Eq. 3 and D3σ̃ in Eq. 4 contain a common subgroup D3, the following

coset decomposition is obtained:

D3hσ̃Î = D3 +D3σh +D3σ̃h +D3Î (6)

This coset decomposition is confirmed by the GAP system as follows:

gap> D3 := Group([(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]);;

gap> D3hsI := Group([(7,8), (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6)]);;

gap> CosetDecomposition(D3hsI,D3);

[ [ (), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5), (1,5)(2,4)(3,6), (1,6)(2,5)(3,4) ],

[ (2,3)(5,6), (1,3)(4,6), (1,2)(4,5), (1,4)(2,5)(3,6), (1,6,2,4,3,5), (1,5,3,4,2,6) ],

[ (7,8), (1,2,3)(4,5,6)(7,8), (1,3,2)(4,6,5)(7,8), (1,4)(2,6)(3,5)(7,8), (1,5)(2,4)(3,6)(7,8),

(1,6)(2,5)(3,4)(7,8)],

[ (2,3)(5,6)(7,8), (1,3)(4,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6)(7,8), (1,6,2,4,3,5)(7,8),

(1,5,3,4,2,6)(7,8) ] ]

gap> List(RightTransversal(D3hsI,D3), i->CanonicalRightCosetElement(D3,i));

[ (), (2,3)(5,6), (7,8), (2,3)(5,6)(7,8) ]
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The four inner lists surrounded separately by a pair of square brackets in the output

of the GAP function CosetDecomposition correspond to the four cosets appearing in Eq.

6. These cosets and the transversals of this source list (the output of RightTransversal)

actually correspond to the following coset decomposition:

D3hσ̃Î = D3 +D3σ̃v(1) +D3Î +D3σv(1), (7)

which is equivalent with Eq. 6 because D3σ̃v(1) = D3σ̃h and D3σv(1) = D3σh.

2.3 Stereoisomeric group and isoskeletal group for a prismane
skeleton

2.3.1 Stereoisomeric group equal to RS -stereoisomeric group

As for the group hierarchy of the prismane skeleton 1, the stereoisomeric group becomes

the same as the RS -stereoisomeric group D3hσ̃Î (order 24). It follows that the general

group hierarchy represented by Eq. 1 is reduced to the following scheme:

point group (PG) D3h ⊂ RS -stereoisomeric group (RS -SIG) D3hσ̃Î

= stereoisomeric group (SIG) ⊂ isoskeletal group (ISG) S
[6]

σÎ
. (8)

Although the same group D3hσ̃Î is assigned both to RS -stereoisomerism and to stereo-

isomerism during discussions on the group hierarchy of the prismane skeleton 1, the former

RS -stereoisomerism is concerned with 3D structures, while the latter stereoisomerism is

concerned with 2D structures (graphs). In spite of the same group, the difference be-

tween RS -stereoisomerism and stereoisomerism results in the selection of different ligand-

inventory functions, as discussed below in detail.

2.4 Isoskeletal group for prismane derivatives

In place of the isoskeletal group
˜̃
D3hσ̃Î (order 1440) defined in Part 1 of this series, we use

the reflective symmetric group S
[6]

σÎ
(order 1440, the combined representation as a group:

S6sI) for the purpose of characterizing the isoskeletomerism of the prismane skeleton 1.

This is because there are many transversals for the construction of
˜̃
D3hσ̃Î (order 1440)

from the RS -stereoisomeric group D3hσ̃Î (D3hsI, order 24).

Under isoskeletomerism, the six positions of 1 can be permuted freely to give the

symmetric group of degree 6 (S[6], order 6! = 720), where each element of S[6] is regarded
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as an operation for converting a numbered skeleton into another numbered skeleton. Then,

ligand reflections are considered to generate the reflective symmetric group S
[6]

σÎ
as follows:

S
[6]

σÎ
= S[6] + S[6]Î , (9)

which is here equalized to the isoskeletal group
˜̃
D3hσ̃Î . The set of generaters for S[6] is

found to be [(1,2,3,4,5,6), (1,2)] and the ligand reflection Î (∼ (1)(2)(3)(4)(5)(6))

is expressed to be (7,8). They are combined to give [(1,2,3,4,5,6), (1,2), (7,8)]

as the set of generators for S
[6]

σÎ
.

The point groupD3 and the RS -permutation groupD3σ̃ are regarded as the subgroups

of the symmetric group S[6]. The point group D3h (D3h) and the RS -stereoisomeric group

D3hσ̃Î (D3hsI) are regarded as the subgroups of the reflective symmetric group S
[6]

σÎ
(S6sI).

The transversals of the coset decomposition of S
[6]

σÎ
(S6sI, order 1440) by D3hσ̃Î (D3hsI,

order 24) are calculated as follows:

gap> D3hsI := Group([(7,8), (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6)]);;

gap> Size(D3hsI);

24

gap> S6sI := Group([(1,2,3,4,5,6), (1,2), (7,8)]);;

gap> Size(S6sI);

1440

gap> List(RightTransversal(S6sI,D3hsI), i->CanonicalRightCosetElement(D3hsI,i));

[ (), (5,6), (4,5), (4,5,6), (4,6,5), (4,6), (3,4), (3,4)(5,6), (3,4,5), (3,4,5,6), (3,4,6,5), (3,4,6),

(3,5,4), (3,5,6,4), (3,5), (3,5,6), (3,5)(4,6), (3,5,4,6), (3,6,5,4), (3,6,4), (3,6,5), (3,6),

(3,6,4,5), (3,6)(4,5), (2,3,4), (2,3,4)(5,6), (2,3,4,5), (2,3,4,5,6), (2,3,4,6,5), (2,3,4,6),

(2,3,5,4), (2,3,5,6,4), (2,3,5), (2,3,5,6), (2,3,5)(4,6), (2,3,5,4,6), (2,3,6,5,4), (2,3,6,4),

(2,3,6,5), (2,3,6), (2,3,6,4,5), (2,3,6)(4,5), (2,4)(3,5), (2,4)(3,5,6), (2,4,3,5), (2,4,3,5,6),

(2,4,6,3,5), (2,4,6)(3,5), (2,4)(3,6,5), (2,4)(3,6), (2,4,3,6,5), (2,4,3,6), (2,4,5)(3,6),

(2,4,5,3,6), (2,5,3,6,4), (2,5,4)(3,6), (2,5)(3,6,4), (2,5,4,3,6), (2,5)(3,6), (2,5,3,6) ]

gap> Size(RightTransversal(S6sI,D3hsI));

60

There appear 60 transversals, each of which contains no reflection (no 2-cycle (7,8)).

The 60 transversals construct the coset decomposition of S
[6]

σÎ
(S6sI, order 1440) by D3hσ̃Î

(D3hsI, order 24) as follows:

S
[6]

σÎ
= D3hσ̃Î +D3hσ̃Î σ̃56 +D3hσ̃Î σ̃45 +D3hσ̃Î σ̃456 + · · · , (10)

which satisfies 24 × 60 = 1440, where such symbols as σ̃56 represent operations corre-

sponding to such transversals as (5,6) shown in the above source list. Obviously, the

right-hand side of Eq. 10 can be adopted as an alternative formulation for constructing

the isoskeletal group
˜̃
D3hσ̃Î , if we follow the procedure described in Table 2 (cf. Eq. 10)

of Part 1 of this series.
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3 Hierarchical enumeration of prismane derivatives

The symmetry-itemized enumeration of prismane derivatives has been conducted by

means of the fixed-point-matrix (FPM) method and the partial-cycle-index (PCI) method

of Fujita’s USCI approach [15]. Fujita’s stereoisogram approach has been applied qual-

itatively to prismane derivatives by using the RS -stereoisomeric group D3hσ̃Î . In this

article, Fujita’s proligand method using cycle indices with chirality fittingness (CI-CFs)

[16,17,29,30] is extended to support hierarchical enumeration of prismane derivatives.

3.1 Calculation of CI-CFs

Cycle indices with chirality fittingness (CI-CFs) for point groups in Fujita’s proligand

method [16,17,29,30] can be extended to support group hierarchy, where they are manually

calculated from the products of sphericity indices (PSIs), which are in turn calculated by

the examination of the cycle structures of the respective elements. For example, Figure

1 lists the PSIs of respective elements, which are calculated from the corresponding cycle

structures by assigning a sphericity index (SI) bd to each hemispheric d-cycle, an SI ad to

each homospheric d-cycle (d: odd), and an SI cd to an enantiospheric d-cycle (d: even).

The PSIs for D3hσ̃Î are summed up and divided by the order |D3hσ̃Î | (= 24) so as to give

the following CI-CF:

CI-CF(D3hσ̃Î , $d) =
1

24

(
b61 + 3b21b

2
2 + 4b32 + 2b23 + 2b6 + a61 + 3a21c

2
2 + 4c32 + 2a23 + 2c6

)
,

(11)

where the symbol $d indicates bd, ad, or cd.

The manual calculation of the CI-CF described in the preceding paragraph can be sys-

tematically conducted by using the CPR [26] and the GAP function CalcConjClassCICF

developed previously [27]. Thus, the CI-CF shown in Eq. 11 is obtained as follows:

gap> Read("c:/fujita0/fujita2017/prismane-GAP/calc-GAP/CICFgenCC.gapfunc");

gap> D3hsI := Group([(7,8), (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6)]);;

gap> Print("D3hsI := ", D3hsI, "\n");

D3hsI := Group( [ (7,8), (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6) ] )

gap> Print("Order := ", Size(D3hsI), "\n");

Order := 24

gap> Print("CICF_D3hsI := ", CalcConjClassCICF(D3hsI, 6, 8), "\n");

CICF_D3hsI := 1/24*b_1^6+1/24*a_1^6+1/8*b_1^2*b_2^2+1/8*a_1^2*c_2^2+1/6*b_2^3

+1/6*c_2^3+1/12*b_3^2+1/12*a_3^2+1/12*b_6+1/12*c_6

Note that the GAP function CalcConjClassCICF is stored in the file CICFgenCC.gapfunc,

which is placed in a directory named appropriately as above. The file CICFgenCC.gapfunc

for calculating CI-CFs is loaded by the GAP function Read. The calculated CI-CF
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Table 1. CI-CFs for Characterizing a Prismane Skeleton

group Group due to a list of generators, order, CI-CF

D3

(point group)

D3 := Group( [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ] )

Order := 6

CICF_D3 := 1/6*b_1^6+1/2*b_2^3+1/3*b_3^2

D3h

(point group)

D3h := Group( [ (2,3)(5,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6)(7,8) ] )

Order := 12

CICF_D3h := 1/12*b_1^6+1/4*a_1^2*c_2^2+1/4*b_2^3+1/12*c_2^3+1/6*b_3^2+1/6*c_6

D
3hσ̃Î

(RS -stereo-

isomeric group
= stereoisomeric

group)

D3hsI := Group( [ (7,8), (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6) ] )

Order := 24

CICF_D3hsI := 1/24*b_1^6+1/24*a_1^6+1/8*b_1^2*b_2^2+1/8*a_1^2*c_2^2+1/6*b_2^3

+1/6*c_2^3+1/12*b_3^2+1/12*a_3^2+1/12*c_6 +1/12*b_6

S
[6]

σÎ
=

˜̃
D

3hσ̃Î

(isoskeletal

group)

S6sI := Group( [ (1,2,3,4,5,6), (1,2), (7,8) ] )

Order := 1440

CICF_S6sI := 1/1440*b_1^6+1/1440*a_1^6+1/96*b_1^4*b_2+1/96*a_1^4*c_2

+1/36*b_1^3*b_3+1/32*b_1^2*b_2^2+1/36*a_1^3*a_3+1/32*a_1^2*c_2^2

+1/16*b_1^2*b_4+1/12*b_1*b_3*b_2+1/96*b_2^3+1/16*a_1^2*c_4

+1/12*a_1*c_2*a_3+1/96*c_2^3+1/10*b_1*b_5+1/36*b_3^2+1/16*b_2*b_4

+1/10*a_1*a_5+1/16*c_2*c_4+1/36*a_3^2+1/12*c_6+1/12*b_6

(CICF D3hsI) is identical with the manual result shown in Eq. 11. An asterisk * in

the output of CICF D3hsI indicates multiplication, so that the output 1/24*b_1^6, for

example, means the term 1
24
b61.

The output at the next line of each gap> prompt is taken up to print the D3hσ̃Î-part

of Table 1. Table 1 also lists the CI-CFs of the other groups, which are calculated in a

similar way to the CI-CF of D3hσ̃Î . These results concerning the prismane skeleton 1 are

consistent with the data concerning a cyclopropane skeleton (Table 3 of Part 1 of this

series) except that the RS -stereoisomeric group is equal to the stereoisomeric group.

3.2 Enumerations under the point groups
and under the RS -stereoisomeric group

3.2.1 Ligand–inventory functions for 3D enumeration

According to Fujita’s proligand method [16, 17, 29, 30], enumerations under the point

groups (D3 and D3h) and under RS -stereoisomeric group (D3hσ̃Î) are concerned with 3D

structures, where proligands for enumerating prismane derivatives are selected from the

following ligand inventory:

L3D = {H,A,B,C,D,V; p, p, q, q, r, r, s, s, t, t, u, u}, (12)
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where the uppercase letters H, A, B, C, D, and V represent achiral proligands, while a

pair of lowercase letters p/p, q/q, r/r, s/s, t/t, or u/u represents an enantiomeric pair of

chiral proligands in isolation (when detached).

A d-cycle accommodates d proligands selected from the ligand inventory (Eq. 12) in

accord with the chirality fittingness (CF) due to the sphericity of the d-cycle, where a

homospheric d-cycle is characterized by the SI ad, an enantiospheric d-cycle is charac-

terized by the SI cd, and a hemispheric d-cycle is characterized by the SI bd. The mode

of accommodation in the d-cycle is determined by the following set of ligand-inventory

functions:

ad = Hd +Ad + Bd + Cd +Dd +Vd (13)

cd = Hd +Ad + Bd + Cd +Dd +Vd

+ 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2 + 2td/2t
d/2

+ 2ud/2ud/2 (14)

bd = Hd +Ad + Bd + Cd +Dd +Vd

+ pd + pd + qd + qd + rd + rd + sd + sd + td + t
d
+ ud + ud. (15)

For the purpose of hierarchical enumeration, the ligand-inventory functions (Eqs.

13–15) are transformed into the following ligand-inventory functions for 3D enumeration

by putting p̈ = p = p, q̈ = q = q, and so on:

ad = Hd +Ad + Bd + Cd +Dd +Vd (16)

cd = Hd +Ad + Bd + Cd +Dd +Vd + 2p̈d + 2q̈d + 2r̈d + 2s̈d + 2ẗd + 2üd (17)

bd = Hd +Ad + Bd + Cd +Dd +Vd + 2p̈d + 2q̈d + 2r̈d + 2s̈d + 2ẗd + 2üd. (18)

It should be noted that the substitution of p̈ = p = p for deriving Eqs. 16–18 does not

mean the degeneration of p/p into a single graph. In other words, the distinction due to

the SIs (ad, cd, and bd) is maintained during the 3D enumeration, even though the symbol

p̈ is used to bundle p and p.

3.2.2 Generating functions for point groups and RS -stereoisomeric groups

Suppose that the six positions of the prismane skeleton 1 accommodate a set of six

proligands selected from the ligand inventory L3D (Eq. 12). Let the symbol T(D3)θ̈
be the

number of prismane derivatives with the weight Wθ̈ under the action of the point group

D3. Let the symbol B(D3h)θ̈
be the number of pairs of enantiomeric prismane derivatives
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with the weight Wθ̈ under the action of the point group D3h. The numbers T(D3)θ̈
and

B(D3h)θ̈
appear as the coefficients of the respective weights Wθ̈ in the following generating

functions: ∑
θ

T(D3)θ̈
Wθ̈ = CI-CF(D3, bd)

∣∣∣∣
Eq. 18

, (19)

∑
θ

B(D3h)θ̈
Wθ̈ = CI-CF(D3h, $d)

∣∣∣∣
Eqs. 16–18

, (20)

where the symbol |Eq. 18 or |Eqs. 16–18 means the introduction of the respective ligand-

inventory function(s) into CI-CF(D3, bd) (CICF D3 in Table 1) or CI-CF(D3h, $d)

(CICF D3h in Table 1).

Similarly, let the symbol B(D
3hσ̃Î

)θ̈ be the number of quadruplets of RS -stereoisomeric

prismane derivatives with the weight Wθ̈ under the action of the RS -stereoisomeric group

D3hσ̃Î . The number B(D
3hσ̃Î

)θ̈ appear as the coefficient of the weight Wθ̈ in the following

generating function: ∑
θ

B(D
3hσ̃Î

)θ̈Wθ̈ = CI-CF(D3hσ̃Î , $d)

∣∣∣∣
Eqs. 16–18

, (21)

which is obtained by introducing the same set of ligand-inventory functions (Eqs. 16–18)

into CI-CF(D3hσ̃Î , $d) (CICF D3hsI in Table 1).

The weight Wθ̈ in Eqs. 19–21 is calculated to be HhAaBbCcDdVv p̈p̈ q̈q̈ r̈r̈ s̈s̈ ẗẗ üü, where

the powers satisfy the following equation:

h+ a+ b+ c+ d+ v + p̈+ q̈ + r̈ + s̈+ ẗ+ ü = 6. (22)

The weight Wθ̈ is represented by the partition [θ̈] as follows:

[θ̈] = [h, a, b, c, d, v, p̈, q̈, r̈, s̈, ẗ, ü], (23)

which satisfies h ≥ a ≥ b ≥ c ≥ d ≥ v; and p̈ ≥ q̈ ≥ r̈ ≥ s̈ ≥ ü ≥ ẗ, because respective

terms appear symmetrically in such generating functions as Eqs. 19–21.

3.3 Enumerations under the stereoisomeric group and under the
isoskeletal group

3.3.1 A single ligand–inventory function for graph enumeration

Suppose that a pair of p/p, q/q, r/r, s/s, t/t, or u/u degenerates into an single graph (2D

structure), i.e., p̈, q̈, r̈, s̈, ẗ, or ü, during discussions on stereoisomers and isoskeletomers.
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Then, the ligand inventory L3D (Eq. 12) is transformed into the following ligand inventory

for graph enumeration:

L2D = {H,A,B,C,D,V; p̈, q̈, r̈, s̈, ẗ, ü}. (24)

A set of six 2D-entities (graphs) selected from L2D is placed on the prismane skeleton 1,

so that a single ligand-inventory function for graph enumeration is obtained as follows:

ad = cd = bd = Hd +Ad + Bd + Cd +Dd +Vd + p̈d + q̈d + r̈d + s̈d + ẗd + üd. (25)

Note that the symbol p̈ (. . ., or ü) in Eq. 25 denotes a 2D-entity selected from L2D (Eq.

24), whereas the symbol p̈ (. . ., or ü) in Eqs. 16–18 is used to denote p and p (. . ., or u

and u) separately under the same name p̈ (. . ., or ü).

3.3.2 Calculation of generating functions for stereoisomeric groups
and isoskeletal groups

Because the stereoisomeric group for characterizing the prismane skeleton 1 is coinci-

dent with the RS -stereoisomeric group D3hσ̃Î , the CI-CF represented by CI-CF(D3hσ̃Î , $d)

(CICF D3hsI) shown in Table 1 is used to enumerate prismane derivatives under stereo-

isomerism. Let the symbol B̃(D
3hσ̃Î

)θ̈ be the number of sets of stereoisomeric prismane

derivatives with the weight Wθ̈. The ligand-inventory function (Eq. 25) is introduced

into CI-CF(D3hσ̃Î , $d) (CICF D3hsI) shown in Table 1. Thereby, the following generating

function is obtained: ∑
θ̈

B̃(D
3hσ̃Î

)θ̈Wθ̈ = CI-CF(D3hσ̃Î , $d)

∣∣∣∣
Eq. 25

. (26)

Let the symbol B
(S

[6]

σÎ
)θ̈

be the number of sets of isoskeletomeric prismane deriva-

tives with the weight Wθ̈. The ligand-inventory function (Eq. 25) is introduced into

CI-CF(S
[6]

σÎ
, $d) (CICF S6sI) shown in Table 1. Thereby, the following generating function

is obtained: ∑
θ̈

B
(S

[6]

σÎ
)θ̈
Wθ̈ = CI-CF(S

[6]

σÎ
, $d)

∣∣∣∣
Eq. 25

. (27)

3.4 Results of enumeration

3.4.1 GAP-calculation of generating functions

The generating functions shown in Eqs. 19, 20, 21, 26, and 27 are practically calculated

by writing the GAP codes. The coefficients of the weight Wθ̈, which are extracted from
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the generating functions in a similar way to Appendix A of Part 1 of this series, are listed

in tabular forms, where the group hierarchy is taken into consideration. Because the set

of ligand-inventory functions (Eqs. 16–18) is used, the T(D3)θ̈
-column (due to Eq. 19), the

B(D3h)θ̈
-column (due to Eq. 20), and the B(D

3hσ̃Î
)θ̈-column (due to 21) are concerned with

3D structures,

Although the same CI-CF as the RS -stereoisomeric group D3hσ̃Î is used, the B̃(D
3hσ̃Î

)θ̈-

column (due to Eq. 26) is concerned with stereoisomers as graphs, because of the single

ligand-inventory function (Eq. 25). The B
(S

[6]

σÎ
)θ̈
-column (due to Eq. 27) is concerned with

isoskeletomers as graphs because the single ligand-inventory function (Eq. 25) is used.

3.4.2 Prismane derivatives with achiral proligands

Table 2 shows the hierarchical enumeration of prismane derivatives with achiral proligands

and no chiral proligands. According to the definition of Eq. 23, the six integers at the

first part of each partition ([θ̈]1–[θ̈]11) are concerned with achiral proligands, while the six

integers (all zero values) at the next part are concerned with chiral proligands.

Table 2. Hierarchical Enumeration of Prismane Derivatives with Achiral Proli-
gands and No Chiral Proligands

numbers of prismane derivatives

partition under respective groups

T(D3)θ̈
B(D3h)θ̈

B(D
3hσ̃Î

)θ̈ B̃(D
3hσ̃Î

)θ̈ B
(S

[6]

σÎ
)θ̈

(Eq. 19) (Eq. 20) (Eq. 21) (Eq. 26) (Eq. 27)︸ ︷︷ ︸
|Eqs. 16–18

︸ ︷︷ ︸
|Eq. 25

[θ̈]1 = [6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ̈]2 = [5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ̈]3 = [4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 4 3 3 3 1

[θ̈]4 = [4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 5 3 3 3 1

[θ̈]5 = [3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 4 3 3 3 1

[θ̈]6 = [3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 10 6 6 6 1

[θ̈]7 = [3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 20 10 10 10 1

[θ̈]8 = [2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0] 18 11 11 11 1

[θ̈]9 = [2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 30 16 16 16 1

[θ̈]10 = [2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] 60 30 30 30 1

[θ̈]11 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0] 120 60 60 60 1

The [θ̈]3-row of Table 2 lists the numbers of prismane derivatives with the composition

H4A2 under the respective groups. Note that the expression of the composition H4A2

stems from the weight Wθ̈, so that it has no contribution of the six skeletal carbon atoms
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of the prismane skeleton. Thus, if the proligand A represents an atom (e.g., Cl), the

composition H4A2 corresponds to a molecular formula C6H4A2 (e.g., C6H4Cl2). To confirm

these numbers, the following functions are applied to the prismane skeleton 1 shown in

Figure 1.

f1 : f1(1) = f1(5) = A; f1(2) = f1(3) = f1(4) = f1(6) = H, (28)

f2 : f2(1) = f2(2) = A; f2(3) = f2(4) = f2(5) = f2(6) = H, (29)

f3 : f3(1) = f3(4) = A; f3(2) = f3(3) = f3(5) = f3(6) = H, (30)

By applying the function f1 to 1 as a reference, there appears a prismane derivative 3

shown in Figure 3. Thereby, the four skeletons shown in Figure 1 totally generate a type-

I stereoisogram, as shown in the upper-left part of Figure 3. This type-I stereoisogram

consists of a pair of enantiomers [3 3]. The function f2 generates a type-IV stereoisogram

(the upper-right part of Figure 3), where the quadruplet of RS -stereoisomers degenerates

into a single achiral prismane derivative [5]. The function f3 generates another type-IV

stereoisogram (the bottom of Figure 3), where the quadruplet of RS -stereoisomers again

degenerates into a single achiral prismane derivative [7].

It follows that the three functions (Eqs. 28–29) generate the three quadruplets of

RS -stereoisomers (Figure 3). The stereoisograms of Figure 3 are consistent with Figures

7 and 8 of a previous article [21]. These three quadruplets can be expressed by such

simplified schemes as (3 3)I, (5)IV, and (7)IV, which are inequivalent to one another under

the RS -stereoisomeric group D3hσ̃Î . Each quadruplet of RS -stereoisomers is counted once

under D3hσ̃Î . This result is consistent with the value 3 at the intersection between the

[θ̈]3-row and the B(D
3hσ̃Î

)θ̈-column in Table 2.

Each of the three stereoisograms shown in Figure 3 contains one pair of (self-)enantio-

mers, i.e., [3 3] (a pair of enantiomers), [5] (a pair of self-enantiomers as an achiral

prismane derivative), and [7] (a pair of self-enantiomers as an achiral prismane derivative),

where a pair of square brackets indicates a pair of (self-)enantiomers. Hence, there appear

three pairs of (self-)enantiomers under the action of the point group D3h. This result is

consistent with the value 3 at the intersection between the [θ̈]3-row and the B(D3h)θ̈
-column

in Table 2, because each pair of (self-)enantiomers is counted once under the point group

D3h.

The presence of four prismane derivatives, i.e., 3, 3, 5, 7, is consistent with the value

4 at the intersection between the [θ̈]3-row and the T(D3)θ̈
-column in Table 2.
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Figure 3. Type-I and two type-IV stereoisograms for characterizing prismane
derivatives with composition H4A2. Hydrogens are omitted. Each ste-
reoisogram contains a quadruplet of RS -stereoisomers, which is counted
once under the RS -stereoisomeric group D

3hσ̃Î
.
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Figure 4. Isomer-classification diagram for prismanes with the composition H4A2.

Table 2 is concerned with prismane derivatives with achiral proligands. As a result,

the values under the RS -stereoisomeric group are equal to those under the the stereoiso-

meric group, as found in the B(D
3hσ̃Î

)θ̈-column and the B̃(D
3hσ̃Î

)θ̈-column. It should be

noted, however, that the RS -stereoisomeric group, for example, results in the formation

of (3 3)I, (5)IV, and (7)IV for the partition [θ̈]3, while the stereoisomeric group results in

the formation of 〈3 3〉, 〈5〉, and 〈7〉 for the partition [θ̈]3. In this comparison, a pair of

parentheses represents a set of RS -stereoisomers, while a pair of angle brackets represents

a set of stereoisomers.

All of the values in the B
(S

[6]

σÎ
)θ̈
-column of Table 2 are found to be 1. This means that

the isoskeletal group S
[6]

σÎ
bundles all of the prismane derivatives with a specific partition

([θ̈]1–[θ̈]11) into one set of isoskeletomers. This result can be understood on the basis of

the property of the symmetric group S[6] (for defining the isoskeletal group S
[6]

σÎ
) which

contains all permutations concerning the numbers 1 to 6 (6! = 720). Note that the 60

transversals appearing in Eq. 10 have been selected from the elements of S[6].

The steps of the group hierarchy described above are consistent with the scheme

represented by Eq. 8. They are accumulated to give the following scheme:{〈
([3 3])I

〉
〈([5])IV〉 〈([7])IV〉

}
. (31)

According to a previous proposal of the author (Fujita) [31,32], the compound numbers

in the scheme represented by Eq. 31 are replaced by the respective structural formulas to

give an isomer-classification diagram shown in Figure 4.

In Figure 4 as well as Eq. 31, pairs of various brackets are used in a nested fashion: a

pair of braces {· · · } to show an equivalence class of isoskeletomers under the isoskeletal
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Figure 5. Isomer-classification diagram for prismanes with the composition H4AB.

group S
[6]

σÎ
; a pair of angle brackets 〈· · · 〉 to show an equivalence class of stereoisomers

under the stereoisomeric group, which is isomorphic to the RS -stereoisomeric groupD3hσ̃Î ;

a pair of parentheses (· · · )I,IV to show a quadruplet of RS -stereoisomers as an equivalence

class under the RS -stereoisomeric group D3hσ̃Î ; a pair of square brackets [· · · ] to show

a pair of (self-)enantiomers as an equivalence class under the point group D3h; and each

prismane derivative without such brackets to show as a single-membered equivalence class

under the chiral point group D3.

As for enantiomerism under the point group D3h, the chiral derivative 3 (or 3) belongs

to the point groupC2; the achiral derivative 5 belongs to the point groupCs; and the other

achiral derivative 7 belongs to the point group C2v. These point groups are the subgroups

of the point group D3h. This fact can be confirmed by referring to the symmetry-itemized

enumeration based on Fujita’s USCI approach, which has been reported previously (Table

1 of [15]).

Let us next examine the values shown in the [θ̈]4-row of Table 2, which can be discussed

in a similar way to the above discussions on the [θ̈]3-row. Thereby, we are able to construct

an isomer-classification diagram, as shown in Figure 5.

The value 1 at the intersection between [θ̈]4-row and the B
(S

[6]

σÎ
)θ̈
-column of Table 2 is

consistent with one pair of braces appearing in Figure 5. Thus, there are one equivalence

class of isoskeletomers under the action of the isoskeletal group S
[6]

σÎ
. The value 3 at

the intersection between [θ̈]4-row and the B̃(D
3hσ̃Î

)θ̈-column is consistent with three pairs

of angle brackets appearing in Figure 5. Thus, there are three equivalence classes of

stereoisomers under the action of the stereoisomeric group, which is isomorphic to the

RS -stereoisomeric group D3hσ̃Î . The value 3 at the intersection between [θ̈]4-row and the
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B(D
3hσ̃Î

)θ̈-column is consistent with three pairs of parentheses appearing in Figure 5. Thus,

there are three equivalence classes of RS -stereoisomers under RS -stereoisomeric group

D3hσ̃Î . Among them, the two pairs of parentheses correspond to type-I stereoisograms,

while the one pair of parentheses correspond to a type-IV stereoisogram. The value 3 at

the intersection between [θ̈]4-row and the B(D3h)θ̈
-column is consistent with three pairs

of square brackets appearing in Figure 5. Thus, there are three equivalence classes of

(self-)enantiomers under the point group D3h, i.e., two pairs of enantiomers ([9 9] and

[10 10]) and one pair of self-enantiomers ([11], an achiral derivative). The value 5 at the

intersection between [θ̈]4-row and the T(D3)θ̈
-column is supported by the presence of five

prismane derivatives with the composition H4AB. These five prismane derivatives, each

of which is a single-membered equivalence class under D3, are inequivalent to one another

under D3.

The prismane derivatives shown in Figure 5 belong to the subgroups of the point group

D3h. Thus, the chiral derivative 9 (or 9) belongs to the point group C1 (⊂ D3h); the

other chiral derivative 10 (or 10) belongs to the point group C1 (⊂ D3h); and the achiral

derivative 11 belongs to the point group Cs (⊂ D3h). This fact can be confirmed by

referring to the symmetry-itemized enumeration based on Fujita’s USCI approach, which

has been reported previously (Table 1 of [15]).

3.4.3 Prismane derivatives with achiral and chiral proligands

The enumeration results of prismane derivatives with achiral and chiral proligands are

collected in Tables 3 (the partitions [θ̈]12–[θ̈]39) and 4 (the partitions [θ̈]40–[θ̈]55). For the

meaning of the partitions, see Eq. 23.

Let us examine prismane derivatives with the composition H4p̈2 by referring to the

[θ̈]13-row of Table 3. The isomer-classification diagram of these prismane derivatives is

shown in Figure 6. Because the proligands p and p selected from L3D (Eq. 12) are differ-

entiated during 3D enumeration under D3, D3h, and D3hσ̃Î (cf. the set of ligand-inventory

functions represented by Eqs. 16–18), the composition H4p̈2 corresponds to a set of the

compositions H4p2, H4p2, and H4pp without degeneration. On the other hand, the proli-

gands p and p degenerate into a single graph p̈ during 2D (graph) enumeration, although

the same group D3hσ̃Î is used to treat stereoisomerism (2D) as well as RS -stereoisomerism

(3D). The degeneration of the compositions H4p2, H4p2, and H4pp into a single composi-

tion H4p̈2 is treated by the single ligand-inventory function represented by Eq. 25), which
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Table 3. Hierarchical Enumeration of Cyclopropane Derivatives with Achiral and
Chiral Proligands (Part 1)

numbers of prismane derivatives

partition under respective groups

T(D3)θ̈
B(D3h)θ̈

B(D
3hσ̃Î

)θ̈ B̃(D
3hσ̃Î

)θ̈ B
(S

[6]

σÎ
)θ̈

(Eq. 19) (Eq. 20) (Eq. 21) (Eq. 26) (Eq. 27)︸ ︷︷ ︸
|Eqs. 16–18

︸ ︷︷ ︸
|Eq. 25

[θ̈]12 = [5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 2 1 1 1 1

[θ̈]13 = [4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] 13 8 6 3 1

[θ̈]14 = [4, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 10 5 3 3 1

[θ̈]15 = [4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0] 20 10 6 3 1

[θ̈]16 = [3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0] 28 14 9 3 1

[θ̈]17 = [3, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 20 10 6 6 1

[θ̈]18 = [3, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] 40 22 12 6 1

[θ̈]19 = [3, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0] 80 40 22 6 1

[θ̈]20 = [3, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] 40 20 10 10 1

[θ̈]21 = [3, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0] 80 40 20 10 1

[θ̈]22 = [3, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] 160 80 40 10 1

[θ̈]23 = [2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] 66 36 22 11 1

[θ̈]24 = [2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0] 252 130 74 11 1

[θ̈]25 = [2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] 60 30 16 16 1

[θ̈]26 = [2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0] 120 60 32 16 1

[θ̈]27 = [2, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0] 480 240 124 16 1

[θ̈]28 = [2, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0] 120 62 32 16 1

[θ̈]29 = [2, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0] 240 120 62 16 1

[θ̈]30 = [2, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0] 120 60 30 30 1

[θ̈]31 = [2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0] 240 120 60 30 1

[θ̈]32 = [2, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] 480 240 120 30 1

[θ̈]33 = [2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] 960 480 240 30 1

[θ̈]34 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0] 120 60 60 60 1

[θ̈]35 = [1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0] 240 120 60 60 1

[θ̈]36 = [1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0] 480 240 120 60 1

[θ̈]37 = [1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0] 960 480 240 60 1

[θ̈]38 = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] 1920 960 480 60 1

[θ̈]39 = [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0] 3840 1920 960 60 1
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Table 4. Hierarchical Enumeration of Cyclopropane Derivatives with Achiral and
Chiral Proligands (Part 2)

numbers of prismane derivatives

partition under respective groups

T(D3)θ̈
B(D3h)θ̈

B(D
3hσ̃Î

)θ̈ B̃(D
3hσ̃Î

)θ̈ B
(S

[6]

σÎ
)θ̈

(Eq. 19) (Eq. 20) (Eq. 21) (Eq. 26) (Eq. 27)︸ ︷︷ ︸
|Eqs. 16–18

︸ ︷︷ ︸
|Eq. 25

[θ̈]40 = [1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0] 32 16 10 1 1

[θ̈]41 = [2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] 46 25 17 3 1

[θ̈]42 = [1, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0] 160 80 42 3 1

[θ̈]43 = [1, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] 80 42 22 3 1

[θ̈]44 = [1, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0] 320 160 84 6 1

[θ̈]45 = [2, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0] 160 80 44 6 1

[θ̈]46 = [2, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0] 80 40 22 6 1

[θ̈]47 = [1, 0, 0, 0, 0, 0, 3, 1, 1, 0, 0, 0] 640 320 160 10 1

[θ̈]48 = [1, 1, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0] 320 160 80 10 1

[θ̈]49 = [1, 1, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0] 160 80 40 10 1

[θ̈]50 = [1, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 0] 960 480 244 16 1

[θ̈]51 = [1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0] 480 244 124 16 1

[θ̈]52 = [1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0] 1920 960 480 30 1

[θ̈]53 = [1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0] 960 480 240 30 1

[θ̈]54 = [1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0] 480 240 120 30 1

[θ̈]55 = [1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0] 240 120 60 30 1

is based on the 2D ligand inventory L2D of Eq. 24.

One pair of braces {· · · } in Figure 6 indicates that all of the prismane derivatives

are bundled into a single set of isoskeletomers under the action of the isoskeletal group

S
[6]

σÎ
. This result is is verified by the value 1 at the intersection of the [θ̈]13-row and the

B
(S

[6]

σÎ
)θ̈
-column in Table 3.

Three pairs of angle brackets 〈· · · 〉 in Figure 6 indicate the presence of three sets of

stereoisomers, i.e., 〈12 12 13 13 14 14〉, 〈15 15 16 17〉, and 〈18 18 19〉. This result is

is verified by the value 3 at the intersection of the [θ̈]13-row and the B̃(D
3hσ̃Î

)θ̈-column in

Table 3.

Six pairs of parentheses (· · · )I−V in Figure 6 indicate the presence of six sets of

RS -stereoisomers, i.e., (12 12 13 13)III, (14 14)I, (15 15)II, (16 17)V, (18 18)II, and

(19)IV, which are inequivalent to one another under the action of the RS -stereoisomeric

group D3hσ̃Î . This result is consistent with the value 6 at the intersection of the [θ̈]13-row

and the B(D
3hσ̃Î

)θ̈-column. in Table 3.
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Figure 6. Isomer-classification diagram for prismane derivatives with the compo-
sition H4p̈2 (H4p2, H4p2, and H4pp).

Eight pairs of square brackets [· · · ] in Figure 6 indicate the presence of eight pairs of

(self)-enantiomers, i.e., [12 12], [13 13], [14 14], [15 15], [16], [17], [18 18], and [19],

which are inequivalent to one another under the action of the point group D3h. This

result is consistent with the value 8 appearing at the intersection between the [θ̈]13-row

and the B(D3h)θ̈
-column in Table 3.

Finally, there appear 13 prismane derivatives in Figure 6, which are inequivalent under

the point group D3. This result is consistent with the value 13 appearing at the last

column of the [θ̈]13-row.

The symmetry-itemized enumeration applied to prismane derivatives (Table 1 of [15])

indicates:

1. as prismanes with the composition H4p2/H4p2, there are one pair of enantiomers

belonging to C1 ([15 15]) and three pairs of enantiomers belonging to C2 ([12 12],

[13 13], and [18 18]); and,

2. as prismanes with the composition H4pp, there are one pair of enantiomers belonging
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to C1 ([14 14]), two achiral derivatives belonging to Cs ([16], [17]), and one achiral

derivatives belonging to C ′
s ([19]).

The symmetry-itemized enumeration (Figures 5 and 6 of [15]) is consistent with the

present result shown in Figure 6, when we pay attention to the action of the point group

D3h.

3.4.4 Prismane derivatives with chiral proligands

Hierarchical enumeration of prismane derivatives with chiral proligands and no achiral

proligands is collected in Table 5, where the partitions [θ̈]56–[θ̈]66 are taken into consider-

ation.

Table 5. Hierarchical Enumeration of Cyclopropane Derivatives with Chiral Proli-
gands

numbers of prismane derivatives

partition under respective groups

T(D3)θ̈
B(D3h)θ̈

B(D
3hσ̃Î

)θ̈ B̃(D
3hσ̃Î

)θ̈ B
(S

[6]

σÎ
)θ̈

(Eq. 19) (Eq. 20) (Eq. 21) (Eq. 26) (Eq. 27)︸ ︷︷ ︸
|Eqs. 16–18

︸ ︷︷ ︸
|Eq. 25

[θ̈]56 = [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0] 16 9 8 1 1

[θ̈]57 = [0, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0] 64 32 20 1 1

[θ̈]58 = [0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0] 172 88 54 3 1

[θ̈]59 = [0, 0, 0, 0, 0, 0, 4, 1, 1, 0, 0, 0] 320 160 84 3 1

[θ̈]60 = [0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0] 216 108 62 3 1

[θ̈]61 = [0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0] 640 320 168 6 1

[θ̈]62 = [0, 0, 0, 0, 0, 0, 3, 1, 1, 1, 0, 0] 1280 640 320 10 1

[θ̈]63 = [0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0] 984 496 268 11 1

[θ̈]64 = [0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0] 1920 960 488 16 1

[θ̈]65 = [0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 0] 3840 1920 960 30 1

[θ̈]66 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] 7680 3840 1920 60 1

Let us examine the [θ̈]56-row of Table 5, which shows the enumeration results of pris-

mane derivatives with the composition p̈6. The corresponding isomer-classification dia-

gram is shown in Figure 7. Note that the composition p̈6 is itemized into p6/p6, p5p/pp5,

p4p2/p2p4, and p3p3.

The value 1 at the intersection between the [θ̈]56-row and B
(S

[6]

σÎ
)θ̈
-column indicates

the presence of one equivalence class of isoskeletomers. This is illustrated by one pair of

braces {· · · }, which surrounds all of the derivatives appearing in Figure 7.
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Figure 7. Isomer-classification diagram for prismane derivatives with the compo-
sition p̈6 (p6/p6, p5p/pp5, p4p2/p2p4, and p3p3).

The value 1 at the intersection between the [θ̈]56-row and the B̃(D
3hσ̃Î

)θ̈-column indicates

the presence of one equivalence class of stereoisomers. This is illustrated by one pair of

braces 〈· · · 〉, which surrounds all of the derivatives appearing in Figure 7.

The value 8 at the intersection between the [θ̈]56-row and B(D
3hσ̃Î

)θ̈-column indicates

the presence of eight quadruplets of RS -stereoisomers, i.e., (20 20)II, (21 21)II, (22 22)II,

(23 23)II, (24 24 25 25)III, (26)IV, (27)IV, and (28 28)I, each of which is an equivalence

class under the action of the RS -stereoisomeric group D3hσ̃Î and corresponds to a stereo-

isogram of type I, II, III, or IV, as shown by a subscript.

The value 9 at the intersection between the [θ̈]56-row and B(D3h)θ̈
-column indicates

the presence of nine pairs of (self-)enantiomers, i.e., [20 20], [21 21], [22 22], [23 23],

[24 24], [25 25], [26], [27], and [28 28], each of which is an equivalence class under the

action of the point group D3h.
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Finally, there appear 16 prismane derivatives in Figure 7, the number of which is

consistent with the value 16 at the intersection between the [θ̈]56-row and B(D3)θ̈
-column.

They are inequivalent under the chiral point group D3.

The symmetry-itemized enumeration applied to prismane derivatives (Table 1 of [15])

has itemized the values calculated under the point group D3h. Thus, the value 9 at the

intersection between the [θ̈]56-row and B(D3h)θ̈
-column is itemized as follows:

1. for p6/p6, there appears one pair of enantiomers belonging to D3 ([20 20]);

2. for p5p/pp5, there appears one pair of enantiomers belonging to C1 ([21 21]);

3. for p4p2/p2p4, there appear one pair of enantiomers belonging to C1 ([22 22]) and

three pairs of enantiomers belonging to C2 ([23 23], [24 24], and [25 25]); and

4. for p3p3, there appear one pair of enantiomers belonging to C1 ([28 28]), one achiral

derivative belonging to C3h ([26]), and one achiral derivative belonging to Cs ([27]).

3.5 3D-based and 2D-based enumerations

3.5.1 Comparison between prismane derivatives
and cyclopropane derivatives

From the viewpoint of rigid 3D skeletons, the prismane skeleton 1 of ligancy 6 belongs

to the point group D3h and the RS -stereoisomeric group D3hσ̃Î , just as a cyclopropane

skeleton of ligancy 6 (Part I of this series) belongs to the point group D3h and the

RS -stereoisomeric group D3hσ̃Î . It follows that the numbers of prismane derivatives in

the T(D3)θ̈
-columns, the B(D3h)θ̈

-columns, and the B(D
3hσ̃Î

)θ̈-columns of Tables 2–5 are equal

to the numbers of cyclopropane derivatives in the T(D3)θ̈
-columns, the B(D3h)θ̈

-columns,

and the B(D
3hσ̃Î

)θ̈-columns of the corresponding tables reported in Part I of this series.

On the other hand, the prismane skeleton 1 does not undergo epimerization, whereas

the cyclopropane skeleton can epimerize at each ring carbon atom. This means that

the stereoisomeric group for the prismane skeleton is determined to be D3hσ̃Î (order 24,

the same as the RS -stereoisomeric group), while the stereoisomeric group for the cyclo-

propane skeleton is determined to be D̃3hσ̃Î (order 96, different from the RS -stereoisomeric

group). As a result, the numbers of sets of stereoisomers in the B̃(D
3hσ̃Î

)θ̈-columns for

stereoisomerism of prismane derivatives may be different from the numbers of sets of ste-

reoisomers in the B(D̃
3hσ̃Î

)θ̈-columns for stereoisomerism of cyclopropane derivatives. For
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example, the number 3 at the intersection between the [θ̈]3-row and the B̃(D
3hσ̃Î

)θ̈-column

in Table 2 is different from the number 2 at the intersection between the [θ̈]3-row and

the B(D̃
3hσ̃Î

)θ̈-column in Table 2 of Part 1 of this series. The difference is confirmed by

counting pairs of angle brackets 〈· · · 〉 in their isomer-classification diagrams, i.e., Figure

4 of this article vs. Figure 4 of Part1 of this series.

3.5.2 Pólya’s enumeration method as a special case of the present approach

As discussed in Introduction, Pólya himself applied his enumeration method to the pris-

mane skeleton 1 in Chapter 6 of [11]. Because reflections as well as rotations have been

replaced by permutations, Pólya’s discussion [11] is now concluded to be based on the

RS -permutation group D3σ̃, which has been constructed to have no reflections, as found

in Eq. 5. The cycle index reported on page 67 of [11] corresponds to the CI (without CF)

of the RS -permutation group D3σ̃ (D3s), i.e., CI(D3σ̃, xd) (CI D3s), which is calculated

by the GAP function CycleIndex as follows:

gap> D3s := Group([ (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6) ]);

Group([ (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6) ])

gap> CI_D3s := CycleIndex(D3s);

1/12*x_1^6+1/4*x_1^2*x_2^2+1/3*x_2^3+1/6*x_3^2+1/6*x_6

It should be noted that the CI-CF (with CF!) of the RS -permutation group D3σ̃ (D3s),

i.e., CI-CF(D3σ̃, bd) (CICF D3s), is calculated by using CalcConjClassCICF as follows:

gap> Read("c:/fujita0/fujita2017/prismane-GAP/calc-GAP/CICFgenCC.gapfunc");

gap> D3s := Group([(2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6)]);;

gap> CICF_D3s := CalcConjClassCICF(D3s, 6, 6);

1/12*b_1^6+1/4*b_1^2*b_2^2+1/3*b_2^3+1/6*b_3^2+1/6*b_6

Compare the output of CICF D3s with the output of CI D3s. The CI without chirality

fittingness (CI D3s) can be alternatively obtained by substituting xd (x d) for the SI bd

(b d) in the CI-CF (CICF D3s), where the chirality fittingness (CF) is neglected by this

substitution. This substitution is formally represented as follows:

CI-CF(D3σ̃, bd)

∣∣∣∣
bd=xd

= CI(D3σ̃, xd). (32)

For the purpose of calculating the data of the B̃(D
3hσ̃Î

)θ̈-columns of the respective

tables, the present approach adopts the CI-CF for the stereoisomeric group (the same as

the CI-CF for the RS -stereoisomeric group D3hσ̃Î) listed in Table 1 (CI-CF(D3hσ̃Î , $d),

CICF D3hsI) and the degenerated ligand-inventory function (Eq. 25). See Eq. 26. This

treatment implies the intervention of a CI which is derived by substituting xd (x d) for each

of the SIs (ad, cd, or bd) in CI-CF(D3hσ̃Î , $d) (CICF D3hsI in Table 1). This substitution
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is formally represented as follows:

CI-CF(D3hσ̃Î , $d)

∣∣∣∣
$d=xd

= CI(D3σ̃, xd). (33)

In fact, this substitution results in the derivation of a CI which is the same as the CI

(CI D3s) calculated by the above GAP code for the RS -permutation group D3σ̃ (D3s). In

other words, the stereoisomeric group (the same as the RS -stereoisomeric group D3hσ̃Î) is

regarded as degenerating into the RS -permutation group D3σ̃ (D3s), so that the chirality

fittingness (CF) due to the concept of sphericities [17] can be neglected. As a result,

Pólya’s enumeration method can be regarded as a special case of the present approach.

Pólya’s theorem has been concluded to be deficient in the concept of sphericities, as

discussed in a review of the author (Fujita) [12].

4 Conclusion

Group hierarchy for characterizing a prismane skeleton with six substitution positions

has been discussed by defining the point group D3h (order 12) for enantiomerism, the

RS -stereoisomeric group D3hσ̃Î (order 24) for RS -stereoisomerism, the stereoisomeric

group (the same as D3hσ̃Î) for stereoisomerism, and the isoskeletal group S
[6]

σÎ
(order

1440) for isoskeletomerism. These groups are constructed successively according to the

procedure described in Part 1 of this series, where the combined-permutation represen-

tations of degree 8 are used to calculate cycle indices with chirality fittingness (CI-CFs)

after permutation representations of degree 6 are combined with the mirror-permutation

representations of degree 2. A set of three ligand-inventory functions is defined to ac-

complish 3D enumerations, i.e., under the point groups D3 and D3h as well as under the

RS -stereoisomeric group D3hσ̃Î . On the other hand, a single ligand-inventory function

is used to accomplish 2D enumerations, i.e., under the stereoisomeric group (the same

as D3hσ̃Î) and under the isoskeletal group S
[6]

σÎ
. The enumeration results are discussed

systematically in terms of isomer-classification diagrams.
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[7] G. Pólya, Tabelle der Isomerenzahlen für die einfacheren Derivate einiger cyclischen

Stammkörper, Helv. Chim. Acta 19 (1936) 22–24.
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