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Abstract

Group hierarchy for characterizing a cyclopropane skeleton with six substitution
positions has been discussed by defining the point group (PG), the RS -stereoisomeric
group (RS-SIG), the stereoisomeric group (SIG), and the isoskeletal group (ISG)
successively as follows: PG D3h (order 12) ⊂ RS -SIG D

3hσ̃Î
(order 24) ⊂ SIG D̃

3hσ̃Î

(order 96) ⊂ ISG
˜̃
D

3hσ̃Î
(order 1440). Combined-permutation representations,

which have been originally developed for point groups and defined as the combina-
tion of permutation representations of groups and a mirror-permutation representa-
tion (S. Fujita, MATCH Commun. Math. Comput. Chem. 76 (2016) 379–400), are
applied to the above group hierarchy. Then, according to Fujita’s proligand method
(S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures,
and Chemical Compounds, University of Kragujevac, Faculty of Science, Kraguje-
vac, 2013), enumerations of cyclopropane derivatives (as 3D structures) under PG
and under RS -SIG are conducted by using cycle indices with chirality fittingness
(CI-CFs) and a set of three ligand-inventory functions. On the other hand, enumer-
ations of cyclopropane derivatives (as 2D structures or graphs) under SIG and under
ISG are conducted by using a single ligand-inventory function, which implies the
degeneration of CI-CFs into cycle indices without chirality fittingness (CIs). The
enumeration results are discussed systematically in terms of isomer-classification
diagrams.
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1 Introduction

1.1 Unsettled interpretation on reflections

The term reflection is defined as an operation about a mirror plane, where the resulting

mirror image is superposable on the original molecular entity (object). In the conventions

of chemistry, physics, and mathematics, this term has been based on the presumption that

any moiety of such a molecular entity (e.g., a ligand) can be regarded as a point which

has no structure. This presumption has permitted the substitution of a permutation

for a reflection, as found in the permutational approach by Ugi et al. [1]. This course

has caused a serious confusion, because a rotation is also represented by a permutation.

For example, Mislow and Siegel [2] stated “The symmetry of the labeled tetrahedron

is a subgroup of Td. Accordingly, the regular tetrahedron functions as a permutation

center or skeleton with four equivalent sites, and models of stereoisomers are generated by

permutation of the ligands among these sites.” This statement is seemingly rational if each

sentence of this statement is focused independently. In spite of the word “Accordingly”,

however, the second sentence of this statement cannot be deduced from the first sentence.

Thus, this statement is totally found to be misleading because the point group Td (with

rotations and reflections) is considered to be characterized by a permutation group without

differentiating reflections from rotations. In other words, the point group Td is mixed up

with the symmetric group of degree 4 (S[4]) as a permutation group, so that the first

sentence of this statement should be revised by substituting the symmetric group of

degree 4 (S[4]) for the point group Td. Although this revision is capable of avoiding the

misleadingness of the original statement, the revised statement indicates, in turn, that the

effects of reflections due to the point group Td are excluded from our domain of thinking.

The misleadingness due to the confusion between reflections (e.g., under Td) and

permutations (e.g., under S[4]) is hidden so long as ligands are structureless. However,

note that a tetrahedral molecule having ABpp (A and B: achiral ligands at 1- and 2-

positions; as well as p and p: chiral ligands at 3- and 4-positions which construct a pair

of enantiomeric ligands in isolation) is fixed by a reflection (e.g., (1)(2)(3 4)) to behave

as an achiral molecule. This achiral behavior due to a reflection (e.g., (1)(2)(3 4)) cannot

be characterized by a permutation (e.g., (1)(2)(3 4)), because a permutation of any two

ligands (e.g., p and p) produces another tetrahedral molecule having ABpp, which is

achiral and different from (or diastereomeric to) the original molecule.
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The confusion due to permutation groups without differentiating reflections from ro-

tations has been wide-spread in mathematical fields as well as in chemical fields. For

example, the dihedral group Dm (order 2m) has 2m rotational symmetry operations for

characterizing a m-gon as a 3-dimensional entity, where the half are recognized to be m

rotations about the axis perpendicular to the m-gon, while the other half are recognized

to be m rotations through π about the two-fold axes lying in the plane of the m-gon (cf.

Chapter 4 of [3]). However, the mathematical convention for characterizing the dihedral

group Dm has permitted the usage of the 2-dimensional terms “rotations about the cen-

ter” and “reflections in the diameters” (page 143 of [4]), where the latter term “reflections

in the diameters” of the m-gon is allowed in place of rotations through π (in 3-dimensional

space) about the two-fold axes (the diameters).

This convention has been further transmuted into the definition of the “dihedral group”

in several textbooks (e.g., page 20 of [5]) and in Wikipedia [6], where the dihedral group

Dm is defined as the group of symmetries of a regular polygons, which includes rotations

and reflections. The transmutation of the term “reflection” stems from the presumption

that both reflections and rotations are represented by permutations. As a result, the

dihedral group Dm cannot be differentiated from the point group Cmv used in chemistry.

Hence, this transmuted usage of term “reflections” in the mathematical convention should

be avoided. Instead, “reflections in the diameters” and “rotations through π about the

diameters” should be strictly discriminated as found in a recent article [7], where both of

them are considered to be 3D-based concepts in the α, β-itemized enumeration of inositol

derivatives and m-gonal homologs.

1.2 Sphericities and stereoisograms for rationalizing the effects
of reflections

The effects of reflections on ligands having 3D structures have been rationally evaluated

by the concept of sphericities of orbits (homospheric, enantiospheric, and hemispheric

orbits), which has been proposed by the author (Fujita) [8]. The sphericity of each or-

bit controls the chirality fittingness (CF) of the orbit, which determines the substitution

modes of ligands having 3D structures, either chiral or achiral in isolation. The concepts

of sphericities and chirality fittingness have been combined with the concept of subduction

of coset representations so as to give the concepts of unit subduced cycle indices without

and with chirality fittingness (USCIs and USCI-CFs). These concepts have given the-
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oretical foundations to the four methods of symmetry-itemized enumeration of organic

compounds. The approach based on USCIs and USCI-CFs are collectively referred to as

the USCI (unit-subduced-cycle-index) approach [9, 10].

The concept of sphericities of orbits for Fujita’s USCI approach has been transformed

into the concept of sphericities of cycles (homospheric, enantiospheric, and hemispheric

cycles) [11–13], which has alternatively enabled us to evaluate the effects of reflections on

ligands having 3D structures. The resulting concepts of cycle indices without and with

chirality fittingness (CIs and CI-CFs) have provided the theoretical foundation of the

proligand method for gross-enumeration of organic compounds [14]. Fujita’s proligand

method and related methods for gross-enumeration have been comprehensively applied

to the enumeration of cubane derivatives, as reported in this journal [15–19].

For the purpose of comprehending reflections and permutations, the author (Fu-

jita) has proposed the stereoisogram approach [20], where permutations are restricted

to RS -permutations, so as to clarify the net interaction with reflections [21, 22]. Then,

rotations, reflections, and RS -permutations are integrated to create an RS -stereoisomeric

group, where the concepts of holantimers and ligand-reflections are proposed as missing

links for integration. Such an RS -stereoisomeric group is diagrammatically represented

by a stereoisogram, which consists of a quadruplet of RS -stereoisomers, i.e., a refer-

ence entity corresponding to rotations, an enantiomer corresponding to reflections, an

RS -diastereomer corresponding to RS -permutations, and a holantimer corresponding to

ligand-reflections.

1.3 Combined–permutation representations for computer ma-
nipulation of reflections

A reflection is represented by a permutation with an overbar (e.g., (1)(2)(3 4)) in Fujita’s

USCI approach [9,10], Fujita’s proligand method [14], and Fujita’s stereoisogram approach

[20], where the overbar indicates that a chiral ligand is converted into the enantiomeric

ligand (in isolation). However, this type of representations are unsuitable for practical

computer-manipulation.

It is highly desirable to develop a new representation suitable for practical calculations

by computer systems such as the GAP (Groups, Algorithms, Programming) system [23].

Combined-permutation representations (CPRs) have recently been developed by the au-

thor (Fujita) as computer-oriented representations of point groups, where an overbar of
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a reflection (e.g., (1)(2)(3 4)) is replaced by an additional 2-cycle (e.g., (5 6)) to give

a combined permutation (e.g., (1)(2)(3 4)(5 6)). The CPRs of the point group Td and

related groups have been applied to gross enumeration of 3D structures of ligancy 4 [24].

The CPRs of the point group Oh have been applied to gross enumeration of octahedral

and cubane derivatives [25].

1.4 Aims of the present article

The CPRs for point groups have been extended to cover RS -stereoisomeric groups [26].

The next task is the systematic examination of the group hierarchy represented generally

by the following scheme:

point groups (PG) ⊆ RS -stereoisomeric groups (RS -SIG)

⊆ stereoisomeric groups (SIG) ⊆ isoskeletal groups (ISG). (1)

Because each symbol ⊆ can be altered to represent a net subset (⊂) or an equality (=) in

accord with a skeleton to be examined, the mode of such alternation should be investigated

systematically. The present article is devoted to the further extension of CPRs to cover

hierarchy of isomer classification by using a cyclopropane skeleton as a probe for skeletons

of ligancy 6.

2 Hierarchy of groups for characterizing

a cyclopropane skeleton

The group hierarchy for characterizing a cyclopropane skeleton of ligancy 6 is partly

shown in Figure 1, where the point group (PG) D3h (order 12) for enantiomerism, the

RS -stereoisomeric group (RS -SIG) D3hσ̃Î (order 24) for RS -stereoisomerism, and the

stereoisomeric group (SIG) D̃3hσ̃Î (order 96) for stereoisomerism are listed in a nested

fashion. By adding the isoskeletal group (ISG)
˜̃
D3hσ̃Î (order 1440), the total group hier-

archy for the cyclopropane skeleton is represented by the following scheme:

PG D3h ⊂ RS -SIG D3hσ̃Î ⊂ SIG D̃3hσ̃Î ⊂ ISG
˜̃
D3hσ̃Î , (2)

which contains no equality symbols in contrast to the general scheme (Eq. 1).
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Figure 1. RS -Stereoisomeric group D
3hσ̃Î

and stereoisomeric group D̃
3hσ̃Î

, which
are derived from a coset representation of D3h for characterizing cyclo-
propane derivatives. The product of sphericity indices (PSI) is attached
to each element.

2.1 Point group D3h for enantiomerism

The reference skeleton 1, the locant numbering of which can be selected arbitrarily without

losing generality, is converted into homomeric skeletons under the action of the chiral point

group D3 listed in Figure 1. Note that the chiral point group D3, which is isomorphic

to the dihedral group D3 of degree 3 (order 6), is considered to contain rotations and

no reflections, as discussed in Introduction (cf. Subsection 1.1). The point group D3h is
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constructed as follows:

D3h = D3 +D3σh, (3)

where the symbol σh represents a reflection about a cyclopropane ring as a mirror plane

(σh ∼ (1 4)(2 5)(3 6)). The action of each element contained in the coset D3σh on

the reference skeleton 1 generates the corresponding mirror-numbered skeleton 1 or its

homomer.

2.2 RS -stereoisomeric group D3hσ̃Î for RS -stereoisomerism

Let us define an RS -permutation σ̃h as an operation which is generated by omitting ligand

reflections from the reflection σh, i.e., σ̃h ∼ (1 4)(2 5)(3 6). Then, the RS -permutation

group D3σ̃ is constructed as follows:

D3σ̃ = D3 +D3σ̃h. (4)

The action of each element contained in the coset D3σ̃h on the reference skeleton 1

generates the corresponding RS -numbered skeleton 2 or its homomer. Note that the

RS -numbered skeleton 2 is RS -diastereomeric to the reference skeleton 1.

Let us next define a ligand-reflection Î as an operation which is generated by adding

ligand reflections to an identity operation I, i.e., Î ∼ (1)(2)(3)(4)(5)(6). Then, the ligand-

reflection group D3Î is constructed as follows:

D3Î = D3 +D3Î . (5)

The action of each element contained in the cosetD3Î on the reference skeleton 1 generates

the corresponding LR-numbered skeleton 2 or its homomer. Note that the LR-numbered

skeleton 2 is halantimeric to the reference skeleton 1 and that it is enantiomeric to the

RS -numbered skeleton 2.

Because the point group D3 is contained commonly in D3h (Eq. 3), D3σ̃ (Eq. 4), and

D3Î (Eq. 5), these groups are integrated into the following RS -stereoisomeric group:

D3hσ̃Î = D3 +D3σh +D3σ̃h +D3Î , (6)

the 24 elements of which are listed in the upper-left part of Figure 1. The corresponding

quadruplet of RS -stereoisomeric skeletons (1 for the coset D3I, 1 for the coset D3σh, 2

for the coset D3σ̃h, and 2 for the coset D3Î) is capable of constructing a stereoisogram
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by placing ligands (or proligands in an abstract fashion) on the six substitution positions.

The order |D3hσ̃Î | is calculated to be 24 (= |D3| × 4 = 6× 4) by referring to Eq. 6.

Because of Eq. 3 for point group D3h, the RS -stereoisomeric group D3hσ̃Î (Eq. 6) is

also generated by the following coset decomposition:

D3hσ̃Î = D3h +D3hσ̃h, (7)

where we use σhσ̃h = Î during the calculation of the second coset, i.e., D3σ̃h + D3Î =

(D3 +D3σh)σ̃h = D3hσ̃h.

2.3 Stereoisomeric group D̃3hσ̃Î for stereoisomerism

For the purpose of discussing stereoisomerism, we consider three epimerization opera-

tions designated by the symbols σ̃14, σ̃25, and σ̃36, which correspond to permutations

(1 4)(2)(3)(5)(6), (1)(2 5)(3)(4)(6), and (1)(2)(3 4)(5)(6), respectively. These epimeriza-

tion operations are not accompanied with ligand reflections, so as to give the respective

numbered skeletons 3, 5, and 7. Thereby, the stereoisomeric group D̃3hσ̃Î (order 96) is

constructed by the following coset decomposition:

D̃3hσ̃Î = D3hσ̃Î +D3hσ̃Î σ̃14 +D3hσ̃Î σ̃25 +D3hσ̃Î σ̃36. (8)

The elements of the respective cosets are listed in the respective parts of Figure 1. The

order |D̃3hσ̃Î | is calculated to be 96 (= |D3hσ̃Î | × 4 = 24× 4) by referring to Eq. 8.

2.4 Isoskeletal group
˜̃
D3hσ̃Î for isoskeletomerism

The isoskeletal group
˜̃
D3hσ̃Î (order 1440) is introduced to characterize the isoskeleto-

merism of a cyclopropane skeleton 1, where we consider 14 isoskeletal operations, i.e.,

σ̃56 ∼ (1)(2)(3)(4)(5 6), σ̃45 ∼ (1)(2)(3)(4 5)(6), σ̃456 ∼ (1)(2)(3)(4 5 6),

σ̃465 ∼ (1)(2)(3)(4 6 5), σ̃46 ∼ (1)(2)(3)(4 6)(5), σ̃34 ∼ (1)(2)(3 4)(5)(6),

σ̃34,56 ∼ (1)(2)(3 4)(5 6), σ̃345 ∼ (1)(2)(3 4 5)(6), σ̃3465 ∼ (1)(2)(3 4 6 5),

σ̃354 ∼ (1)(2)(3 5 4)(6), σ̃35 ∼ (1)(2)(3 5)(4)(6), σ̃234 ∼ (1)(2 3 4)(5)(6),

σ̃234,56 ∼ (1)(2 3 4)(5 6), σ̃2354 ∼ (1)(2 3 5 4)(6). (9)

These isoskeletal operations (in addition to an identity operation) are regarded as transver-

sals to construct the following coset decomposition:˜̃
D3hσ̃Î =D̃3hσ̃Î + D̃3hσ̃Î σ̃56 + D̃3hσ̃Î σ̃45 + D̃3hσ̃Î σ̃456 + D̃3hσ̃Î σ̃465+
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D̃3hσ̃Î σ̃46 + D̃3hσ̃Î σ̃34 + D̃3hσ̃Î σ̃34,56 + D̃3hσ̃Î σ̃345 + D̃3hσ̃Î σ̃3465+

D̃3hσ̃Î σ̃354 + D̃3hσ̃Î σ̃35 + D̃3hσ̃Î σ̃234 + D̃3hσ̃Î σ̃234,56 + D̃3hσ̃Î σ̃2354, (10)

which designates the generation of the isoskeletal group
˜̃
D3hσ̃Î for characterizing the

isoskeletomerism of a cyclopropane skeleton 1. The order | ˜̃D3hσ̃Î | is calculated to be

1440 (= |D̃3hσ̃Î | × 15 = 96× 15) by referring to Eq. 10.

3 Combined representations

3.1 Coset representation for the point group D3h and and the
construction of its combined representation

The six positions of a cyclopropane skeleton 1 are regarded as constructing the following

set:

X = {1, 2, 3, 4, 5, 6}. (11)

The action of the point group D3h on the set X is represented by a right-coset repre-

sentation (Cs\)D3h, which is expressed in terms of products of cycles listed in the D3

part and the D3σh part of Figure 1, e.g., C3 ∼ (1 2 3)(4 5 6) for a 3-fold rotation and

σh ∼ (1 4)(2 5)(3 6) for a horizontal reflection. The GAP system adopts right-coset repre-

sentations as standards and presumes that the multiplication of permutations is executed

from left to right, so that the right-coset representation (Cs\)D3h is adopted here in place

of the corresponding left-coset representation D3h(/Cs).

The expressions with an overline for characterizing reflections are not suitable to

treat such right-coset representations systematically by computer. Hence, the combined-

permutation representation proposed by the author [24–26] is adopted for the purpose

of systematic treatment by computer. The combined-permutation representation P (Xχ)

D3h

(D3h) is obtained by combining the coset representation (Cs\)D3h (or D3h(/Cs)) with

a mirror-permutation representation, which acts on the domain χ = {7, 8} to indicate

a mirror permutation corresponding to an overline. Thereby, the respective elements

contained in the D3σh-part of Figure 1 are represented as follows:
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D3σh part

elements (Cs\)D3h P (Xχ)

D3h
D3h

σh (1 4)(2 5)(3 6) (1 4)(2 5)(3 6)(7 8) (1, 4)(2, 5)(3, 6)(7, 8)

S3 (1 5 3 4 2 6) (1 5 3 4 2 6)(7 8) (1, 5, 3, 4, 2, 6)(7, 8)

S2
3 (1 6 2 4 3 5) (1 6 2 4 3 5)(7 8) (1, 6, 2, 4, 3, 5)(7, 8)

σv(1) (1)(2 3)(4)(5 6) (1)(2 3)(4)(5 6)(7 8) (2, 3)(5, 6)(7, 8)

σv(2) (1 3)(2)(4 6)(5) (1 3)(2)(4 6)(5)(7 8) (1, 3)(4, 6)(7, 8)

σv(3) (1 2)(3)(4 5)(6) (1 2)(3)(4 5)(6)(7 8) (1, 2)(4, 5)(7, 8)

(12)

The last D3h-column of Eq. 12 lists concrete expressions used during the execution of the

GAP system, where 1-cycles in P (Xχ)

D3h
are omitted and commas are added.

Because a combined-permutation representation (e.g., P (Xχ)

D3h
(D3h)) is used as a per-

mutation group with an additional 2-cycle, we are able to reveal the group-theoretical

properties of the original point group (e.g., D3h) by computer (through the GAP sys-

tem).

The D3h-part of Table 1 collects the GAP codes for generating the combined repre-

sentation D3h according to Eq. 3. The symbol gap> represents the prompt of the GAP

system in the command-prompt window of the Windows system. Thus, the elements of

the coset D3σh are obtained by the GAP code elm D3∗(1, 4)(2, 5)(3, 6)(7, 8), where the

symbol elm D3 represents a GAP list for the set of elements of D3 (cf. the D3h-part of

Table 1). By using the GAP function Concatenation, the set of the elements of D3h

is obtained in the form of a GAP list named elm D3h. The resulting list elm D3h is

consistent with the data collected in the D3h-part of Figure 1. The list elm D3h can be

transformed into a group D3h by using the GAP function AsGroup. The resulting group

D3h is specified by the GAP function Group containing the generators of constructing

the group D3h. Thereby, the combined representation D3h is regarded as a permutation

group. The elements (Elements(D3h)) of the group D3h are identical with those of the

list elm D3h, as confirmed by the GAP function IsEqualSet.
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Table 1. Group Hierarchy for Characterizing a Cyclopropane Skeleton (Part 1)

group list of elements for constructing a group

D3

(point group)
order: 6

gap> #Point group D3;;

gap> elm_D3 := [(), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5),

↪→ (1,6)(2,5)(3,4), (1,5)(2,4)(3,6)];

[ (), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5),

(1,6)(2,5)(3,4), (1,5)(2,4)(3,6) ]

gap> D3 := AsGroup(elm_D3);

Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])

gap> Print("IsEqualSet(elm_D3, Elements(D3)) ?: ", IsEqualSet(elm_D3,

↪→ Elements(D3)), "\n");

IsEqualSet(elm_D3, Elements(D3)) ?: true

gap> Print("Order of D3: ", Size(D3), "\n");

Order of D3: 6

D3h

(point group)
order: 12

gap> #Point group D3h;;

gap> elm_D3h := Concatenation(elm_D3, elm_D3*(1,4)(2,5)(3,6)(7,8));

[ (), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5),

(1,6)(2,5)(3,4), (1,5)(2,4)(3,6), (1,4)(2,5)(3,6)(7,8),

(1,5,3,4,2,6)(7,8), (1,6,2,4,3,5)(7,8), (2,3)(5,6)(7,8),

(1,3)(4,6)(7,8), (1,2)(4,5)(7,8) ]

gap> D3h := AsGroup(elm_D3h);

Group([ (2,3)(5,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6)(7,8) ])

gap> Print("IsEqualSet(elm_D3h, Elements(D3h)) ?: ", IsEqualSet(

↪→ elm_D3h, Elements(D3h)), "\n");

IsEqualSet(elm_D3h, Elements(D3h)) ?: true

gap> Print("Order of D3h: ", Size(D3h), "\n");

Order of D3h: 12

D3hσ̃Î

(RS -stereo-
isomeric group)

order: 24

gap> #RS-stereoisomeric group;;

gap> elm_D3hsI := Concatenation(elm_D3h, elm_D3h*(1,4)(2,5)(3,6));

[ (), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5),

(1,6)(2,5)(3,4), (1,5)(2,4)(3,6), (1,4)(2,5)(3,6)(7,8),

(1,5,3,4,2,6)(7,8), (1,6,2,4,3,5)(7,8), (2,3)(5,6)(7,8),

(1,3)(4,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6),

(1,5,3,4,2,6), (1,6,2,4,3,5), (2,3)(5,6), (1,3)(4,6), (1,2)(4,5),

(7,8), (1,2,3)(4,5,6)(7,8), (1,3,2)(4,6,5)(7,8),

(1,4)(2,6)(3,5)(7,8), (1,6)(2,5)(3,4)(7,8), (1,5)(2,4)(3,6)(7,8) ]

gap> D3hsI := AsGroup(elm_D3hsI);

Group([ (7,8), (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6) ])

gap> Print("IsEqualSet(elm_D3hsI, Elements(D3hsI)) ?: ", IsEqualSet(

↪→ elm_D3hsI, Elements(D3hsI)), "\n");

IsEqualSet(elm_D3hsI, Elements(D3hsI)) ?: true

gap> Print("Order of D3hsI: ", Size(D3hsI), "\n");

Order of D3hsI: 24

3.2 Hierarchical calculation of combined representations

3.2.1 Combined representation D3hsI for the RS -stereoisomeric group D3hσ̃Î

The D3hσ̃Î-part of Table 1 collects the GAP codes for generating the combined represen-

tation D3hsI according to Eq. 7. Thus, the elements of the coset D3hσ̃h are obtained by

the GAP code elm D3h∗(1, 4)(2, 5)(3, 6), where the symbol elm D3h represents the GAP

list for the set of elements of D3h (cf. the D3h-part of Table 1). The set of the elements of

D3hσ̃Î is obtained in the form of a GAP list named elm D3hsI, where the GAP function
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Concatenation is used. The resulting list elm D3hsI is consistent with the data collected

in the D3hσ̃Î-part of Figure 1. The list elm D3hsI can be transformed into a group D3hsI

by using the GAP function AsGroup. Thereby, the combined representation D3hsI is

regarded as a permutation group.

3.2.2 Combined representation cD3hsI for the stereoisomeric group D̃3hσ̃Î

The construction of the stereoisomeric group D̃3hσ̃Î on the basis of the combined represen-

tations is shown in the D̃3hσ̃Î-part of Table 2, which collects the GAP codes for generating

the combined representation cD3hsI according to Eq. 8. Thus, the elements of the coset

D3hσ̃Î σ̃14 are calculated by the GAP code elm D3hsI∗(1, 4), those of the coset D3hσ̃Î σ̃25

are calculated by the GAP code elm D3hsI∗(2, 5), and those of the coset D3hσ̃Î σ̃36 are

calculated by the GAP code elm D3hsI∗(3, 5), where the symbol elm D3hsI represents

the GAP list for the set of elements of D3hσ̃Î (cf. the D3hσ̃Î-part of Table 1). The set of

the elements of D̃3hσ̃Î is obtained in the form of a GAP list named elm cD3hsI, where

the GAP function Concatenation is used. The resulting list elm cD3hsI is consistent

with the whole data collected in Figure 1. The list elm cD3hsI can be transformed into a

group cD3hsI by using the GAP function AsGroup. Thereby, the combined representation

cD3hsI is regarded as a permutation group.

3.2.3 Combined representation ccD3hsI for the isoskeletal group
˜̃
D3hσ̃Î

The isoskeletal group
˜̃
D3hσ̃Î is constructed according to Eq. 10. The corresponding com-

bined representation ccD3hsI is shown in the
˜̃
D3hσ̃Î-part of Table 2. The transversals

listed in Eq. 9 are used in the GAP function Concatenation, so as to give a GAP list

named elm ccD3hsI, The list elm cD3hsI can be transformed into a group ccD3hsI by

using the GAP function AsGroup. Thereby, the combined representation ccD3hsI is re-

garded as a permutation group.

The isoskeletal group
˜̃
D3hσ̃Î (the combined representation as a group: ccD3hsI) is

isomorphic to the reflective symmetric group S
[6]

σÎ
(the combined representation as a group:

S6sI), which is generated by adding a reflection (7,8) to the symmetric group of degree

6 (S[6], the combined representation as a group S6). The isomorphism between ccD3hsI

and S6sI is confirmed by the following GAP code:

gap> #Isoskeletal Group;;

gap> ccD3hsI := Group([ (7,8), (5,6), (4,5), (3,4), (2,3), (1,2) ]);

Group([ (7,8), (5,6), (4,5), (3,4), (2,3), (1,2) ])

gap> Size(ccD3hsI);

-114-



Table 2. Group Hierarchy for Characterizing a Cyclopropane Skeleton (Part 2)

group list of elements for constructing a group

D̃3hσ̃Î

(stereo-
isomeric group)

order: 96

gap> #Stereoisomeric group;;

gap> elm_cD3hsI := Concatenation(elm_D3hsI, elm_D3hsI*(1,4),

elm_D3hsI*(2,5), elm_D3hsI*(3,6));

[ (omitted: elm_D3hsI)

(1,4), (1,2,3,4,5,6), (1,3,2,4,6,5), (2,6)(3,5), (1,6,4,3)(2,5),

(1,5,4,2)(3,6), (2,5)(3,6)(7,8), (1,5,3)(2,6,4)(7,8),

(1,6,2)(3,5,4)(7,8), (1,4)(2,3)(5,6)(7,8), (1,3,4,6)(7,8),

(1,2,4,5)(7,8), (2,5)(3,6), (1,5,3)(2,6,4), (1,6,2)(3,5,4),

(1,4)(2,3)(5,6), (1,3,4,6), (1,2,4,5), (1,4)(7,8),

(1,2,3,4,5,6)(7,8), (1,3,2,4,6,5)(7,8), (2,6)(3,5)(7,8),

(1,6,4,3)(2,5)(7,8), (1,5,4,2)(3,6)(7,8),

(2,5), (1,5,6,4,2,3), (1,3,5,4,6,2), (1,4)(2,6,5,3), (1,6)(3,4),

(1,2,4,5)(3,6), (1,4)(3,6)(7,8), (1,2,6)(3,4,5)(7,8),

(1,6,5)(2,4,3)(7,8), (2,3,5,6)(7,8), (1,3)(2,5)(4,6)(7,8),

(1,5,4,2)(7,8), (1,4)(3,6), (1,2,6)(3,4,5), (1,6,5)(2,4,3),

(2,3,5,6), (1,3)(2,5)(4,6), (1,5,4,2), (2,5)(7,8),

(1,5,6,4,2,3)(7,8), (1,3,5,4,6,2)(7,8), (1,4)(2,6,5,3)(7,8),

(1,6)(3,4)(7,8), (1,2,4,5)(3,6)(7,8),

(3,6), (1,2,6,4,5,3), (1,6,5,4,3,2), (1,4)(2,3,5,6), (1,3,4,6)(2,5),

(1,5)(2,4), (1,4)(2,5)(7,8), (1,5,6)(2,3,4)(7,8),

(1,3,5)(2,4,6)(7,8), (2,6,5,3)(7,8), (1,6,4,3)(7,8),

(1,2)(3,6)(4,5)(7,8), (1,4)(2,5), (1,5,6)(2,3,4), (1,3,5)(2,4,6),

(2,6,5,3), (1,6,4,3), (1,2)(3,6)(4,5),

(3,6)(7,8), (1,2,6,4,5,3)(7,8), (1,6,5,4,3,2)(7,8),

(1,4)(2,3,5,6)(7,8), (1,3,4,6)(2,5)(7,8), (1,5)(2,4)(7,8) ]

gap> cD3hsI := AsGroup(elm_cD3hsI);

Group([ (7,8), (3,6), (2,3)(5,6), (1,2)(4,5) ])

gap> Print("IsEqualSet(elm_cD3hsI, Elements(cD3hsI)) ?: ", IsEqualSet(

↪→ elm_cD3hsI, Elements(cD3hsI)), "\n");

IsEqualSet(elm_cD3hsI, Elements(cD3hsI)) ?: true

gap> Print("Order of cD3hsI: ", Size(cD3hsI), "\n");

Order of cD3hsI: 96

˜̃
D3hσ̃Î

(isoskeletal
group)

order: 1440

gap> #Isoskeletal group;;

gap> elm_ccD3hsI := Concatenation(elm_cD3hsI, elm_cD3hsI*(5,6),

> elm_cD3hsI*(4,5), elm_cD3hsI*(4,5,6), elm_cD3hsI*(4,6,5),

> elm_cD3hsI*(4,6), elm_cD3hsI*(3,4), elm_cD3hsI*(3,4)(5,6),

> elm_cD3hsI*(3,4,5), elm_cD3hsI*(3,4,6,5), elm_cD3hsI*(3,5,4),

> elm_cD3hsI*(3,5), elm_cD3hsI*(2,3,4), elm_cD3hsI*(2,3,4)(5,6),

↪→ elm_cD3hsI*(2,3,5,4));

[ (), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5),

(1,6)(2,5)(3,4), (1,5)(2,4)(3,6), (1,4)(2,5)(3,6)(7,8),

(omitted)

(1,5,3,2,4,6), (1,4,3,5), (1,2,4)(3,5)(7,8), (1,4,3,2,5,6)(7,8),

↪→ (1,5)(3,4,6)(7,8), (2,6,4)(7,8),

(1,6,2,3)(4,5)(7,8), (1,3,6,5,2)(7,8), (1,2,4)(3,5), (1,4,3,2,5,6),

↪→ (1,5)(3,4,6), (2,6,4), (1,6,2,3)(4,5),

(1,3,6,5,2), (2,3,6,5,4)(7,8), (1,3)(2,6)(7,8), (1,6,4,5,2)(7,8),

↪→ (1,2,5,6,3,4)(7,8), (1,5,3,2,4,6)(7,8),

(1,4,3,5)(7,8) ]

gap> ccD3hsI := AsGroup(elm_ccD3hsI);

Group([ (7,8), (5,6), (4,5), (3,4), (2,3), (1,2) ])

gap> Print("IsEqualSet(elm_ccD3hsI, Elements(ccD3hsI)) ?: ",

↪→ IsEqualSet(elm_ccD3hsI, Elements(ccD3hsI)), "\n");

IsEqualSet(elm_ccD3hsI, Elements(ccD3hsI)) ?: true

gap> Print("Order of ccD3hsI: ", Size(ccD3hsI), "\n");

Order of ccD3hsI: 1440
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1440

gap> #Symmetric Group of Degree 6;;

gap> S6 := Group([(1,2,3,4,5,6), (1,2)]);

Group([ (1,2,3,4,5,6), (1,2) ])

gap> Size(S6);

720

gap> #Reflective symmetric group S6sI;;

gap> S6sI := Group([(1,2,3,4,5,6), (1,2), (7,8)]);

Group([ (1,2,3,4,5,6), (1,2), (7,8) ])

gap> Size(S6sI);

1440

gap> IsEqualSet(Elements(ccD3hsI), Elements(S6sI));

true

Note that the isoskeletal group ccD3hsI is generated by the GAP function Group in

accord with the generators shown in the
˜̃
D3hσ̃Î-part of Table 2. The final output true

shows that the set of elements calculated by Elements(ccD3hsI) is identical with the set

of elements calculated by Elements(S6sI).

4 Hierarchical enumeration of cyclopropane

derivatives

Hierarchical enumeration of cyclopropane derivatives is conducted by extending Fujita’s

proligand method [11–14], which has been originally developed for point groups. The

procedures of calculating cycle indices with chirality fittingness (CI-CFs) for point groups

can be easily extended to cover the hierarchical enumeration.

4.1 Calculation of CI-CFs

Fujita’s proligand method [11–14] is based on a cycle index with chirality fittingness (CI-

CF). Such a CI-CF is manually calculated from the products of sphericity indices (PSIs)

for the respective elements, where the PSIs are in turn calculated by the examination of

the cycle structures of the respective elements. For example, the D3h-part (the D3-part

plus D3σh-part) of Figure 1 indicates the cycle structures of respective elements and the

corresponding PSIs, where a sphericity index (SI) bd is assigned to a hemispheric d-cycle,

an SI ad to a homospheric d-cycle (d: odd), and an SI cd to an enantiospheric d-cycle

(d: even). These PSIs are summed up and divided by the order of the point group D3h

(order: |D3h| = 12), so as to give the following CI-CF:

CI-CF(D3h, $d) =
1

12

(
b61 + 2b23 + 3b32 + c32 + 2c6 + 3a21c

2
2

)
, (13)

where the symbol $d indicates bd, ad, or cd.
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The manual calculation of the CI-CF described in the preceding paragraph can be

systematically conducted by using the combined-permutation representation [24], where

the GAP function CalcConjClassCICF has been developed for the purpose of calculating

CI-CFs [25]. The CI-CF shown in Eq. 13 is alternatively by using CalcConjClassCICF

as follows:

gap> Read("c:/fujita0/fujita2017/D3hsI-GAP/calc-GAP/CICFgenCC.gapfunc");

gap> D3h := Group([(2,3)(5,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6)(7,8)]);;

gap> Print("D3h := ", D3h, "\n");

D3h := Group( [ (2,3)(5,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6)(7,8) ] )

gap> Print("Order := ", Size(D3h), "\n");

Order := 12

gap> Print("CICF_D3h := ", CalcConjClassCICF(D3h, 6, 8), "\n");

CICF_D3h := 1/12*b_1^6+1/4*a_1^2*c_2^2+1/12*c_2^3+1/4*b_2^3+1/6*b_3^2+1/6*c_6

Each GAP code after the prompt gap> is executed to give the output in the next line,

which is taken up to print each line in the D3h-part of Table 3. In the GAP calculation de-

scribed above, the set of generators shown in theD3h-part of Table 2 is used to generate the

combined representation D3h as a group. Note that the GAP function CalcConjClass-

CICF is stored in the file CICFgenCC.gapfunc, which is placed in an appropriate directory

named c:/fujita0/fujita2017/D3hsI-GAP/calc-GAP/. The file CICFgenCC.gapfunc

is loaded by the GAP function Read. The calculated CI-CF (CICF D3h) is consistent with

Eq. 13, which has been obtained manually.

Similarly, the CI-CFs for the groups listed hierarchically in Tables 1 and 2 are obtained

by using the GAP function CalcConjClassCICF. The calculated CI-CFs are collected

hierarchically in Table 3. These CI-CFs (except the isoskeletal group) can be calculated

manually by using the data of PSIs collected in Figure 1.

4.2 Enumerations under the point groups D3 and D3h as well
as under the RS -stereoisomeric group D3hσ̃Î

4.2.1 Ligand–inventory functions for 3D enumeration

Let us select proligands for enumerating cyclopropane derivatives from the following ligand

inventory for 3D enumeration:

L3D = {H,A,B,C,D,V; p, p, q, q, r, r, s, s, t, t, u, u}, (14)

where the uppercase letters H, A, B, C, D, and V represent achiral proligands, while a

pair of lowercase letters p/p, q/q, r/r, s/s, t/t, or u/u represents an enantiomeric pair of

chiral proligands in isolation (when detached).
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Table 3. CI-CFs for Characterizing a Cyclopropane Skeleton

group Group due to a list of generators, order, CI-CF

D3

(point group)

D3 := Group( [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ] )

Order := 6

CICF_D3 := 1/6*b_1^6+1/2*b_2^3+1/3*b_3^2

D3h

(point group)

D3h := Group( [ (2,3)(5,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6)(7,8) ] )

Order := 12

CICF_D3h := 1/12*b_1^6+1/4*a_1^2*c_2^2+1/4*b_2^3+1/12*c_2^3+1/6*b_3^2+1/6*c_6

D
3hσ̃Î

(RS -stereo-

isomeric group)

D3hsI := Group( [ (7,8), (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6) ] )

Order := 24

CICF_D3hsI := 1/24*b_1^6+1/24*a_1^6+1/8*b_1^2*b_2^2+1/8*a_1^2*c_2^2+1/6*b_2^3

+1/6*c_2^3+1/12*b_3^2+1/12*a_3^2+1/12*c_6+1/12*b_6

D̃
3hσ̃Î

(stereoisomeric

group)

cD3hsI := Group( [ (7,8), (3,6), (2,3)(5,6), (1,2)(4,5) ] )

Order := 96

CICF_cD3hsI := 1/96*b_1^6+1/96*a_1^6+1/32*b_1^4*b_2+1/32*a_1^4*c_2

+3/32*b_1^2*b_2^2+3/32*a_1^2*c_2^2+1/16*b_1^2*b_4+7/96*b_2^3

+1/16*a_1^2*c_4+7/96*c_2^3+1/12*b_3^2+1/16*b_2*b_4+1/16*c_2*c_4

+1/12*a_3^2+1/12*c_6+1/12*b_6

˜̃
D

3hσ̃Î

(isoskeletal

group)

ccD3hsI := Group( [ (7,8), (5,6), (4,5), (3,4), (2,3), (1,2) ] )

Order := 1440

CICF_ccD3hI := 1/1440*b_1^6+1/1440*a_1^6+1/96*b_1^4*b_2+1/96*a_1^4*c_2

+1/36*b_1^3*b_3+1/32*b_1^2*b_2^2+1/36*a_1^3*a_3+1/32*a_1^2*c_2^2

+1/16*b_1^2*b_4+1/12*b_1*b_3*b_2+1/96*b_2^3+1/16*a_1^2*c_4

+1/12*a_1*c_2*a_3+1/96*c_2^3+1/10*b_1*b_5+1/36*b_3^2+1/16*b_2*b_4

+1/10*a_1*a_5+1/16*c_2*c_4+1/36*a_3^2+1/12*c_6+1/12*b_6

Suppose that the six positions of a cyclopropane skeleton 1 (cf. Eq. 11) accommodate a

set of six proligands selected from the ligand inventory L3D (Eq. 14). According to Fujita’s

proligand method [11–14], the following set of ligand-inventory functions are adopted:

ad = Hd +Ad + Bd + Cd +Dd +Vd (15)

cd = Hd +Ad + Bd + Cd +Dd +Vd

+ 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2 + 2td/2t
d/2

+ 2ud/2ud/2 (16)

bd = Hd +Ad + Bd + Cd +Dd +Vd

+ pd + pd + qd + qd + rd + rd + sd + sd + td + t
d
+ ud + ud, (17)

where the symbol d represents a non-negative integer.

The introduction of the ligand-inventory functions (Eqs. 15–17) into the CI-CF(D3, bd)

(CICF D3 shown in Table 3) or the CI-CF(D3h, $d) (CICF D3h shown in Table 3) enables us

to conduct enumeration under the point group D3 or under the point group D3h. Because

the enumeration under the point group D3h differentiates the two chiral proligands of a
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single enantiomeric pair (e.g., p vs. p), the ligand-inventory function for cd (Eq. 16) takes

account of two modes of packing in the case of an enantiospheric cycle. As a result, a

promolecule containing pp, for example, is counted separately apart from a promolecule

containing p2 (or p2).

For the purpose of hierarchical enumeration, such pairwise chiral proligands (i.e., p vs.

p etc.) are bundled into a single symbol, i.e., p̈ etc., whereas such two modes of packing

are maintained in accord with the ligand inventory L3D (Eq. 14). It follows that the

ligand-inventory functions (Eqs. 15–17) are transformed by putting p̈ = p = p into the

following ligand-inventory functions for 3D enumeration:

ad = Hd +Ad + Bd + Cd +Dd +Vd (18)

cd = Hd +Ad + Bd + Cd +Dd +Vd + 2p̈d + 2q̈d + 2r̈d + 2s̈d + 2ẗd + 2üd (19)

bd = Hd +Ad + Bd + Cd +Dd +Vd + 2p̈d + 2q̈d + 2r̈d + 2s̈d + 2ẗd + 2üd. (20)

4.2.2 Generating functions for point groups and RS -stereoisomeric groups

For the purpose of enumerating cyclopropane derivatives under the point group D3, the

ligand-inventory function (Eq. 20) is introduced into the CI-CF(D3, bd) (CICF D3) shown

in Table 3). Thereby, we are able to obtain the following generating function:∑
θ

T(D3)θ̈
Wθ̈ = CI-CF(D3, bd)

∣∣∣∣
Eq. 20

, (21)

where the coefficient T(D3)θ̈
of the weight Wθ̈ indicates the number of cyclopropane deriva-

tives with the composition Wθ̈. Each 3D entity is inequivalent with another 3D entity

under the point group D3 so that it is counted once separately. The weight Wθ̈ is repre-

sented by the symbol HhAaBbCcDdVv p̈p̈ q̈q̈ r̈r̈ s̈s̈ ẗẗ üü, where the powers satisfy the follow-

ing equation:

h+ a+ b+ c+ d+ v + p̈+ q̈ + r̈ + s̈+ ẗ+ ü = 6. (22)

For the sake of convenience, the weight Wθ̈ is represented by the partition [θ̈] as follows:

[θ̈] = [h, a, b, c, d, v, p̈, q̈, r̈, s̈, ẗ, ü], (23)

which satisfies h ≥ a ≥ b ≥ c ≥ d ≥ v; and p̈ ≥ q̈ ≥ r̈ ≥ s̈ ≥ ü ≥ ẗ, because respective

terms appear symmetrically in such generating functions as Eq. 21.

On the other hand, the enumeration of cyclopropane derivatives under the point group

D3h is conducted by the introduction of the ligand-inventory functions (Eqs. 18–20) into
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the CI-CF(D3h, $d) (CICF D3h) shown in Table 3. Thereby, the following generating func-

tion is obtained: ∑
θ

B(D3h)θ̈
Wθ̈ = CI-CF(D3h, $d)

∣∣∣∣
Eqs. 18–20

, (24)

where the coefficient B(D3h)θ̈
of the weightWθ̈ indicates the number of pairs of enantiomeric

cyclopropane derivatives with the composition Wθ̈. The inequivalence under the point

group D3h means that each pair of (self-)enantiomeric cyclopropane derivatives is counted

once under this enumeration. Note that a pair of self-enantiomers means an achiral

cyclopropane derivative.

The procedure for the enumeration under the point groups D3 and D3h can be ex-

tended to cover the enumeration under the RS -stereoisomeric group D3hσ̃Î . Accordingly,

the same set of ligand-inventory functions (Eqs. 18–20) is introduced into CI-CF(D3hσ̃Î , $d)

(CICF D3hsI) shown in Table 3. Thereby, the following generating function is obtained:∑
θ

B(D
3hσ̃Î

)θ̈Wθ̈ = CI-CF(D3hσ̃Î , $d)

∣∣∣∣
Eqs. 18–20

, (25)

where the coefficient B(D
3hσ̃Î

)θ̈ of the weight Wθ̈ indicates the number of quadruplets of

RS -stereoisomeric cyclopropane derivatives with the composition Wθ̈. Each quadruplet

of RS -stereoisomeric cyclopropane derivatives is counted once under this enumeration in

accord with the inequivalence under the RS -stereoisomeric group D3hσ̃Î .

4.3 Enumerations under the stereoisomeric group D̃3hσ̃Î

and under the isoskeletal group
˜̃
D3hσ̃Î

4.3.1 A single ligand–inventory function for graph enumeration

In the discussion on stereoisomers and isoskeletomers, each pair of enantiomeric proligands

in isolation degenerates into a single graph, because they are 2D-based concepts. Thus, a

pair of p/p, q/q, r/r, s/s, t/t, or u/u is considered to coincide into p̈, q̈, r̈, s̈, ẗ, or ü, each

of which is regarded as a single graph without obeying the above mentioned sphericities.

As a result, the ligand inventory L3D (Eq. 14) is transformed into the following ligand

inventory for graph enumeration:

L2D = {H,A,B,C,D,V; p̈, q̈, r̈, s̈, ẗ, ü}, (26)

where the uppercase letters H, A, B, C, D, and V represent achiral proligands, while the

symbols p̈, q̈, r̈, s̈, ẗ, and ü represent graphs generated from p/p, q/q, r/r, and s/s. t/t,

and u/u.
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A set of six proligands selected from the ligand inventory L2D (Eq. 26) is placed on

the six positions of the cyclopropane skeleton 1, which is now regarded as degenerating

into a graph. This means that the six positions are considered to be controlled by the

stereoisomeric group D̃3hσ̃Î or the isoskeletal group
˜̃
D3hσ̃Î . Because the elements of L2D

(Eq. 26) are graphs even if they are derived from either achiral or chiral proligands, a

single ligand-inventory function for graph enumeration is obtained as follows:

ad = cd = bd = Hd +Ad + Bd + Cd +Dd +Vd + p̈d + q̈d + r̈d + s̈d + ẗd + üd. (27)

Note that the term 2p̈d etc. in Eqs. 19 and 20 for 3D enumeration are replaced by the

term p̈d etc. in Eq. 27 for graph enumeration.

4.3.2 Calculation of generating functions for stereoisomeric groups
and isoskeletal groups

The ligand-inventory function (Eq. 27) is introduced into CI-CF(D̃3hσ̃Î , $d) (CICF cD3hsI)

shown in Table 3. Thereby, the following generating function is obtained:∑
θ̈

B(D̃
3hσ̃Î

)θ̈Wθ̈ = CI-CF(D̃3hσ̃Î , $d)

∣∣∣∣
Eq. 27

. (28)

The coefficient B(D̃
3hσ̃Î

)θ̈ of the weight Wθ̈ in the generating function (Eq. 28) indicates the

number of sets of stereoisomeric cyclopropane derivatives with the composition Wθ̈. Thus,

each set of stereoisomeric cyclopropane derivatives is counted once under the stereoiso-

meric group D̃3hσ̃Î .

On the other hand, the ligand-inventory function (Eq. 27) is introduced into the

CI-CF(
̂̃
D3hσ̃Î , $d) (CICF ccD3hsI listed in Table 3), so as to give the following generating

function: ∑
θ̈

B
(
˜̃
D

3hσ̃Î
)θ̈
Wθ̈ = CI-CF(

˜̃
D3hσ̃Î , $d)

∣∣∣∣
Eq. 27

, (29)

where the coefficient B
(
̂̃
D

3hσ̃Î
)θ̈

of the weight Wθ̈ indicates the number of sets of isoskele-

tomeric cyclopropane derivatives with the composition Wθ̈. Because the enumerated sets

of isoskeletomers are inequivalent with each other under the isoskeletal group
˜̃
D3hσ̃Î , each

of the sets is counted once under this enumeration.
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4.4 Results of enumeration

4.4.1 GAP-calculation of generating functions

The generating functions shown in Eqs. 21, 24, 25, 28, and 29 are practically calculated

by writing the GAP codes. The coefficients are extracted from the generating functions

and listed in tabular forms (Appendix A). Among the data shown in tabular forms, the

T(D3)θ̈
-column (due to Eq. 21) , the B(D3h)θ̈

-column (due to Eq. 24), and the B(D
3hσ̃Î

)θ̈-

column (due to 25) are concerned with 3D structures, where the set of ligand-inventory

functions (Eqs. 18–20) is used. On the other hand the B(D̃
3hσ̃Î

)θ̈-column (due to Eq. 28)

and the B
(
˜̃
D

3hσ̃Î
)θ̈
-column (due to Eq. 29) are concerned with graphs, where the single

ligand-inventory function (Eq. 27) is used.

4.4.2 Cyclopropane derivatives with achiral proligands

Table 4 shows selected data, which are obtained by adopting achiral proligands and no

chiral proligands, where the partitions [θ̈]1–[θ̈]11 are used. Note that the six integers at the

first part of each partition are concerned with achiral proligands, while the six integers at

the next part are concerned with chiral proligands (cf. Eq. 23).

Table 4. Hierarchical Enumeration of Cyclopropane Derivatives with Achiral Pro-
ligands and No Chiral Proligands

numbers of cyclopropane derivatives

partition under respective groups

T(D3)θ̈
B(D3h)θ̈

B(D
3hσ̃Î

)θ̈ B(D̃
3hσ̃Î

)θ̈ B
(
˜̃
D

3hσ̃Î
)θ̈

(Eq. 21) (Eq. 24) (Eq. 25) (Eq. 28) (Eq. 29)︸ ︷︷ ︸
|Eqs. 18–20

︸ ︷︷ ︸
|Eq. 27

[θ̈]1 = [6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ̈]2 = [5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ̈]3 = [4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 4 3 3 2 1

[θ̈]4 = [4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 5 3 3 2 1

[θ̈]5 = [3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 4 3 3 2 1

[θ̈]6 = [3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 10 6 6 3 1

[θ̈]7 = [3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 20 10 10 4 1

[θ̈]8 = [2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0] 18 11 11 5 1

[θ̈]9 = [2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 30 16 16 6 1

[θ̈]10 = [2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] 60 30 30 9 1

[θ̈]11 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0] 120 60 60 15 1
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To confirm the validity of Table 4, let us examine the data shown in the [θ̈]3-row,

which collects the results for the composition H4A2. Suppose that four hydrogens and

two achiral proligands A’s are placed on the six positions of the reference skeleton 1 shown

in Figure 1 in accord with the following function:

f1 : f1(1) = f1(5) = A; f1(2) = f1(3) = f1(4) = f1(6) = H, (30)

where each integer in a pair of parentheses indicates the locant number of the skeleton

1. Thereby, Figure 2 is obtained under the action of the point groups D3 and D3h;

the RS -stereoisomeric group D3hσ̃Î ; as well as under the stereoisomeric group D̃3hσ̃Î .

Thus, the D3hσ̃Î-part of Figure 1 generates the corresponding type-I stereoisogram, which

consists of a quadruplet of RS -stereoisomers, i.e., a reference 9, an RS -diastereomer

10 (= 9), an enantiomer 9, and a holantimer 10 (= 9). Note that this quadruplet of

RS -stereoisomers degenerates into a pair of enantiomers 9/9, which represents a pair of

enantiomeric trans-cyclopropanes.

On the other hand, the D3hσ̃Î σ̂14-part of Figure 1 generates the corresponding type-IV

stereoisogram. This stereoisogram consists of a quadruplet of RS -stereoisomers which

degenerates into a single achiral cyclopropane 11.

The D3hσ̃Î σ̂25-part (or the D3hσ̃Î σ̂36-part) of Figure 1 generates a stereoisogram which

degenerates into the above-mentioned type-IV stereoisogram (or type-I stereoisogram).

This feature is represented schematically I2− IV2, where the power 2 of I means that two

type-I stereoisograms degenerate into a single stereoisogram and the power 2 of IV means

that two type-IV stereoisograms degenerate into a single stereoisogram.

In summary, under the action of the stereoisomeric group D̃3hσ̃Î (Figure 1), there re-

main the two stereoisograms, which show stereoisomerism (cis/trans-isomerism) between

the pair of enantiomeric trans-cyclopropanes 9/9 and the achiral cis-cyclopropane 11.

Figure 2 also shows the action of the isoskeletal group
˜̃
D3hσ̃Î (Figure 1), which shows

the coset decomposition of Eq. 10. Among the transversals listed in Eq. 9, eleven transver-

sals, i.e., σ̃56, σ̃465, σ̃46, σ̃34, σ̃34,56, σ̃3465, σ̃354, σ̃35, σ̃234, σ̃234,56, and σ̃2354 (in addition to

the transversal I of the coset D̃3hσ̃ÎI) exhibits degeneration, which is summarized by the

scheme (I2 − IV2)12.

On the other hand, the D̃3hσ̃Î σ̃45-part of Figure 2 shows that the action of the isoskele-

tal group
˜̃
D3hσ̃Î generates a type-IV stereoisogram, which shows a single achiral cyclo-

propane 13. This mode of degeneration is indicated by the scheme IV4. Among the
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Figure 2. Hierarchy diagram for representing a multiple stereoisogram set of type
(I2 − IV2)12/(IV4)3, which is derived by putting two achiral proligands
A2 on the positions 1 and 5 of the cyclopropane skeleton 1 as well as
four hydrogens H4 on the other positions.
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transversals listed in Eq. 9, two transversals, i.e., σ̃456, σ̃345 (in addition to the transversal

σ̃45) exhibits degeneration, which is summarized by the scheme (IV4)3.

Totally, the hierarchy diagram shown in Figure 2 indicates the appearance of a multiple

stereoisogram set of type (I2 − IV2)12/(IV4)3, which shows the degeneration mode of the

possible 15 sets of stereoisomers (12 + 3 = 15) as well as the inner degeneration mode

of four stereoisograms (2 + 2 = 4; and 4). The multiple stereoisogram set of Figure 2 is

counted once under the action of isoskeletal group
˜̃
D3hσ̃Î , as indicated by the value 1 at

the intersection between [θ̈]3-row and the
˜̃
D3hσ̃Î-column in Table 4.

Under the action of the stereoisomeric group D̃3hσ̃Î , the two stereoisograms concerning

9 (and 9) and 11 are equivalent and they are equalized to give one set of stereoisomers

〈9 9 11〉, where the function f1 (Eq. 30) is applied to the numbered skeleton 1 of Figure

1. On the other hand, one stereoisogram concerning 13 (strictly speaking, a renumbered

promolecule) gives one set of self-stereoisomers 〈13〉 (one achiral derivative), where the

following function is used:

f2 : f2(1) = f2(4) = A; f2(2) = f2(3) = f2(5) = f2(6) = H, (31)

which is applied to the numbered skeleton 1 of Figure 1. The application of the two

functions f1 (Eq. 30) and f2 (Eq. 31) to 1 under the stereoisomeric group D̃3hσ̃Î results in

the formation of 〈9 9 11〉 (one set of stereoisomers) and 〈13〉 (one set of self-stereoisomers).

Thus, there appear two sets of (self-)stereoisomers, because one set of (self-)stereoisomers

is counted once under the stereoisomeric group D̃3hσ̃Î . This is confirmed by the value 2

at the intersection between [θ̈]3-row and the D̃3hσ̃Î-column in Table 4.

Under the action of the RS -stereoisomeric group D3hσ̃Î , the stereoisogram concerning

(9 9)I is inequivalent to the other stereoisogram concerning (11)IV. The inequivalence

between (9 9)I and (11)IV corresponds to cis/trans-isomerism between them. The type-I

stereoisogram concerning (9 9)I is generated by applying the function f1 (Eq. 30) to the

D3hσ̃Î-part of Figure 1, while the type-IV stereoisogram concerning (11)IV is generated

by applying the following function f3:

f3 : f3(4) = f3(5) = A; f3(1) = f3(2) = f3(3) = f3(6) = H (32)

to the same D3hσ̃Î-part. In addition, the type-IV stereoisogram concerning (13)IV is

generated by applying the function f2 (Eq. 31) to the same D3hσ̃Î-part of Figure 1. In

summary, the three stereoisograms, i.e., (9 9)I, (11)IV, and (13)IV, are inequivalent to
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one another under the RS -stereoisomeric group D3hσ̃Î . This result is consistent with the

value 3 at the intersection between [θ̈]3-row and the D3hσ̃Î-column in Table 4.

A similar discussion holds true for the action of the point groupD3h, so that three pairs

of (self-)enantiomers, i.e., [9 9], [11], and [13], are inequivalent under the point group

D3h for enantiomerism. This is consistent with the value 3 at the intersection between

[θ̈]3-row and the D3h-column in Table 4. Note that the type-I stereoisogram concerning 9

contains one pair of enantiomers, i.e., ([9 9])I, while the type-IV stereoisogram concerning

11 (or 13) contains one achiral promolecule, i.e. ([11])IV (or ([13])IV).

Under the action of D3, the four promolecules 9, 9, 11, and 13 are determined to be

inequivalent to one another, so that the value 4 at the intersection between [θ̈]3-row and

the the D3-column in Table 4 is confirmed.

The above-mentioned steps of group hierarchy are accumulated to give the following

scheme: {〈
([9 9])I ([11])IV

〉
〈([13])IV)〉

}
. (33)

There appear equivalence classes of respective groups in Eq. 33, i.e., one pair of braces

{· · · }, which contains an equivalence class of isoskeletomers under the isoskeletal group˜̃
D3hσ̃Î ; two pairs of angle brackets 〈· · · 〉, each of which contains an equivalence class of

stereoisomers under the stereoisomeric group D̃3hσ̃Î ; three pairs of parentheses (· · · )I,IV,

each of which contains a quadruplet of RS -stereoisomers as an equivalence class under the

RS -stereoisomeric group D3hσ̃Î ; three pairs of square brackets [· · · ], each of which con-

tains a pair of (self)-enantiomers as an equivalence class under the point group D3h; and

four promolecules without such brackets, each of which is regarded as a single-membered

equivalence class under the chiral point group D3. Hence, the scheme of Eq. 33 is consis-

tent with the data collected in [θ̈]3-row of Table 4.

Such schemes as Eq. 33 is diagrammatically shown by isomer-classification diagrams,

which have been proposed as convenient devices for characterizing the group hierarchy

[27, 28]. Thus, the scheme represented by Eq. 33, which have been obtained the above

discussions on the data of cyclopropanes with the composition H4A2, can be expressed

systematically by an isomer-classification diagram shown in Figure 3.
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Figure 3. Isomer-classification diagram for cyclopropanes with the composition
H4A2. A pair of square brackets contains a pair of (self)-enantiomers,
a pair of parentheses contains a quadruplet of RS -stereoisomers, a pair
of angles contains an equivalence class of stereoisomers, and a pair of
braces contains an equivalence class of isoskeletomers.

As another set of examples of cyclopropane derivatives, the values shown in the [θ̈]4-

row of Table 4 can be confirmed by the isomer classification diagram shown in Figure 4,

which is concerned with cyclopropanes with the composition H4AB.

Figure 4. Isomer-classification diagram for cyclopropanes with the composition
H4AB.

Figure 4 indicates the presence of one pair of braces {· · · }, which contains an equiv-

alence class of isoskeletomers. Two pairs of angle brackets 〈· · · 〉 indicate the presence of

two equivalence classes of stereoisomers, i.e., 〈15 15 16 16〉 and 〈17〉, each of which is

counted once under the stereoisomeric group D̃3hσ̃Î . Three pairs of parentheses (· · · )I,IV
indicate the presence of three quadruplets of RS -stereoisomers, i.e., (15 15)I, (16 16)I,

and (17)IV, each of which is counted once under the RS -stereoisomeric group D3hσ̃Î . The

accumulation of the results of D̃3hσ̃Î and D3hσ̃Î gives a partial scheme 〈(15 15)I (16 16)I〉,

which indicates cis/trans-isomerism between (15 15)I and (16 16)I. Three pairs of square

brackets [· · · ] indicate the presence of three pairs of (self)-enantiomers under the point

group D3h, where there appear two pairs of enantiomers, i.e., [15 15] and [16 16], and one

pair of self-enantiomers [17] (one achiral promolecule). The accumulation of the results of

D̃3hσ̃Î and D3h gives another partial scheme 〈[15 15] [16 16]〉, which provides us with an
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alternative expression of cis/trans-isomerism on the basis of the two pairs of enantiomers

[15 15] and [16 16]. Finally, there appear five promolecules, i.e., 15, 15, 16, 16, and

17, if we do not take account of such brackets. These values are consistent with the data

collected in [θ̈]4-row of Table 4.

4.4.3 Cyclopropane derivatives with achiral and chiral proligands

Tables 5 (the partitions [θ̈]12–[θ̈]39) and 6 (the partitions [θ̈]40–[θ̈]55) collect the enumeration

results of cyclopropanes with achiral and chiral proligands. Note again that the six integers

at the first part of each partition are concerned with achiral proligands, while the six

integers at the next part are concerned with chiral proligands (cf. Eq. 23).

As a typical example, let us examine the [θ̈]13-row of Table 5, which shows the data of

cyclopropanes with the composition H4p̈2. Note that the composition H4p̈2 corresponds

to H4p2, H4p2, and H4pp during 3D enumeration under D3, D3h, and D3hσ̃Î (cf. the

set of ligand-inventory functions represented by Eqs. 18–20), while it degenerates into a

single term during 2D (graph) enumeration under D̃3hσ̃Î and
˜̃
D3hσ̃Î (cf. the single ligand-

inventory function represented by Eq. 27). The isomer-classification diagram of these

cyclopropanes is shown in Figure 5.

Figure 5. Isomer-classification diagram for cyclopropanes with the composition
H4p̈2 (H4p2, H4p2, and H4pp).
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Table 5. Hierarchical Enumeration of Cyclopropane Derivatives with Achiral and
Chiral Proligands (Part 1)

numbers of cyclopropane derivatives

partition under respective groups

T(D3)θ̈
B(D3h)θ̈

B(D
3hσ̃Î

)θ̈ B(D̃
3hσ̃Î

)θ̈ B
(
˜̃
D

3hσ̃Î
)θ̈

(Eq. 21) (Eq. 24) (Eq. 25) (Eq. 28) (Eq. 29)︸ ︷︷ ︸
|Eqs. 18–20

︸ ︷︷ ︸
|Eq. 27

[θ̈]12 = [5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 2 1 1 1 1

[θ̈]13 = [4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] 13 8 6 2 1

[θ̈]14 = [4, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 10 5 3 2 1

[θ̈]15 = [4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0] 20 10 6 2 1

[θ̈]16 = [3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0] 28 14 9 2 1

[θ̈]17 = [3, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 20 10 6 3 1

[θ̈]18 = [3, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] 40 22 12 3 1

[θ̈]19 = [3, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0] 80 40 22 3 1

[θ̈]20 = [3, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] 40 20 10 4 1

[θ̈]21 = [3, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0] 80 40 20 4 1

[θ̈]22 = [3, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] 160 80 40 4 1

[θ̈]23 = [2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] 66 36 22 5 1

[θ̈]24 = [2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0] 252 130 74 5 1

[θ̈]25 = [2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] 60 30 16 6 1

[θ̈]26 = [2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0] 120 60 32 6 1

[θ̈]27 = [2, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0] 480 240 124 6 1

[θ̈]28 = [2, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0] 120 62 32 6 1

[θ̈]29 = [2, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0] 240 120 62 6 1

[θ̈]30 = [2, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0] 120 60 30 9 1

[θ̈]31 = [2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0] 240 120 60 9 1

[θ̈]32 = [2, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] 480 240 120 9 1

[θ̈]33 = [2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] 960 480 240 9 1

[θ̈]34 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0] 120 60 60 15 1

[θ̈]35 = [1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0] 240 120 60 15 1

[θ̈]36 = [1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0] 480 240 120 15 1

[θ̈]37 = [1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0] 960 480 240 15 1

[θ̈]38 = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] 1920 960 480 15 1

[θ̈]39 = [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0] 3840 1920 960 15 1
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Table 6. Hierarchical Enumeration of Cyclopropane Derivatives with Achiral and
Chiral Proligands (Part 2)

numbers of cyclopropane derivatives

partition under respective groups

T(D3)θ̈
B(D3h)θ̈

B(D
3hσ̃Î

)θ̈ B(D̃
3hσ̃Î

)θ̈ B
(
˜̃
D

3hσ̃Î
)θ̈

(Eq. 21) (Eq. 24) (Eq. 25) (Eq. 28) (Eq. 29)︸ ︷︷ ︸
|Eqs. 18–20

︸ ︷︷ ︸
|Eq. 27

[θ̈]40 = [1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0] 32 16 10 1 1

[θ̈]41 = [2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] 46 25 17 2 1

[θ̈]42 = [1, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0] 160 80 42 2 1

[θ̈]43 = [1, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] 80 42 22 2 1

[θ̈]44 = [1, 0, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0] 320 160 84 3 1

[θ̈]45 = [2, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0] 160 80 44 3 1

[θ̈]46 = [2, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0] 80 40 22 3 1

[θ̈]47 = [1, 0, 0, 0, 0, 0, 3, 1, 1, 0, 0, 0] 640 320 160 4 1

[θ̈]48 = [1, 1, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0] 320 160 80 4 1

[θ̈]49 = [1, 1, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0] 160 80 40 4 1

[θ̈]50 = [1, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 0] 960 480 244 6 1

[θ̈]51 = [1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0] 480 244 124 6 1

[θ̈]52 = [1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0] 1920 960 480 9 1

[θ̈]53 = [1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0] 960 480 240 9 1

[θ̈]54 = [1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0] 480 240 120 9 1

[θ̈]55 = [1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0] 240 120 60 9 1

Figure 5 is consistent with the data collected in the [θ̈]13-row of Table 5. Thus, Figure

5 indicates the presence of one pair of braces {· · · }, which contains an equivalence class of

isoskeletomers. These isoskeletomers are equivalent to each other under the action of the

isoskeletal group
˜̃
D3hσ̃Î . Because the equivalence class of isoskeletomers is totally counted

once under
˜̃
D3hσ̃Î , this itemization by a single pair of braces is verified by the value 1 at

the B
(
˜̃
D

3hσ̃Î
)θ̈
-column.

Two pairs of angle brackets 〈· · · 〉 in Figure 5 indicate the presence of two sets of

stereoisomers, i.e., 〈18 18 19 19 20 20 21 21 22 23〉 and 〈24 24 25〉, each of which is

counted once under the action of the stereoisomeric group D̃3hσ̃Î . This is consistent with

the value 2 at the intersection between the [θ̈]13-row and the B(D̃
3hσ̃Î

)θ̈-column.

Six pairs of parentheses (· · · )I−V in Figure 5 indicate the presence of six sets of

RS -stereoisomers, i.e., (18 18 19 19)III, (20 20)II, (21 21)I, (22 23)V, (24 24)II, and

(25)IV, each of which is counted once under the action of the RS -stereoisomeric group
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D3hσ̃Î . This is consistent with the value 6 at the intersection with the B(D
3hσ̃Î

)θ̈-column.

Eight pairs of square brackets [· · · ] in Figure 5 indicate the presence of eight pairs

of (self)-enantiomers, i.e., [18 18], [19 19], [20 20][21 21], [22], [23], [24 24], and [25],

each of which is counted once under the action of the point group D3h. The number

8 is consistent with the value 8 appearing at the intersection between the [θ̈]13-row and

the B(D3h)θ̈
-column in Table 5. The expression (self-)enantiomers is used because there

appear five pairs of enantiomers and three pairs of self-enantiomers (i.e., three achiral

promolecules).

Finally, there appear 13 promolecules in Figure 5, if we do not take account of such

brackets. They are inequivalent under the point group D3. Because each of them is

counted once under D3, the number 13 is consistent with the value 13 appearing at the

intersection between the [θ̈]13-row and the T(D3)θ̈
-column in Table 5.

It should be again noted that the composition H4p̈2 for the partition [θ̈]13 is itemized

into H4p2, H4p2, and H4pp. To draw such isomer-classification diagram as Figure 5

systematically, the itemization concerning p and p is desirable in the enumeration of pairs

of enantiomers (the eight pairs of square brackets [· · · ]) under the point group D3h. For

this purpose, the ligand inventory L3D (Eq. 14) is restricted to L′
3D = {H, p, p}. Thereby,

Eqs. 15–17 are restricted to give the following ligand-inventory functions:

ad = Hd (34)

cd = Hd + 2pd/2pd/2 (35)

bd = Hd + pd + pd. (36)

These ligand-inventory functions are introduced into the CI-CF of the point group D3h

(Eq. 13). The expansion of the resulting equation generates the following generating

function:∑
θ

B′
(D3h)θ̈

Wθ̈ = CI-CF(D3h, $d)

∣∣∣∣
Eqs. 34–36

= H6 +
1

2
(H5p + H5p)

+ 4× 1

2
(H4p2 +H4p2) + 4H4pp

+ 4× 1

2
(H3p3 +H3p3) + 10× 1

2
(H3p2p + H3pp2)

+ 4× 1

2
(H2p4 +H2p4) + 10× 1

2
(H2p3p + H2pp3) + 11H2p2p2
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+
1

2
(Hp5 +Hp5) + 5× 1

2
(Hp4p + Hpp4) + 10× 1

2
(Hp3p2 +Hp2p3)

+
1

2
(p6 + p6) +

1

2
(p5p + pp5) + 4× 1

2
(p4p2 + p2p4) + 3p3p3. (37)

Among the terms appearing in Eq. 37, the terms 4× 1
2
(H4p2+H4p2) and H4pp correspond

to the composition H4p̈2. Because the combined term 1
2
(H4p2 + H4p2) corresponds to a

pair of enantiomers with the composition H4p2 (or H4p2), the coefficient 4 of this combined

term indicates the presence of four pairs of enantiomers, i.e., [18 18], [19 19], [20 20],

and[24 24]. On the other hand, the term H4pp corresponds to a pair of (self-)enantiomers

with composition H4pp. It follows that the coefficient 4 of this term indicates the presence

of four pairs of (self-)enantiomers, which are found to be one pair of enantiomers [21 21]

and three achiral cyclopropanes [22], [23], and [25].

4.4.4 Cyclopropane derivatives with chiral proligands

Table 7 collects the enumeration results of cyclopropanes with chiral proligands and no

achiral proligands, where the partitions [θ̈]56–[θ̈]66 are taken into consideration.

Table 7. Hierarchical Enumeration of Cyclopropane Derivatives with Chiral Proli-
gands and No Achiral Proligands

numbers of cyclopropane derivatives

partition under respective groups

T(D3)θ̈
B(D3h)θ̈

B(D
3hσ̃Î

)θ̈ B(D̃
3hσ̃Î

)θ̈ B
(
˜̃
D

3hσ̃Î
)θ̈

(Eq. 21) (Eq. 24) (Eq. 25) (Eq. 28) (Eq. 29)︸ ︷︷ ︸
|Eqs. 18–20

︸ ︷︷ ︸
|Eq. 27

[θ̈]56 = [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0] 16 9 8 1 1

[θ̈]57 = [0, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0] 64 32 20 1 1

[θ̈]58 = [0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0] 172 88 54 2 1

[θ̈]59 = [0, 0, 0, 0, 0, 0, 4, 1, 1, 0, 0, 0] 320 160 84 2 1

[θ̈]60 = [0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0] 216 108 62 2 1

[θ̈]61 = [0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0] 640 320 168 3 1

[θ̈]62 = [0, 0, 0, 0, 0, 0, 3, 1, 1, 1, 0, 0] 1280 640 320 4 1

[θ̈]63 = [0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0] 984 496 268 5 1

[θ̈]64 = [0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0] 1920 960 488 6 1

[θ̈]65 = [0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 0] 3840 1920 960 9 1

[θ̈]66 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] 7680 3840 1920 15 1

As a typical example for illustrating the enumeration results of Table 7, let us examine

its [θ̈]56-row, which shows the data of cyclopropanes with the composition p̈6 (p6/p6,
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p5p/pp5, p4p2/p2p4, and p3p3). The isomer-classification diagram of these cyclopropanes

is shown in Figure 6, which is consistent with the data collected in the [θ̈]56-row of Table

7.

Figure 6. Isomer-classification diagram for cyclopropanes with the composition p̈6

(p6/p6, p5p/pp5, p4p2/p2p4, and p3p3).

Figure 6 indicates the presence of an equivalence class of isoskeletomers, as surrounded

by a pair of braces {· · · }. Because the equivalence class of isoskeletomers is counted once

under the isoskeletal group
˜̃
D3hσ̃Î , the value 1 at the intersection between the [θ̈]56-row

and the B
(
˜̃
D

3hσ̃Î
)θ̈
-column is verified diagrammatically.

One pair of angle brackets 〈· · · 〉 in Figure 6 indicates the presence of one set of ste-

reoisomers, which is counted once under the action of the stereoisomeric group D̃3hσ̃Î .

This is consistent with the value 1 at the intersection between the [θ̈]56-row and the

B(D̃
3hσ̃Î

)θ̈-column.

Eight pairs of parentheses (· · · )I−IV in Figure 6 indicate the presence of eight quadru-

plets of RS -stereoisomers, i.e., (26 26)II, (27 27)II, (28 28)II, (29 29)II, (30 30 31 31)III,

(32)IV, (33)IV, and (34 34)I, each of which is counted once under the action of the

RS -stereoisomeric group D3hσ̃Î . This is consistent with the value 8 at the intersection

between the [θ̈]56-row and the B(D
3hσ̃Î

)θ̈-column.
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Nine pairs of square brackets [· · · ] in Figure 6 indicate the presence of nine pairs of

(self)-enantiomers, i.e., [26 26], [27 27], [28 28], [29 29], [30 30], [31 31], [32], [33],

and [34 34], each of which is counted once under the action of the point group D3h. The

number 9 is consistent with the value 9 appearing at the intersection between the [θ̈]56-row

and the B(D3h)θ̈
-column in Table 5.

Finally, there appear 16 promolecules in Figure 6, if we do not take account of such

brackets. They are inequivalent under the point group D3. Because each of them is

counted once under D3, the number 16 is consistent with the value 16 appearing at the

the intersection between the [θ̈]56-row and the T(D3)θ̈
-column in Table 5.

The partition [θ̈]56 (p̈
6) is itemized into p6/p6, p5p/pp5, p4p2/p2p4, and p3p3. The effect

of this itemization is evaluated by the last row of Eq. 37. The term 1
2
(p6 + p6) indicates

the presence of one pair of enantiomers with the composition p6/p6, i.e., [26 26]. The

term 1
2
(p5p+pp5) indicates the presence of one pair of enantiomers with the composition

p5p/pp5, i.e., [27 27]. The term 4× 1
2
(p4p2 +p2p4) indicates the presence of four pairs of

enantiomers with the composition p4p2/p2p4, i.e., [28 28], [29 29], [30 30], and [31 31].

The term 3p3p3 of Eq. 37 indicates the presence of three pairs of (self-)enantiomers with

the composition p3p3, i.e., [32], [33], and [34 34].

4.4.5 Pólya’s enumeration method as a special case of the present approach

The use of the single ligand-inventory function (Eq. 27) results in the degeneration of the

stereoisomeric group D̃3hσ̃Î (Eq. 8) into the following group:

D̃3σ̃ = D3σ̃ +D3σ̃σ̃14 +D3σ̃σ̃25 +D3σ̃σ̃36, (38)

which consists of permutations without reflections. Note that the RS -permutation group

D3σ̃ (Eq. 4) is used to generate the coset decomposition of D̃3σ̃ (Eq. 38) by adopting

the same set of transversals contained in Eq. 8. The order of D̃3σ̃ is calculated to be 48,

which is a half of the order 96 of D̃3hσ̃Î . The generator set cD3s of the D̃3σ̃ is obtained

by omitting the permutation (7,8) from the generator set of D̃3hσ̃Î (cD3hsI shown in

Table 3). Thereby, the corresponding CI-CF (CI-CF(D̃3σ̃, bd)) denoted by the symbol

CICF cD3s is obtained as follows:

gap> Read("c:/fujita0/fujita2017/D3hsI-GAP/calc-GAP/CICFgenCC.gapfunc");

gap> cD3s := Group([(3,6), (2,3)(5,6), (1,2)(4,5)]);

Group([ (3,6), (2,3)(5,6), (1,2)(4,5) ])

gap> CICF_cD3s := CalcConjClassCICF(cD3s, 6, 6);

1/48*b_1^6+1/16*b_1^4*b_2+3/16*b_1^2*b_2^2+1/8*b_1^2*b_4+7/48*b_2^3+1/8*b_2*b_4+1/6*b_3^2+1/6*b_6
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By introducing Eq. 27 into the CI-CF (CICF cD3s), we obtain the following generating

function: ∑
θ̈

B(D̃3σ̃)θ̈
Wθ̈ = CI-CF(D̃3σ̃, bd)

∣∣∣∣
Eq. 27

. (39)

Because of the degenerate nature from Eq. 8 to Eq. 38, the comparison between Eq. 28 and

Eq. 39 results in the equality between B(D̃
3hσ̃Î

)θ̈ = B(D̃3σ̃)θ̈
with respect to the coefficients

of Wθ̈.

Note that the single ligand-inventory function (Eq. 27) for stereoisomer enumeration

(2D enumeration) is regarded as degenerating into bd, as found in the resulting CICF cD3s.

Strictly speaking, the sphericity index bd requires Eq. 17 or Eq. 20, if we aims at 3D

enumeration.

For the purpose of using Pólya’s enumeration method [29,30], the cyclopropane skele-

ton 1 as a 3D structure is converted into another skeleton 1g as a graph (a 2D structure),

as shown in Figure 7. The six positions of 1g are controlled by the permutation group

isomorphic to D̃3σ̃ (Eq. 38). Note, however, that the epimerization operations σ̃14, σ̃25,

and σ̃36 for characterizing the epimerizations of 1 (3D operations) are now regarded as

permutations of 1g (2D operations) and that such a reflection as σh ∼ (1 4)(2 5)(3 6) (as

an element of the point group D3h) for the 3D skeleton 1 is replaced by such a permu-

tation as σ̃h ∼ (1 4)(2 5)(3 6) (as an element of the RS -permutation group D3σ̃) in the

case of the graph 1g.

Figure 7. Cyclopropane skeletons as a 3D structure and as a graph (2D structure)

Because the function CycleIndex is equipped originally in the GAP system, the

Pólya’s cycle index (CI(D̃3σ̃, xd)) denoted by the symbol CI cD3s is obtained as follows:

gap> cD3s := Group([(3,6), (2,3)(5,6), (1,2)(4,5)]);

Group([ (3,6), (2,3)(5,6), (1,2)(4,5) ])

gap> CI_cD3s := CycleIndex(cD3s);

1/48*x_1^6+1/16*x_1^4*x_2+3/16*x_1^2*x_2^2+1/8*x_1^2*x_4+7/48*x_2^3+1/8*x_2*x_4+1/6*x_3^2+1/6*x_6

Pólya used the concept of coronas (wreath products) to treat the graph 1g under the

title topological interpretations in Section 56 of [29,30]. Thus, the triangular skeleton of 1g
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is regarded as being controlled by the symmetric group of degree 3 (S[3], S3) and each of

the methylene units (1–C–4, 2–C–5, and 3–C–6 units) is regarded as being controlled by

the symmetric group of degree 2 (S[2], S2). Thereby, the graph 1g is totally controlled by

the corona (S[3][S[2]], S2S3), which gives the corresponding cycle index (CI(S[3][S[2]], xd))

(cf. Eq. 3.1 of [29,30]). The equivalence between Pólya’s treatment (Section 56 of [29,30])

and the degenerate case of the present approach is confirmed by the GAP system, where

the isomorphism between D̃3σ̃ (cD3s) and S[3][S[2]] (S2S3) is shown by using the GAP

function IsomorphismGroups as follows:
gap> cD3s := Group([(3,6), (2,3)(5,6), (1,2)(4,5)]);;

gap> S3 := Group([(1,2,3), (1,2)]);;

gap> S2 := Group([(1,2)]);;

gap> S2S3 := WreathProduct(S2, S3);

Group([ (1,2), (3,4), (5,6), (1,3,5)(2,4,6), (1,3)(2,4) ])

gap> IsomorphismGroups(cD3s,S2S3);

[ (3,6), (2,3)(5,6), (1,2)(4,5) ] -> [ (1,2), (1,3)(2,4), (3,5)(4,6) ]

gap> CI_S2S3 := CycleIndex(S2S3);

1/48*x_1^6+1/16*x_1^4*x_2+3/16*x_1^2*x_2^2+1/8*x_1^2*x_4+7/48*x_2^3+1/8*x_2*x_4+1/6*x_3^2+1/6*x_6

The resulting CI (CI S2S3) obtained by CycleIndex(S2S3) is identical with the above

CI (CI cD3s) obtained by CycleIndex(cD3s).

For the purpose of calculating a generating function, we use the following inventory

function:

xd = Hd +Ad + Bd + Cd +Dd +Vd + p̈d + q̈d + r̈d + s̈d + ẗd + üd, (40)

which is obtained by placing xd = ad = cd = bd in Eq. 27. By introducing Eq. 40 into the

CI (CI cD3s or CI S2S3), we obtain the following generating function:∑
θ̈

B′
(D̃3σ̃)θ̈

Wθ̈ = CI(D̃3σ̃, xd)

∣∣∣∣
Eq. 40

. (41)

If we place bd = xd, the CI for D̃3σ̃ (CI(D̃3σ̃, xd), CI cD3s) in Eq. 41 is formally

identical with the CI-CF for D̃3σ̃ (CI-CF(D̃3σ̃, bd), CICF cD3s) in Eq. 28. Hence, Eq. 39

(for 3D structures) and Eq. 41 (for graphs) are formally equal to each other, so long as

Eq. 27 for bd as a single ligand-inventory function is equal to Eq. 40 for xd. Hence, the

coefficient B(D̃3σ̃)θ̈
of the composition Wθ̈ in Eq. 39 is equal to the coefficient B′

(D̃3σ̃)θ̈
of

Wθ̈ in Eq. 41. In summary, we obtain B′
(D̃3σ̃)θ̈

= B(D̃3σ̃)θ̈
= B(D̃

3hσ̃Î
)θ̈ with respect to the

coefficients of Wθ̈. As a result, Pólya’s enumeration method based on the CI for D̃3σ̃

(CI(D̃3σ̃, xd), CI cD3s) is concluded to be a special case of Fujita’s proligand method

based on the CI-CF for D̃3hσ̃Î (CI-CF(D̃3hσ̃Î , $d), CICF cD3hsI) via the CI-CF for D̃3σ̃

(CI-CF(D̃3σ̃, bd), CICF cD3s). The discussions described above show that this conclusion

holds true in general.
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5 Conclusion

Group hierarchy for characterizing a cyclopropane skeleton with six substitution posi-

tions has been discussed by defining the point group D3h (order 12) for enantiomerism,

the RS -stereoisomeric group D3hσ̃Î (order 24) for RS -stereoisomerism, the stereoisomeric

group D̃3hσ̃Î (order 96) for stereoisomerism, and the isoskeletal group
˜̃
D3hσ̃Î (order 1440)

for isoskeletomerism. These groups are constructed successively by starting from the point

group D3, where each group is defined by the coset decomposition concerning its sub-

group. They are generated as the corresponding combined-permutation representations

of degree 8 based on respective sets of generators, where permutation representations of

degree 6 are combined with the mirror-permutation representations of degree 2. Thereby,

hierarchical enumeration of cyclopropane derivatives is conducted by calculating cycle in-

dices with chirality fittingness (CI-CFs), which consists of sphericity indices (SIs) ad, cd,

and bd. For the purpose of enumerating cyclopropane derivatives under the point groups

D3 and D3h as well as under the RS -stereoisomeric group D3hσ̃Î , a set of three ligand-

inventory functions for SIs is defined to accomplish 3D enumerations. For the purpose of

2D-based enumerations under the stereoisomeric group D̃3hσ̃Î and under the isoskeletal

group
˜̃
D3hσ̃Î , a single ligand-inventory function is used in accord with the degeneration

of the SIs (ad = cd = bd). The enumeration results are discussed systematically in terms

of isomer-classification diagrams.

Appendix A. Source list of enumD3hsI-stsk.gap

for enumerating cyclopropane derivatives

The following program for combinatorial enumeration of cyclopropane derivatives with

achiral proligands is stored in a file named enumD3hsI-stsk.gap (an arbitrary name),

which is placed in a work directory (c:/fujita0/fujita2017/D3hsI-GAP/calc-GAP/,

an arbitrary name). To execute this file by the GAP system [23], the first line commented

out by the # symbol is copied and paste after the gap> prompt in the command prompt

of the Windows operating system. For the purpose of using the GAP function calcCoef-

fGen for calculating CI-CFs, the file named CICFgenCC.gapfunc [25] is loaded by means

of the function Read. The output is stored in the log file named enumD3hsI-stsklog

(an arbitrary name), which contains the data for constructing Table 4 (the partitions
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[θ̈]1–[θ̈]11). For the purpose of calculating the data for Tables 5 (the partitions [θ̈]12–[θ̈]39),

6 (the partitions [θ̈]40–[θ̈]55), and 7 (the partitions [θ̈]56–[θ̈]66), the respective partitions

are loaded in place of the partitions [θ̈]1–[θ̈]11 shown in this source list.

#Read("c:/fujita0/fujita2017/D3hsI-GAP/calc-GAP/enumD3hsI-stsk.gap");

LogTo("c:/fujita0/fujita2017/D3hsI-GAP/calc-GAP/enumD3hsI-stsklog.txt");

Read("c:/fujita0/fujita2017/D3hsI-GAP/calc-GAP/CICFgenCC.gapfunc"); #Loading of CICFgenCC.gapfunc

D3 := Group([(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]);

CICF_D3 := CalcConjClassCICF(D3, 6, 8);

D3h := Group([(2,3)(5,6)(7,8), (1,2)(4,5)(7,8), (1,4)(2,5)(3,6)(7,8)]);

CICF_D3h := CalcConjClassCICF(D3h, 6, 8);

D3hsI := Group([(7,8), (2,3)(5,6), (1,2)(4,5), (1,4)(2,5)(3,6)]);

CICF_D3hsI := CalcConjClassCICF(D3hsI, 6, 8);

cD3hsI := Group([(7,8), (3,6), (2,3)(5,6), (1,2)(4,5)]);

CICF_cD3hsI := CalcConjClassCICF(cD3hsI, 6, 8);

ccD3hsI := Group([(7,8), (5,6), (4,5), (3,4), (2,3), (1,2)]);

CICF_ccD3hsI := CalcConjClassCICF(ccD3hsI, 6, 8);

H := Indeterminate(Rationals, "H"); V := Indeterminate(Rationals, "V");

A := Indeterminate(Rationals, "A"); B := Indeterminate(Rationals, "B");

C := Indeterminate(Rationals, "C"); D := Indeterminate(Rationals, "D");

p := Indeterminate(Rationals, "p"); q := Indeterminate(Rationals, "q");

r := Indeterminate(Rationals, "r"); s := Indeterminate(Rationals, "s");

t := Indeterminate(Rationals, "t"); u := Indeterminate(Rationals, "u");

b_1 := Indeterminate(Rationals, "b_1"); b_2 := Indeterminate(Rationals, "b_2");

b_3 := Indeterminate(Rationals, "b_3"); b_4 := Indeterminate(Rationals, "b_4");

b_5 := Indeterminate(Rationals, "b_5"); b_6 := Indeterminate(Rationals, "b_6");

a_1 := Indeterminate(Rationals, "a_1"); a_2 := Indeterminate(Rationals, "a_2");

a_3 := Indeterminate(Rationals, "a_3"); a_4 := Indeterminate(Rationals, "a_4");

a_5 := Indeterminate(Rationals, "a_5"); a_6 := Indeterminate(Rationals, "a_6");

c_2 := Indeterminate(Rationals, "c_2"); c_4 := Indeterminate(Rationals, "c_4");

c_6 := Indeterminate(Rationals, "c_6");

aa_1 := H + A + B + C + D + V;

aa_2 := H^2 + A^2 + B^2 + C^2 + D^2 + V^2;

aa_3 := H^3 + A^3 + B^3 + C^3 + D^3 + V^3;

aa_4 := H^4 + A^4 + B^4 + C^4 + D^4 + V^4;

aa_5 := H^5 + A^5 + B^5 + C^5 + D^5 + V^5;

aa_6 := H^6 + A^6 + B^6 + C^6 + D^6 + V^6;

bb_1 := H + A + B + C + D + V + 2*(p + q + r + s + u + t);

bb_2 := H^2 + A^2 + B^2 + C^2 + D^2 + V^2 + 2*(p^2 + q^2 + r^2 + s^2 + t^2 + u^2);

bb_3 := H^3 + A^3 + B^3 + C^3 + D^3 + V^3 + 2*(p^3 + q^3 + r^3 + s^3 + t^3 + u^3);

bb_4 := H^4 + A^4 + B^4 + C^4 + D^4 + V^4 + 2*(p^4 + q^4 + r^4 + s^4 + t^4 + u^4);

bb_5 := H^5 + A^5 + B^5 + C^5 + D^5 + V^5 + 2*(p^5 + q^5 + r^5 + s^5 + t^5 + u^5);

bb_6 := H^6 + A^6 + B^6 + C^6 + D^6 + V^6 + 2*(p^6 + q^6 + r^6 + s^6 + t^6 + u^6);

cc_2 := H^2 + A^2 + B^2 + C^2 + D^2 + V^2 + 2*p^2 + 2*q^2 + 2*r^2 + 2*s^2 + 2*t^2 + 2*u^2;

cc_4 := H^4 + A^4 + B^4 + C^4 + D^4 + V^4 + 2*p^4 + 2*q^4 + 2*r^4 + 2*s^4 + 2*t^4 + 2*u^4;

cc_6 := H^6 + A^6 + B^6 + C^6 + D^6 + V^6 + 2*p^6 + 2*q^6 + 2*r^6 + 2*s^6 + 2*t^6 + 2*u^6;

aaa_1 := H + A + B + C + D + V + p + q + r + s + t + u;

aaa_2 := H^2 + A^2 + B^2 + C^2 + D^2 + V^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2;

aaa_3 := H^3 + A^3 + B^3 + C^3 + D^3 + V^3 + p^3 + q^3 + r^3 + s^3 + t^3 + u^3;

aaa_4 := H^4 + A^4 + B^4 + C^4 + D^4 + V^4 + p^4 + q^4 + r^4 + s^4 + t^4 + u^4;

aaa_5 := H^5 + A^5 + B^5 + C^5 + D^5 + V^5 + p^5 + q^5 + r^5 + s^5 + t^5 + u^5;

aaa_6 := A^6 + B^6 + C^6 + D^6 + H^6 + V^6 + p^6 + q^6 + r^6 + s^6 + t^6 + u^6;

bbb_1 := H + A + B + C + D + V + p + q + r + s + t + u;

bbb_2 := H^2 + A^2 + B^2 + C^2 + D^2 + V^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2;

bbb_3 := H^3 + A^3 + B^3 + C^3 + D^3 + V^3 + p^3 + q^3 + r^3 + s^3 + t^3 + u^3;

bbb_4 := H^4 + A^4 + B^4 + C^4 + D^4 + V^4 + p^4 + q^4 + r^4 + s^4 + t^4 + u^4;

bbb_5 := H^5 + A^5 + B^5 + C^5 + D^5 + V^5 + p^5 + q^5 + r^5 + s^5 + t^5 + u^5;

bbb_6 := H^6 + A^6 + B^6 + C^6 + D^6 + V^6 + p^6 + q^6 + r^6 + s^6 + t^6 + u^6;

ccc_2 := H^2 + A^2 + B^2 + C^2 + D^2 + V^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2;

ccc_4 := H^4 + A^4 + B^4 + C^4 + D^4 + V^4 + p^4 + q^4 + r^4 + s^4 + t^4 + u^4;

ccc_6 := H^6 + A^6 + B^6 + C^6 + D^6 + V^6 + p^6 + q^6 + r^6 + s^6 + t^6 + u^6;
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f_D3 := Value(CICF_D3,

[a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3, b_4, b_5, b_6, c_2, c_4, c_6],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, cc_2, cc_4, cc_6]);;

f_D3h := Value(CICF_D3h,

[a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3, b_4, b_5, b_6, c_2, c_4, c_6],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, cc_2, cc_4, cc_6]);;

f_D3hsI := Value(CICF_D3hsI,

[a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3, b_4, b_5, b_6, c_2, c_4, c_6],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, cc_2, cc_4, cc_6]);;

f_cD3hsI := Value(CICF_cD3hsI,

[a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3, b_4, b_5, b_6, c_2, c_4, c_6],

[aaa_1, aaa_2, aaa_3, aaa_4, aaa_5, aaa_6, bbb_1, bbb_2, bbb_3, bbb_4, bbb_5, bbb_6,

ccc_2, ccc_4, ccc_6]);;

f_ccD3hsI := Value(CICF_ccD3hsI,

[a_1, a_2, a_3, a_4, a_5, a_6, b_1, b_2, b_3, b_4, b_5, b_6, c_2, c_4, c_6],

[aaa_1, aaa_2, aaa_3, aaa_4, aaa_5, aaa_6, bbb_1, bbb_2, bbb_3, bbb_4, bbb_5, bbb_6,

ccc_2, ccc_4, ccc_6]);;

list_partitions :=[];

calcCoeffGenD3hsI := function(list_partitions)

local list_ligand_L, l_pp;

list_ligand_L := [H,A,B,C,D,V,p,q,r,s,t,u];

l_pp := list_partitions;

Print("$", l_pp, "$ & ",

calcCoeffGen(f_D3, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_D3h, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_D3hsI, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_cD3hsI, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_ccD3hsI, list_ligand_L, list_partitions), " \\\\ \n");

end;

#"Print A6";

calcCoeffGenD3hsI([6,0,0,0,0,0,0,0,0,0,0,0]);

#"Print A5";

calcCoeffGenD3hsI([5,1,0,0,0,0,0,0,0,0,0,0]);

#"Print A4";

calcCoeffGenD3hsI([4,2,0,0,0,0,0,0,0,0,0,0]);

calcCoeffGenD3hsI([4,1,1,0,0,0,0,0,0,0,0,0]);

#"Print A3";

calcCoeffGenD3hsI([3,3,0,0,0,0,0,0,0,0,0,0]);

calcCoeffGenD3hsI([3,2,1,0,0,0,0,0,0,0,0,0]);

calcCoeffGenD3hsI([3,1,1,1,0,0,0,0,0,0,0,0]);

#"Print A2";

calcCoeffGenD3hsI([2,2,2,0,0,0,0,0,0,0,0,0]);

calcCoeffGenD3hsI([2,2,1,1,0,0,0,0,0,0,0,0]);

calcCoeffGenD3hsI([2,1,1,1,1,0,0,0,0,0,0,0]);

#"Print A1";

calcCoeffGenD3hsI([1,1,1,1,1,1,0,0,0,0,0,0]);

LogTo();
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