
A Generation Algorithm for Nanojoins
Gunnar Brinkmann, Dieter Mourisse

Applied Mathematics, Computer Science and Statistics
Ghent University Krijgslaan 281-S9

9000 Ghent, Belgium

Gunnar.Brinkmann@UGent.be , Dieter.Mourisse@UGent.be

(Received April 19, 2017)

Abstract

Nanojoins or nanojunctions are substructures of large Carbon molecules that
connect two or more nanotubes with the same or different tube parameters. Ex-
cept in the trivial case where two tubes with the same parameters are connected,
nanojoins also contain one or more heptagons in addition to hexagons and possibly
pentagons like they also occur in fullerenes and nanotubes.

We consider nanojoins as isomorphic when the infinite molecules given by the
join connected to infinite tubes are isomorphic. Even when fixing the number of
tubes to be connected, the tube parameters, and the number of pentagons and
heptagons, there are in most cases infinitely many non-isomorphic nanojoins, so
complete enumeration is impossible unless also a parameter restricting the size of the
join is added. In this article we describe an algorithm for complete enumeration of
non-isomorphic nanojoins for a given set of tube parameters, number of heptagons,
and an upper bound on the number of faces in the join. We also give performance
statistics and results for some parameter sets.

1 Introduction

The study of fullerenes is an important part within the field of chemistry. In 1996, the

Nobel prize for chemistry was awarded for the discovery of the Buckminsterfullerene (also

referred to as the buckyball) by Robert Curl, Richard Smalley and Sir Harry Kroto.

Fullerenes are spherical carbon molecules in which all atoms are carbon atoms and

every atom is connected to three other atoms. All atoms occur in rings of pentagons or

hexagons. The structure of a fullerene can hence be modelled as a 3-regular graph on

the surface of a sphere or – equivalently – in the plane, where all faces are pentagons

or hexagons. As an easy consequence of the Euler formula, every fullerene has exactly

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 78 (2017) 713-736

 ISSN 0340 - 6253

12 pentagons. Various algorithms to generate complete lists of fullerenes with a given

number of atoms have been proposed. The fastest generator at the moment is described

in [2].

Nanotubes are a subclass of fullerenes. Nanotubes contain two areas where 6 pentagons

are relatively close to each other – called nanocaps – connected by a long tube of only

hexagons. The structure of the tube can be described by two parameters (l,m) and is

determined by the caps [5]. For l 6= m and l,m 6= 0 the parameters (l,m) and (m, l)

describe different tubes – or to be exact: tubes that are mirror images of each other. for

l = m, m = 0 or l = 0 the parameters (l,m) and (m, l) describe the same tubes and

are considered to be identical parameters. As the tubes are very long compared to the

small caps, also one side infinite nanotubes are considered – that is caps together with

a one side infinite tube of hexagons. Also for nanocaps and one side infinite nanotubes

generators have been developed. They generate complete lists of nanocaps and one side

infinite nanotubes for given tube parameters. The fastest generator at the moment is

described in [4].

A half-tube is a one side infinite nanotube with the cap removed. For a tube or half-

tube of only hexagons the tube parameters (l,m) – and with them also some physical

properties – are uniquely determined, but for some applications (see [10]) it is necessary

to combine half-tubes with different parameter sets in one molecule and even molecules

with more than two halftubes have been observed in experiment [7]. In such molecules

substructures called nanojoins (or nanojunctions) containing heptagons, and in most cases

also hexagons and possibly also pentagons are involved. Nanojoins can join two or more

half-tubes with the same or different parameters.

Though nanojoins are known to be potentially important for applications and have

also been observed in nature, until now no generators for complete classes of nanojoins for

given parameters were developed and only examples without any claim of completeness

have been published (see e.g. [8], [11], [12]).

It is an easy consequence of the Euler formula (see e.g. [3]) that a nanojoin joining k

half-tubes must have p+ 6(k − 2) heptagons if it contains p pentagons.

Constructions and theorems in [3] give the following theorem:

Theorem 1.1. For any k ≥ 3 parameter sets (l1,m1), . . . , (lk,mk), any p ≥ 0 and h =

p+6(k−2) an infinite number of non-isomorphic infinite plane graphs containing exactly k

-714-

half-tubes with parameters (l1,m1), . . . , (lk,mk), p pentagons and h = p+6(k−2) heptagons

exist. For k = 2 half-tubes there are also infinitely many such graphs if p ≥ 2, no graphs

at all if (l1,m1) = (l2,m2) and p = s = 1 and at least one graph if (l1,m1) 6= (l2,m2) and

p = h = 1.

It is still open whether for p = h = 1 and two parameter sets (l1,m1) 6= (l2,m2) the

infinite plane graphs are uniquely determined.

We will describe an algorithm for complete enumeration of all nanojoins for given

(l1,m1), . . . , (lk,mk), p ≥ 0 and h = p+6(k− 2) where all non-hexagons are contained in

a substructure with at most f faces. Without the additional parameter describing the lo-

cality of the non-hexagon faces complete enumeration is not possible as (see Theorem 1.1)

in most cases there are infinitely many nanojoins.

2 Preliminaries

Nanojoins are finite substructures of infinite plane graphs. We will model the edges

connecting it to the infinite rest by semi-edges which start at a vertex v but have no

endpoint. We denote these edges as singletons {v} and call an edge e with two endpoints

a complete edge in cases where we want to emphasize that e is not a semi-edge. If we

talk about the size of a face, we always mean the number of vertices in the boundary, so

semi-edges do not contribute to the size of a face.

Let G = (V,E) be a simple graph with vertex set V and edge set E ⊆
(
V
2

)
∪
(
V
1

)
.

We denote the degree of a vertex v not counting semi-edges as deg(v) and the full

degree also counting semi-edges as deg(v).

In a nanojoin there can be at most one semi-edge at a vertex v. A semi-edge {v}

will be represented in figures by a short line segment with one end at vertex v. See, for

example, Figure 1.

For various constructions it will be useful to orient the complete edges and interpret

each undirected edge as two oppositely directed edges. We write [u, v] for the edge {u, v}

oriented from u to v. Semi-edges {v} correspond to only one directed edge [v].

Definition 1. A face in a plane graph is a sequence [v0, v1], [v1, v2], . . . , [vk, v0] of di-

rected edges so that for 0 ≤ i ≤ k there are no complete edges in clockwise order

between [vi, v(i−1) mod(k+1)] and [vi, v(i+1) mod(k+1)]. If there is a semi-edge [vi] between

-715-

[vi, v(i−1) mod(k+1)] and [vi, v(i+1) mod(k+1)] we say that this edge belongs to f . Informally

speaking such a cycle represents the face on its left.

The degree sequence starting at v0 of a face F = [v0, v1], [v1, v2], . . . , [vk, v0] (we write

border(F) = v0, v1, . . . , vn) is the string

deg(v0), deg(v1), . . . , deg(vn).

If no explicit starting vertex is given, the string is interpreted as a cyclic sequence.

With these notations we can now give a formal definition of a nanojoin. Note that we

require that two faces to which halftubes can be attached do not share an edge, but are

separated by pentagons, hexagons or heptagons.

Definition 2. A connecting face in a graph is a face with a degree sequence that can

be written as (3, 2)l(2, 3)m for some l,m ≥ 0. We sometimes abbreviate such degree

sequences as (l,m).

A nanojoin is a plane graph with the following properties:

• all vertices v have full degree deg(v) = 3

• all faces are pentagons, hexagons, heptagons or connecting faces

• there are at least two connecting faces

• all semi-edges are contained in connecting faces

• no two connecting faces share an edge

It turned out that for the generation of nanojoins a combination of a bottom up and

a top down approach performed best for most parameter combinations. We will first

describe the bottom up part of this combined approach.

3 Bottom up part

In this part, we will not generate nanojoins, but simply connected patches that can serve

as building blocks to form nanojoins in the top down part. We will focus on patches with

at most 3 pentagons. An extension of this algorithm that can also generate nanojoins was

developed in [9]. This extension uses additional operations that allow the construction

-716-

of patches and joins with more than 3 pentagons, but in many cases slow down the

generation when applied. In combination with the top down part it turned out to be

faster to restrict the bottom up part – that will only be used to develop bounding criteria

– to at most 3 pentagons. This restriction is only for this part and has no impact on the

number of pentagons allowed in the combined approach. In this article we will use the

bottom up approach described in [9] only as a fairly independent check of the results and

not describe all details.

Definition 3. • A patch is a 2-connected plane graph where all vertices have full

degree 3, all faces except one (the outer face) are pentagons, hexagons or heptagons

and all semi-edges are in the outer face.

• A pseudo-convex patch is a patch where no two vertices without semi-edges share

an edge in the boundary.

• A marked pseudo-convex patch (short mpc-patch) is a pseudo-convex patch P to-

gether with a vertex v in the outer face of P so that the degree sequence of the outer

face starting at v is lexicographically maximal. Unless the patch is trivial – that is:

a single face – lexicographically maximal sequences always start at a vertex with-

out semi-edges, but there may be more than one vertex from which the sequence is

maximal.

v5

v6

v4

v0

v7 v8

v3 v2

v1

Figure 1. A marked pseudo-convex patch. The vertex with the mark is drawn as
a square.

Lemma 3.1. If a patch has p pentagons, h heptagons and the number of vertices in the

boundary with degree 2, resp. 3 is denoted as n2, resp. n3, then

n2 − n3 = h+ 6− p

-717-

.

Proof. The outer face has size n2 + n3 and we denote the number of hexagons by s. By

summing up the sizes of all faces we count every complete edge twice, so with Ec the set

of complete edges we get

2|Ec| = 7 ∗ h+ 6 ∗ s+ 5 ∗ p+ n2 + n3

Each vertex has full degree 3. By taking semi-edges into account we get

3|V | = 2|Ec|+ n2

Finally the number of faces |F | is

|F | = p+ s+ h+ 1

Inserting these formulas into the Euler formula |V | − |Ec| + |F | = 2 for the plane we

get the desired result.

Due to this lemma mpc-patches with at most 5 pentagons have more vertices with

degree 2 in the boundary than vertices with degree 3. So they have at least one position

with two neighbouring vertices of degree 2. As they are pseudo-convex, between two such

positions the degrees are alternately 3 and 2 and we can code the boundary sequence

uniquely in a shorter way by counting the vertices of degree three between the pairs of

vertices of degree two.

Definition 4. If the cyclic boundary sequence of an mpc-patch P can be written as

2, (2, 3)k1 , 2, (2, 3)k2 , 2, . . . , (2, 3)kl with ki ∈ N for 1 ≤ i ≤ l, then the cyclic sequence

(k1, k2, . . . , kl) is called the border code of P .

Fixing a pair of neighbouring vertices of degree 2 we have a string again and can

equivalently define the position of the mark as on a first vertex of degree 3 in a part of

the boundary corresponding to the first entry in a lexicographically maximal (non-cyclic)

border code.

An example for the border code is given in Figure 2.

-718-

2, 0, 2, 0, 1

Figure 2. The border code of an mpc-patch

First we will describe a method to generate all non-isomorphic mpc-patches with a

given number (p ≤ 3) of pentagons, hexagons and heptagons.

Definition 5. A cut path in a non-trivial mpc-patch P with mark v is a path that starts

at the edge e incident with v that is not in the boundary, ends at another boundary vertex

and goes alternately first right and then left.

Theorem 3.2. Each non-trivial mpc-patch P with at most 3 pentagons has a unique cut

path.

Proof. Note that P has at most 3 pentagons.

We start at the interior edge of the mark s0 and construct a maximal path that goes

alternately right and left without meeting another boundary vertex or using a vertex

twice. In case the next vertex would be a boundary vertex (which would be different from

s0), we have a cut path. We have to prove that the other case – that is: the next vertex

would already be contained in the path – cannot occur.

Suppose that we want to add an edge [sn, w] to the path S = s0, s1, . . . , sn and w = si,

which implies i > 0. Then S = si, si+1, . . . , sn is a cycle in the patch P and the part that

does not contain the outer face is a patch P ′ with boundary S. As the vertices from si+1

to sn have alternating degrees, we conclude that in this part, the number of vertices of

degree 2 and 3 can differ by at most one and together with si we get for the numbers

-719-

n2, n3 of vertices of degree 2, resp. 3 in the boundary of P ′ that n2 − n3 ≤ 2. With

Lemma 3.1 we get

2 ≥ h+ 6− p⇒ p ≥ 4

in contradiction to our assumption.

The construction of structures can often best be described by the inverse operation –

the reduction. We will now describe how an mpc-patch P with at most 3 pentagons can

be uniquely reduced to two smaller mpc-patches.

Let P be an mpc-patch P with at most 3 pentagons and let S be the unique cut

path. As S has two endpoints on the boundary cycle of P , these split the cycle into

two parts – B1 and B2. B1 ∪ S and B2 ∪ S form the boundaries of two patches Q1, Q2

that together contain all bounded faces of P . As the degrees in the interior of the cut

path are alternating and as the endpoints have degree 2 in the boundary, Q1 and Q2 are

pseudo-convex.

If Q1, Q2 have a unique vertex that can be marked, it is obvious how they can be

transformed into mpc-patches. If the cyclic degree sequence of the boundary is symmetric,

there is more than one vertex giving a lexicographically maximal sequence. As the marked

vertex v of P is in the boundary of both – Q1 and Q2 – we can take v as a reference point

and choose the marked vertices of Q1 and Q2 as the first vertices in counter clockwise

direction from v that give a lexicographically maximal sequence. An example of this

reduction principle can be found in Figure 3.

Figure 3. The reduction of an mpc-patch.

-720-

Applying this recursively to reduced parts with more than one face, we get smaller

and smaller pieces and finally get a unique decomposition of each mpc-patch into faces.

Reversing this reduction means that we start with faces and build increasingly larger

patches.

Since cut paths go alternately right and left and start after a pair of degree 2 ver-

tices, the border code of the reduced patch on the right hand side of the cut path has

a subsequence (0, 0, x) for some x. If the entry y after x is 0, the cut path is part of a

subsequence (0, x) or (x + 1) in the left hand patch, if y > 0, the cut path is part of a

subsequence (0, x) in the left hand patch. For the construction this means that only a

small fraction of all patches can serve as right hand patches.

+ −→construction
REJECTED

+ −→construction

←−
reduction

ACCEPTED

Figure 4. Accepting or rejecting an mpc-patch

We will define a construction operation that glues two mpc-patches together so that

every mpc-patch with reduction (P1, P2) is in fact obtained by performing a construction

operation with P1 and P2. Moreover we will only accept a newly constructed mpc-patch

if it was obtained by a construction operation from the unique mpc-patches that would

be the result of its reduction. This way we will only accept every mpc-patch once and

keep the number of mpc-patches that have to be remembered by our algorithm relatively

small. An example of this accepting/rejecting principle can be found in Figure 4.

Algorithm 1 describes the basic procedure to generate all non-isomorphic mpc-patches.

To generate all non-isomorphic mpc-patches with no more than p ≤ 3 pentagons, s

hexagons and h heptagons, only newly created mpc-patches are accepted that meet the

restrictions on the number of pentagons, hexagons and heptagons. Glue paths are paths

in the boundary of mpc-patches along which mpc-patches can be identified. They can be

-721-

described as substrings of the border code. Our knowledge about glue paths implies that

every glue path of the form (0, x) in the right mpc-patch can be glued to a glue path of

the form (0, x) in the left mpc-patch and every glue path of the form (0, x, 0) in the right

mpc-patch can be glued to a glue path of the form (x+ 1) in the left mpc-patch.

Algorithm 1 Bottom up algorithm

1: patches = {pentagon, hexagon, heptagon}
2: current patches = ∅
3: new patches = {pentagon, hexagon, heptagon}
4: while new patches 6= ∅ do
5: current patches = new patches
6: new patches = ∅
7: for each mpc-patch P in current patches do
8: find glue paths in P
9: for each mpc-patch Q in patches do

10: for each pair of corresponding glue paths in P and Q do
11: identify P and Q along the glue path to form R
12: put the mark of R on the first vertex of the glue path
13: if the reduction of R gives P and Q then
14: if R fulfils the restrictions then
15: add R to patches
16: add R to new patches
17: end if
18: end if
19: end for
20: end for
21: end for
22: end while

The number of mpc-patches increases very fast, so that the size of the set patches not

only causes problems due to the memory consumption but especially the for-loop in line

9 of Algorithm 1 gets very time consuming. In order to reduce the number of patches

that have to be stored, we use the following lemma:

Lemma 3.3. If an mpc-patch P belongs to the set current patches during the i-th time

the while loop in line 4 of Algorithm 1 is executed (we call that the i-th iteration), then P

has at least i internal faces.

Proof. In line 3 and 5 it is assured that the statement of the lemma holds for the first

iteration, so assume that it holds for iterations 1, . . . , i − 1. The set current patches in

iteration i is the set new patches at the end of iteration i − 1, so it contains patches in

which patches with i− 1 internal faces are contained, but not the whole patch. So these

patches have at least i internal faces.

-722-

Let nmax denote the upper bound on the number of pentagons, hexagons and heptagons

together and assume that in iteration i we construct an mpc-patch R (line 11) with n

interior faces.

If we combined R with a patch constructed in a later iteration j > i, the result would

have at least n+ j > n+ i faces. If n+ i ≥ nmax, such a combination is not possible, so it

is not necessary to store the patch in the set patches (line 15). As all patches with which

it – and all its descendants – can be combined are already in the list, these combinations

can be constructed recursively without storing the exact structure of the patches. Even

the temporary storage in line 16 can be avoided and only the information needed later

for bounding the top down search must be stored (see section 4). This step can be seen

as switching from a breadth first approach to a depth first approach.

stored patches (4,2);(4,2)

f5 f6 f7 A B

0 50 0 240 532

1 10 1 213 2027

1 20 1 3085 22737

1 30 1 15632 97722

2 10 2 3798 100971

stored patches (6,1);(4,2);(4,2)

f5 f6 f7 A B

0 4 6 231 19094

0 5 6 446 82762

0 6 6 1266 285786

0 7 6 3093 844642

1 3 7 1215 238869

1 4 7 3506 1226207

Table 1. Numbers of stored patches with optimisations (A) and without optimisa-
tions (B).

4 Top down part

While in the bottom up part the algorithm starts with the faces and builds mpc-patches,

in the top down part we start with only the connecting faces and refine this structure by

adding paths. These paths form successively smaller holes that will finally be single faces.

When the holes must be filled with mpc-patches with at most 3 pentagons, the results of

the bottom up part can often be used as bounding criteria – that is: to decide whether

these holes can be filled or not.

Definition 6. A special face in a plane graph is a face that contains semi-edges.

-723-

3

2

3

3

2

2

3

3

f

3

3

3

2

3

Figure 5. The canonical edge in a special face f .

Let f = [v0, v1], [v1, v2], . . . , [vk, v0] be a face in a plane graph. For 1 ≤ i ≤ k + 1

we define the local degree of the edge ei = [vi−1, vimod(k+1)] with respect to the face f ,

denoted as degf (ei), as 2 if there is no edge (in clockwise order) between [vimod(k+1), vi+1]

and [vimod(k+1), v(i−1) mod(k+1)] and 3 otherwise. See Figure 5 for an example.

The local degree sequence is defined accordingly. A directed edge e in a face f is

called canonical (for f), if the local degree sequence of f starting at e is lexicographically

minimal, so unless all edges have local degree 3, a canonical edge always ends at a vertex

with a semi-edge in f . You can see an example of a special face with its canonical edge

in Figure 5. The dotted edges can be real or semi-edges. The numbers correspond to the

local degrees of the edges in the inner face.

A pre-join is a plane connected graph where all vertices have full degree 3 and all faces

are pentagons, hexagons, heptagons or special faces. Special faces f are either marked as

connecting faces or carry pairwise different integer marks on a directed edge e so that the

local degree sequence starting at e is lexicographically minimal. Only special faces with

a local degree sequence of the form (3, 2)l, (2, 3)m can be marked as connecting faces.

Faces with an integer mark on a directed edge still have to be subdivided in order

to get a nanojoin. The marks give the order in which this is done by the algorithm. A

nanojoin for k nanocaps with parameters (l1,m1), . . . , (lk,mk) is a special case of a pre-

join. There is a bijection from the set of cap parameters to the special faces so that the

local degree sequence of the i-th special face is (3, 2)li , (2, 3)mi .

We will now describe a way to uniquely obtain a nanojoin J starting with a marked

pre-join U0. Suppose that N is a join for k caps with parameters (l1,m1), . . . , (lk,mk).

-724-

For each such parameter set (li,mi) a cycle of length 2 ∗ (li +mi) exists with semi-edges

so that the local degree sequence of both faces can be written as (3, 2)li(2, 3)mi .

Let (li,mi) be parameters so that the cycle with local degree sequence (3, 2)li , (2, 3)mi

has smallest possible symmetry among all given parameters. Among those with the same

symmetry choose (li,mi), so that the triple (li +mi, li,mi) is lexicographically maximal.

The graph U0 is a cycle with local degree sequence (3, 2)li , (2, 3)mi canonically marked

with the number 0 on one side and as a connecting face on the other.

Starting from U0 we recursively generate Ui+1 from Ui until a nanojoin is constructed.

Let e = [w, v0] be the marked edge of a pre-join Ui with the highest mark n. First the

mark of e is removed. Starting at v0 a path going alternately right and left into the special

face is added. The end of this path can be (a) another vertex in the special face with

the semi-edge inside the face (in this case the semi-edge is replaced by the last edge of

the path), (b) a vertex of the path that occurs for the second time on the path, or (c)

a vertex of a new cycle with degree sequence (3, 2)lj(2, 3)mj for an index j for which no

connecting cycle was added to the pre-join so far. In case (c) the interior of the cycle will

be marked as a connecting face. See Figure 6, Figure 7 and Figure 8 for examples of these

operations.

These operations possibly create new special faces not marked as connecting faces.

The only new faces that can have the structure of connecting faces are those added in

operation (c) and marked as such. Such special faces are marked with the smallest integers

not yet (or no more) present in the graph. The edge that is marked is the first canonical

edge in clockwise order from a canonically chosen reference edge. We choose this reference

edge as an edge of the path present in all special faces that need a mark. In case (a) and

(c) this is the first edge of the path, in case (b) it is more complicated to describe: if the

path is v0, . . . , vk and j is the first index so that vj = vk, then the reference edge is the

first edge in clockwise direction from [vj, vj−1]. This edge is contained in both new special

faces.

-725-

n

Ui

n n+ 1

Ui+1

Figure 6. Extending a pre-join (a)

Ui

n

n + 1

n

Ui+1

Figure 7. Extending a pre-join (b)

Ui

n

Ui+1

n

Figure 8. Extending a pre-join (c)

Decomposing a given join starting from an edge satisfying the requirements for the

first marked edge in U0, it is immediately clear that every nanojoin can be obtained

-726-

in this way. This implies that applying the recursive extension steps in each possible

way consistently with the initial parameters for the connecting faces and the number of

hexagons, heptagons and pentagons, each nanojoin is constructed at least once.

The decomposition is unique for a given unique U0 as a subgraph of a join. Nevertheless

isomorphic joins are constructed if the parameters (li,mi) chosen for U0 occur at least

twice, we have mi = 0, or we have li = mi – which implies that for all parameters (lk,mk)

we have lk = mk or mk = 0. These isomorphic nanojoins will be filtered out in the final

step where we use a coarser equivalence relation as our concept of isomorphism anyway.

The recursive subdivision of faces with integer marks until all faces not marked as

connecting faces are pentagons, hexagons or heptagons, can be implemented as a stand-

alone program that can generate nanojoins. Nevertheless it turned out that for most

parameter sets it is more efficient to combine it with the bottom up approach that gives

bounding criteria that allow relatively early detection of pre-joins that can’t be completed

to form nanojoins for the given parameters.

5 The combined approach

In the top down approach it often happens that combinations of special faces are con-

structed that can not be filled in with the numbers of pentagons, hexagons or heptagons

given as parameters. An efficient way to predict whether a given combination of special

faces can be filled in, can be obtained from our bottom up approach.

When all nanojoins with p pentagons, s hexagons, and h heptagons are to be generated,

first the bottom up part is applied to generate all mpc-patches for some p′ ≤ min{p, 3},

h′ ≤ h and s′ ≤ s. These results are used to detect a lot of cases where a given special

face can not be filled in. Tests showed that this is more efficient than actually storing the

lists of patches that can be filled in. Instead of storing the mpc-patches themselves, we

store four integers representing the minimum number of pentagons, hexagons, heptagons

and internal vertices of the mpc-patch together with its border code.

All possible border codes are stored in a prefix tree. Vertices of the tree represent

the border code of an mpc-patch. They contain extra information that tells us what the

minimum number of pentagons, hexagons, heptagons and internal vertices for an mpc-

patch with that border code is. It is important to note that those four numbers do not

-727-

necessarily belong to the same mpc-patch, so that according to the information of the

tree it could be possible to fill a certain boundary with the given numbers of pentagons,

hexagons, heptagons and internal vertices, but nevertheless no single patch that fulfils all

requirements exists. An example of a prefix tree can be found in Figure 9.

root

0
1, 0, 0, 0

0

0

0

0

0

0

1

1

0 1

1

0

0

0

2

2

0

1

0
0, 1, 0, 0

0
0, 2, 0, 0

0
1, 1, 0, 0

0
1, 2, 0, 1

0
1, 2, 0, 0

Figure 9. A prefix tree for mpc-patches with at most 1 pentagon, 2 hexagons and
no heptagons

Next we start the top down algorithm. We decide on parameters p′ ≤ min{p, 3}, h′ ≤ h

and s′ ≤ s to be used for the bounding criteria given by the bottom-up algorithm. We keep

track of minimum numbers of faces of every size necessary for parts that have already

been filled in or for which lower bounds are known. When the number of pentagons,

hexagons and heptagons left for the special face U we want to fill in is respecitively

smaller than p′, s′ and h′, we can apply the following optimisation. Whenever we split U ,

we assign numbers of connecting faces to be contained in the new special faces in every

possible way. For those new special faces that are assigned 0 connecting faces and have

to be filled with pseudo-convex patches, we check whether those special faces can be filled

in and whether the sums of the lower bounds for the number of pentagons, hexagons,

heptagons and internal vertices we know to be necessary, is still within the range of the

given parameters.

It may look inefficient to distribute the number of connecting faces between the new

special faces in every possible way and treat those as different pre-joins, as this leads to

a bigger branching factor. Nevertheless tests show that this allows us to discard pre-joins

faster and speeds up the algorithm.

-728-

6 Isomorphism rejection

Joins never occur as isolated molecules but always as substructures of large molecules.

This must be taken into account when defining the concept of equivalent or isomorphic

nanojoins. Adding e.g. an extra ring of hexagons to a connecting face in a nanojoin N

results in a nanojoin N ′ that is obviously not isomorphic to N as a graph, but must be

considered equivalent as a nanojoin as being part of a larger structure – where typically

the tube body attached to the connecting faces is very large compared to the size of the

join. The only difference between these nanojoins is where the boundary between the join

and the tube body is chosen.

Definition 7. • For a nanojoinN we write N̄ for the infinite 3-regular graph obtained

from N by identifying the boundary of each connecting face with the boundary of

a halftube with the same parameters as the face. We call N̄ an extended nanojoin.

• We say that two nanojoins N , N ′ are isomorphic as joins if N̄ and N̄ ′ are isomorphic

as plane graphs.

Joins without pentagons or heptagons only exist for two connecting faces with the

same parameters and up to isomorphism there is only one such join, so we will focus on

the case where there are heptagons and possibly also pentagons.

For an extended nanojoin N̄ and a directed edge [v, w] ∈ N̄ we define an infinite string

s([v, w]) as follows. First the vertices x ∈ N̄ are assigned labels l(x) in a breadth first

manner:

(1) l(v) = 1, l(w) = 2

(2) if x is the vertex with smallest label that has still unlabelled neighbours, the neigh-

bours of x are inspected – and labelled with the next not yet assigned label in case

they are not yet labelled – in clockwise order starting at the neighbour with smallest

label.

Note that as N̄ is connected and infinite, there is always a vertex x in (2) with the

required properties and it has always an already labelled neighbour.

The string s([v, w]) is then defined as the infinite string

a1, a2, a3, . . . with a3(i−1)+1, a3(i−1)+2, a3(i−1)+3 the labels of the three neighbours of the

vertex labelled i in clockwise direction starting with the smallest label.

-729-

It is easy to see that if for two oriented edges [v, w] ∈ N̄ , [v′, w′] ∈ N̄ ′ we have

s([v, w]) = s([v′, w′]), then there is an isomorphism (or in case of N̄ = N̄ ′ an automor-

phism) from N̄ to N̄ ′ mapping [v, w] to [v′, w′] – and that if there is an isomorphism

mapping [v, w] to [v′, w′], then s([v, w]) = s([v′, w′]).

Definition 8. Let N̄ be an extended nanojoin with a finite positive number of heptagons.

Let N̄i be the mirror image of N̄ .

If there is at least one pentagon, E0(N̄) denotes the set of all oriented edges with

a pentagon on the left – otherwise E0(N̄) denotes the set of all oriented edges with a

heptagon on the left.

Define the mirror parameters of a connecting face with parameters (l,m) as (m, l)

if m 6= 0 and (l, 0) if m = 0. If the set of mirror images of all parameters of N̄ is

different from the set of parameters, then we define E1(N̄) = E0(N̄), otherwise we define

E1(N̄) = E0(N̄) ∪ E0(N̄i)

The canonical string of c(N̄) is defined as

c(N̄) = min{s([v, w])|[v, w] ∈ E1(N̄)}

with the strings ordered according to the lexicographic ordering of strings.

Mapping vertices onto each other that get the same labels in a canonical labelling, one

can easily see that two extended nanojoins are isomorphic if and only if their canonical

codes are the same.

In order to judge whether two extended nanojoins are isomorphic, we have to decide

whether their canonical codes are the same. We will show that it is sufficient to compare

some finite prefix of the codes.

Theorem 6.1. Let N1, N2 be two joins with the same number of pentagons and heptagons.

If there is an isomorphism φ() from N1 onto a subgraph S of N̄2 then N̄1 and N̄2 are

isomorphic.

Proof. The complement Sc of S in N̄2 contains only hexagons, as all pentagons and

heptagons in N1 are mapped onto pentagons and heptagons in S. Let C be a connecting

face in N1. If a hexagon in N̄1−N1 or a pair of hexagons in N̄1−N1 sharing an edge would

have a disconnected intersection with C, at least one of these hexagons would contain two

edges of C. In each case there would be a path P connecting two vertices of degree 2 in C

-730-

that contains no, one or two vertices of N̄1−N1 and in case of two internal vertices turns

once right and once left. C ∪ P would bound two regions with faces in the complement

of N1 and one of them would have to be a patch consisting only of hexagons. From the

structure of P and C it follows that with ni the number of vertices of degree i in the

boundary of the patch we would have n2−n3 ≤ 5. Lemma 3.1 would then imply that the

patch would contain at least one pentagon. This is a contradiction, so no face or pair of

faces sharing an edge in N̄1 −N1 can have a disconnected intersection with C.

This implies that the subgraph B(C) induced by the vertices in N̄1 − N1 that share

a face with vertices in C is a simple cycle with the same degree sequence and the same

is true for the subgraph induced by the vertices in N̄2 − S that share a face with vertices

in φ(C). This allows to uniquely extend the isomorphism to the nanojoin N1 ∪B(C) and

by induction to all of N̄1.

Definition 9. Let s = s1, s2, s3 . . . be an infinite string. We say that a string t1, t2, . . . , tk

is a prefix of s if si = ti for 1 ≤ i ≤ k.

If for a nanojoin N the string c0(N̄) is a prefix of c(N̄) that contains for all vertices v

in N the list of labels of the neighbours of v, then we call c0(N̄) a defining prefix of c(N̄).

Corollary 6.2. Let N1, N2 be two joins with the same number of pentagons and heptagons

and c0(N̄1) a defining prefix of c(N̄1).

If c0(N̄1) is also a prefix of c(N̄2), then N1 and N2 are isomorphic and also c(N̄1) =

c(N̄2).

Proof. Mapping the vertices of N1 onto the vertices of N2 that get the same label in

the canonical string, we have an isomorphism of N1 onto a subgraph of N2, so that

Theorem 6.1 gives the required result.

Corollary 6.2 is used to detect whether a newly found nanojoin is isomorphic to one

that was previously found by the algorithm. When we find a new join N , we first attach

rings of hexagons to every connecting face so that every vertex that is part of the defining

prefix of c(N̄) is part of the join with the rings of hexagons attached. This way we can

compute the defining prefix c0(N̄).

At each moment we have the defining prefix of one representative of each isomorphism

class of joins for which we already constructed an element in a prefix tree. Whenever we

have a new defining prefix c0, we check whether there is a match in the tree – that is:

-731-

whether a prefix of c0 is already in that tree or whether c0 is a prefix of a code in the tree.

If there is no match, the join is output and c0 is added to the tree, otherwise we discard

c0 and continue the construction. This test can be done in time that is linear in the size

of c0.

This method of guaranteeing that only non-isomorphic joins are generated is very

straightforward. In most generation programs methods are used that guarantee the gener-

ation of only non-isomorphic structures without actually comparing structures (see [1] for

an overview of these methods). Such methods are necessary in cases where the construc-

tion of the structures is very fast and easy and isomorphism rejection is the bottleneck.

In this case the construction of the nanojoins is the crucial part and bottleneck and the

cost for using the lists was less than 2% of the generation time in all cases we tested. Fur-

thermore the lists are never so large that keeping them in memory is any problem, so that

neither time consumption nor memory consumption make the use of more sophisticated

methods necessary.

7 Testing and Results

This section will discuss some results on the number of nanojoins with up to four caps.

We will also give the running times the program needed to generate those nanojoins. Our

program was compiled using gcc and executed without parallelisation on an Intel Xeon

E5-2690 CPU at 2.90GHz on a machine having 252GB memory. The joins that are found

by the program are written to a file in planar code format (for a definition of this format

see the homepage of CaGe [6]).

Since we already had an extended version of the bottom up algorithm that was able

to generate the nanojoins completely independent from the top down algorithm and the

top down algorithm can be run without the bottom up part, we have two completely

independent algorithms. This can be used to test the correctness of our algorithm - e.g. to

check whether both algorithms find the same joins. We also checked those results against

the combined approach to make sure that that approach was still working correctly.

In total we tested 5 different versions of our generator. The first two are the standalone

bottom up algorithm and the top down algorithm. The other three all used the combined

approach, but with different values for p′, h′ and s′ determining when the bottom up part

is used:

-732-

• The full combined approach (p′ = min(p, 3), h′ = h and s′ = s)

• The no-pentagon combined approach (p′ = 0, h′ = h and s′ = s)

• The mixed combined approach that uses the full combined approach if h ≤ 6 and

otherwise the no-pentagon approach

The mixed combined approach was chosen because in some cases the no-pentagon

combined approach performed better while in other case the full combined approach did.

The mixed combined approach is chosen in a way to use the full combined approach in

the cases where it normally performs better and the no-pentagon combined approach in

the cases where it normally doesn’t. All results presented are obtained by the mixed

combined approach.

It is important to note that the amount of memory used by the combined algorithm

directly depends on the values for p′, h′ and s′ and can get very high very soon. When

the amount of memory is scarce it is necessary to decrease these internal values of the

program.

The following tables contain some results. We ran our algorithm to generate joins

going from two to four caps and listed the running times for the combined, bottom up

and top down approach together with the number of joins found by our algorithm. They

were confirmed to be the same by all approaches.

The tables show that the bottom up algorithm generally performs well when the

number of pentagons and heptagons is small, as this implies a relatively small number of

patches. This also implies that the bottom up algorithm is generally better for two caps

and the top down algorithm for three caps.

For four caps, the bottom up algorithm always performs better. This is because the

number of hexagons is still small for our test cases. The small number of hexagons again

leads to a significant decrease in possible patches.

That is why we chose the combined approach that makes sure the number of patches

generated in its bottom up part does not get too big. The tables show that the combined

approach performs much better than the other approaches in a lot of cases.

-733-

cap parameters p h s joins combined bottom up top down
(6-0) (6-0) 0 35 0 1 38ms 1ms 133s
(4-2) (3-2) 1 21 1 1 0.3s 0.3s 672s
(6-0) (5-2) 1 23 1 1 0.1s 0.5s 632s
(6-0) (6-0) 1 23 1 1 0.1s 49ms 648s
(4-2) (3-2) 2 16 2 194 2.6s 12s 746s
(6-0) (5-2) 2 18 2 174 2.6s 20s 770s
(6-0) (6-0) 2 18 2 69 2.8s 2.2s 900s
(4-2) (3-2) 3 12 3 5491 16s 116s 556s
(6-0) (5-2) 3 14 3 4279 30s 267s 725s
(6-0) (6-0) 3 14 3 464 30s 30s 903s
(4-2) (3-2) 4 9 4 40569 74s 493s 581s
(6-0) (5-2) 4 10 4 19808 62s 825s 306s
(6-0) (6-0) 4 11 4 2570 120s 195s 1086s

Table 2. Results for joins with two caps

cap parameters p h s joins combined bottom up top down
(4-2) (3-2) (5-1) 0 10 6 631 39s 291s 609s
(6-0) (5-0) (4-1) 0 12 6 172 141s 810s 321s
(6-0) (5-2) (4-2) 0 12 6 522 143s 1043s 978s
(6-0) (6-0) (6-0) 0 13 6 12 265s 233s 586s
(6-0) (5-2) (4-2) 1 7 7 1650 38s 1038s 104s
(6-0) (6-0) (6-0) 1 9 7 39 120s 952s 267s
(6-0) (5-2) (4-2) 2 4 8 1721 18s 647s 58s
(6-0) (6-0) (6-0) 2 5 8 20 13s 399s 57s
(6-0) (5-0) (4-0) 0 12 6 61 141s 129s 769s
(6-0) (5-0) (5-0) 0 13 6 37 265s 225s 882s
(6-0) (6-0) (5-1) 0 12 6 54 140s 800s 106s
(4-2) (3-2) (5-1) 1 6 7 3768 68s 428s 182s
(6-0) (6-0) (5-1) 1 7 7 167 18s 835s 16s
(4-2) (3-2) (5-1) 2 4 8 10303 154s 815s 367s
(6-0) (6-0) (5-1) 2 4 8 147 3.7s 477s 18s

Table 3. Results for joins with three caps

cap parameters p h s joins combined bottom up top down
(6-0) (5-0) (4-0) (3-0) 0 1 12 1 2.6s 1.6s 307s
(6-0) (6-0) (6-0) (6-0) 0 4 12 4 571s 748s 928s
(6-1) (4-2) (5-1) (3-3) 0 1 12 5 3.6s 6s 460s
(6-0) (5-0) (4-0) (3-0) 1 1 13 2 481s 46s 18939s
(6-0) (6-0) (6-0) (6-0) 1 1 13 1 3.9s 38s 307s

Table 4. Results for joins with four caps

-734-

We also looked at the number of joins found by our combined algorithm for the max-

imum number of hexagons (but at most 60) while keeping the running time under 20

minutes. These results are presented in Table 5.

Table 5. Results obtained by combined approach

cap parameters p h s joins1 joins2 time
(4-2) (3-2) 0 60 0 0 0 3.3s
(6-0) (5-2) 0 60 0 0 0 67ms
(4-2) (3-2) 1 60 1 1678 1 85s
(6-0) (5-2) 1 60 1 271 1 19s
(6-0) (6-0) 1 60 1 10 1 19s
(4-2) (3-2) 2 40 2 132850 867 1086s
(6-0) (5-2) 2 47 2 42969 1176 1054s
(6-0) (6-0) 2 47 2 2596 561 1188s
(4-2) (3-2) 3 21 3 586074 33855 883s
(6-0) (5-2) 3 23 3 153361 30662 903s
(6-0) (6-0) 3 23 3 6754 4172 891s
(4-2) (3-2) 4 12 4 612236 146448 646s
(6-0) (5-2) 4 14 4 243671 119726 781s
(6-0) (6-0) 4 14 4 11309 10463 751s

(4-2) (3-2) (5-1) 0 15 6 61013 2972 940s
(6-0) (5-0) (4-1) 0 15 6 2019 565 866s
(6-0) (5-2) (4-2) 0 15 6 7069 1365 934s
(6-0) (6-0) (6-0) 0 15 6 27 20 868s
(6-0) (5-2) (4-2) 1 10 7 29004 13247 820s
(6-0) (6-0) (6-0) 1 11 7 142 138 669s
(6-0) (5-2) (4-2) 2 7 8 57211 39659 720s
(6-0) (6-0) (6-0) 2 9 8 901 891 1115s
(6-0) (5-0) (4-0) 0 15 6 278 191 831s
(6-0) (5-0) (5-0) 0 15 6 115 83 866s
(6-0) (6-0) (5-1) 0 15 6 619 177 866s
(4-2) (3-2) (5-1) 1 8 7 57514 15023 627s
(6-0) (6-0) (5-1) 1 11 7 5114 2383 684s
(4-2) (3-2) (5-1) 2 5 8 58686 31249 533s
(6-0) (6-0) (5-1) 2 9 8 32486 18282 1166s

(6-0) (5-0) (4-0) (3-0) 0 4 12 43 42 608s
(6-0) (6-0) (6-0) (6-0) 0 4 12 4 4 571s
(6-1) (4-2) (5-1) (3-3) 0 4 12 3646 2181 1016s
(6-0) (6-0) (6-0) (6-0) 1 3 13 1 1 446s

8 Future work

The result of the generation is the combinatorial structure of the nanojoins as plane

graphs. In order to produce realistic 3D embeddings and add the generator to the environ-

-735-

ment CaGe (see [6]) it is necessary to develop specialized programs for fast 3D-embedding

of nanojoins. This will be done in the near future.

References

[1] G. Brinkmann, Isomorphism rejection in structure generation programs, in: P.

Hansen, P. W. Fowler, M. Zheng (Eds.), Discrete Mathematical Chemistry , Am.

Math. Soc., Providence, 2000, pp. 25–38.

[2] G. Brinkmann, J. Goedgebeur, B. D. McKay, The generation of fullerenes, J. Chem.

Inf. Model. 52 (2012) 2910–2918.

[3] G. Brinkmann, D. Mourisse, L. Rylands, On the existence of nanojoins with given

parameters, J. Math. Chem. 53 (2015) 2078–2094.

[4] G. Brinkmann, U. von Nathusius, A. H. R. Palser, A constructive enumeration of

nanotube caps, Discr. Appl. Math. 116 (2002) 55–71.

[5] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon

Nanotubes , Academic Press, San Diego, 1996.

[6] G. Brinkmann, O. Delgado–Friedrichs, S. Lisken, A. Peeters, N. Van Cleem-

put, Cage – a virtual environment for studying some special classes of plane

graphs – an update, MATCH Commun. Math. Comput. Chem. 63 (2010) 533–552.

http://caagt.ugent.be/CaGe/.

[7] G. W. Ho, A. T. S. Wee, J. Lin, Electric field–induced carbon nanotube junction

formation, Appl. Phys. Lett. 79 (2001) 260–262.

[8] E. Lijnen, A. Ceulemans, M. V. Diudea, C. L. Nagy, Double toroids as model systems

for carbon nanotube junctions: through–bond currents, J. Math. Chem. 45 (2009)

417–430.

[9] D. Mourisse, Generatie van nanojoins, Master’s thesis, Universiteit Gent, 2013.

[10] R. F. Service, Mixing nanotube structures to make a tiny switch, Science 271 (1996)

1232–1232.

[11] K. Tserpes, I. Konstantinos, P. Papanikos, Continuum modeling of carbon nanotube–

based super–structures, Composite Struct. 91 (2009) 131–137.

[12] I. Zsoldos, Planar trivalent polygonal networks constructed from carbon nanotube

y-junctions, J. Geom. Phys. 61 (2011) 37–45.

-736-

