
On Some Algorithms for Computing

Topological Indices of Chemical Graphs
Aleksandar Ilić

Facebook Inc, Menlo Park, CA, USA
e-mail: aleksandari@gmail.com

Milovan Ilić
Metropolitan University, Belgrade, Serbia

e-mail: ilic.milovan@gmail.com

(Received December 1, 2016)

Abstract

In this note, we present some improvements on the recently proposed algorithms
for computing certain topological indices of chemical graphs. In particular, we
design simpler recursive algorithm for computing Hosoya index of trees and uni-
cyclic graphs, present better time complexity algorithm for computing Wiener po-
larity index of chemical graphs, reference more efficient algorithm for computing the
Merrifield-Simmons index of graphs, and compute Balaban index of trees in linear
time using depth first search algorithm.

1 Introduction

In theoretical chemistry molecular structure descriptors (also called topological indices)

are used for modeling physico-chemical, pharmacologic, toxicologic, biological and other

properties of chemical compounds [12, 23]. There exist several types of such indices,

especially those based on distances and independent sets of vertices and edges. The

Wiener [10] and Hosoya [16] index are arguably the best known global indices that describe

entire molecule.

In this note, we continue analysis of the algorithms for computing certain chemical

topological indices of trees and chemical graphs. It is very important to have efficient

algorithms for computing such descriptors, as there are a lot of research studies on de-

riving closed formulas for special classes of chemical graphs: for example dendrimers [2],

polyphenyl chains [24], fullerenes and hexagonal systems [4], large molecules [13], etc.

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 78 (2017) 665-674

 ISSN 0340 - 6253

Let G be a simple connected graph of order n with the vertex set V (G) and the edge

set E(G). The distance between the vertices v and u, denoted by d(v, u), is defined as

the length of a shortest path connecting v and u. Two edges of G are independent if they

have no vertex in common, and similarly two vertices of G are independent if they are

not adjacent. A k-independent set of edges (vertices) is a set of k mutually independent

edges (vertices). Let deg(v) denote the degree of the vertex v. A rooted tree is a tree that

has one vertex distinguished as a root, where every vertex besides the root has a unique

parent and every vertex is associated with a list of child vertices (this list can be empty).

A chemical graph is a labeled graph whose vertices correspond to the atoms of the

compound and edges correspond to chemical bonds. In most applications, such graphs

have vertex degree ≤ 4.

The paper is organized as follows. In Section 2, we design a simpler recursive al-

gorithm for computing Hosoya index of trees and unicyclic graphs, thus improving the

results from [26]. In Section 3, we present better time complexity algorithm for com-

puting Wiener polarity index of chemical graphs, thus improving the results from [11].

In Section 4, we reference more efficient algorithm for computing Merrifield-Simmons in-

dex of graphs by counting the cliques in the complement graph instead of independent

sets, thus improving the results from [1]. Finally, we present a linear recursive algorithm

for computing Merrifield-Simmons and Balaban index of trees in Section 5 based on the

modification of depth first search graph traversal.

These results can be simply generalized to weighted trees and some other distance-

based indices or polynomials.

2 Computing Hosoya index of trees and unicyclic

graphs

The Hosoya index Z(G) is defined as the total number of independent edge sets of G. In

graph-theoretical terminology, Z(G) is the number of all matchings of G, i.e.

Z(G) =
∑
k≥0

mk(G),

where mk(G) is the number of k independent edges of G. By convention, m0(G) is one.

The Hosoya index [15], proposed by Hosoya in 1971, is a typical example of a graph

invariant used in computational chemistry for quantifying the behavior of molecular struc-

-666-

ture, and it has been proved as a fundamental concept in correlations with boiling points,

entropies, heat of vaporization, as well as for coding of chemical structures (see [16]).

Recently, Zhang, Chen and Sun in [26] introduced a novel method to calculate the

Hosoya index of a tree by associating a vertex with a weight and using the data structure

of labeled trees with Prüfer’s code. That algorithm involved multiple steps and complex

implementation and analysis.

Here we present a simple recursive linear solution based on depth first search of the

rooted tree [7, 18]. The main idea is to keep two arrays:

• h[v], that represents the total number of matchings under the subtree rooted at v

• hw[v], that represents the total number of matchings under the subtree rooted at v

that do not have the root vertex v paired.

We are also going to use the following two simple results for Hosoya index. For an

arbitrary edge e = uv of G, it holds

Z(G) = Z(G− uv) + Z(G− {u, v}), (1)

where G − uv is a graph obtained from G by removing the edge uv, and G − {u, v} is

a graph obtained from G by removing the vertices u and v together with corresponding

edges that are adjacent to them.

If G is a graph with connected components G1, G2, . . . , Gk, then

Z(G) = Z(G1) · Z(G2) · . . . · Z(Gk). (2)

The terminating condition of the recursion is when the algorithm reaches the leaf

vertex of degree one, and we set the default values in that case (note that m0(G) = 1).

Otherwise, we just iterate through the child vertices and recursively compute the values

h and hw. From Equation (2) the value hw[v] is simply the product of the values h[u]

for all child vertices, while from Equation (1) for h[v] we need to fix one edge and take

any combination of the remaining independent subtrees. We can pick any vertex as root

and call the function DFS1(root) to compute the Hosoya index. The pseudo-code of this

approach is implemented in Algorithm 1.

In practice, this algorithm is much faster than the one proposed in [26] because of

multiple iterations of the input tree. Note also that we do not need the second for loop,

if we can compute the sum h[u]/hw[u] with enough precision.

-667-

Algorithm 1: Compute Hosoya index of the rooted tree

Function DFS1(vertex v)
Data: Tree with child links
Result: The final solution is h[root]
if v is a leaf then

h[v] = 1;
hw[v] = 1;

end
else

prod = 1;
for every child u of v do

DFS1(u);
prod = prod ∗ h[u];

end
hw[v] = prod;
h[v] = hw[v];
for every child u of v do

h[v] = h[v] + (prod/h[u]) ∗ hw[u];
end

end

Algorithm 1 can be easily generalized to compute the Hosoya index of unicyclic and

bicyclic graphs in O(n) time - by reducing the problem to trees. For unicyclic graph, fix

one edge e = uv from the unique cycle. For k independent set of edges we can apply

either Equation (1) or (2), i.e.

(i) take the edge edge e = uv in the matching, in which case we decompose the unicyclic

graph into multiple trees by removing the vertices u and v, or

(ii) do not take the edge e in the matching, in which case the remaining graph is a tree.

Both of the above problems can be solved in linear time, and this completes the

algorithm for computing Hosoya index of unicyclic graphs. For bicyclic graphs, we just

need to pick two edges whose removal will make the remaining graph a tree - which can

again be solved in O(n) time.

-668-

3 Computing Wiener polarity index

of chemical graphs

The Wiener polarity index of a graph G is defined as the number of unordered pairs of

vertices {u, v} of G such that the shortest distance d(u, v) between u and v is 3,

WP (G) = |{{u, v} | d(u, v) = 3, u, v ∈ V }|.

Hosoya [16] found a physico-chemical interpretation of WP , and recently there are multiple

research on mathematical properties of this index (see [20] and references therein).

Du, Li and Shi in [11] constructed a linear algorithm for computing the Wiener polarity

index of trees. Furthermore, they presented an algorithm which computes the index

WP (G) for any given connected graph G on n vertices in time O(M(n)), where M(n)

denotes the time necessary to multiply two n × n matrices of small integers - which is

currently known to be O(n2.376).

Ilić and Ilić in [20] defined the generalized Wiener polarity index as the number of

unordered pairs of vertices {u, v} of G such that the shortest distance d(u, v) between u

and v is k,

Wk(G) = |{{u, v} | d(u, v) = k, u, v ∈ V }|.

For k = 3, we exactly get the Wiener polarity index. Furthermore, the same authors

presented a linear algorithm for calculating this index for trees, thus generalizing results

from [11].

Yuster and Zwick in [25] proposed a new algorithm that multiplies two matrices A

and B using O(m0.7n1.2 + n2+o(1)) algebraic operations (i.e., multiplications, additions

and subtractions), where m denotes the number of non-zero values (or equivalently the

number of edges in the adjacency matrix). The naive matrix multiplication algorithm, on

the other hand, may need to perform O(mn) operations to accomplish the same task.

For m ≤ n1.14, which is the case for chemical graphs given that their vertex degree is

less than or equal to 4, this algorithm performs an almost optimal number of only n2+o(1)

operations (as 1.14 · 0.7 + 1.2 < 2). For m ≤ n1.68, this algorithm is also faster than

the best known matrix multiplication algorithm for dense matrices, thus being superior

alternative for computing the Wiener polarity index in this case as well.

-669-

4 Computing Merrifield–Simmons index of graphs

and trees

Denote by ik(G) the number of the k-independent vertex sets of G. The Merrifield-

Simmons index [21] of a molecular graph G is defined as the total number of the inde-

pendent vertex sets,

i(G) =
n∑

k=0

ik(G).

Ahmadi and Alimorad Dastkhezr in [1] presented an algorithm for calculating the

number of k-independent sets of graph G using its adjacency matrix and then obtained

the Merrifield-Simmons index by summing over all subsets sizes.

Clique is a complete subgraph of a graph G. The complement of a graph G is a graph

G on the same vertex set V (G), such that two distinct vertices of G are adjacent if and

only if they are not adjacent in G. Computing the number of independent sets of size k

is equivalent to computing the number of cliques of size k in the complement graph G.

Bron and Kerbosch [6] described a recursive algorithm to compute all cliques in linear

time (relative to the number of cliques), and for more details on maximal clique problems

see [5]. It is still widely used and referred to as one of the fastest algorithms according

to recent survey by Stix [22]. Therefore, the simple algorithm proposed in [1] is inferior

compared to these state-of-the-art algorithms and should not be used in practice.

Similarly as in Section 2, we can construct a recursive linear algorithm to compute

Merrifield-Simmons index of trees based on depth first search. For that we define the

following two arrays:

• i[v], that represents the total number of independent sets under the subtree rooted

at v, and

• iw[v], that represents the total number of independent sets under the subtree rooted

at v that do not include the root vertex v.

Note that Algorithms 1 and 2 can be simply generalized to compute Hosoya (matching)

and independence polynomials [14], by storing the array of coefficients.

-670-

Algorithm 2: Compute Merrifield-Simmons index of the rooted tree

Function DFS2(vertex v)
Data: Tree T with child links
Result: The final solution is i[root]
prod i = 1;
prod iw = 1;
for every child u of v do

DFS2(u);
prod i = prod i ∗ i[u];
prod iw = prod iw ∗ iw[u];

end
iw[v] = prod i;
i[v] = iw[v] + prod iw;

5 Computing Balaban index of trees

Let D(v) denotes the summation of all distances between a fixed vertex v and all other

vertices of G. Naive algorithm for computing D(v) for all vertices runs in O(nm), using

breadth first search from every vertex [7].

The Balaban index is a topological index introduced by Balaban more than 30 years

ago [3]. It is defined as

J(G) =
m

µ+ 1

∑
uv∈E

1√
D(u)D(v)

,

where m is the number of edges of G, n is the number of vertices and µ = m−n+1 is called

the cyclomatic number of G. The Balaban index is one of the widely used topological

indices for QSAR and QSPR studies, and appears to be a very useful molecular descriptor

with attractive properties [2, 8].

Here we describe a linear algorithm for computing Balaban index of trees, composed

of two parts. In the first recursion, for every vertex v we compute two arrays:

• c[v], that stores the number of vertices under the subtree rooted at v (including v),

and

• D[v], that stores the sum of distances from the root v to all vertices under v.

After the first part, D[root] contains exactly the sum of all distances from the root to

all other vertices and c[root] = n. In the second recursion, for every edge e = vu where u

is a child of v – we will adjust and compute D[u] from the values D[v] and c[u]. Namely,

the distances from u to all vertices under u are decreased by one and for all the other

-671-

vertices are increased by one. The terminating condition of the recursion is implicitly

handled for leaves, given that they do not have any child vertices, and for loop will not

be executed. The full implementation is described in Algorithm 3 and 4, and the final

value of J should be multiplied by the factor of m
m−n+2

, which is equal to n− 1 for trees.

Also note that using this method one can compute other variants of this index, like

sum Balaban index [9], eccentric distance sum [19] or eccentric connectivity index [17].

Furthermore, the algorithm can be simply generalized to weighted trees.

Algorithm 3: Compute the arrays c and D

Function DFS3(vertex v)
Data: Tree T with child links
Result: The arrays c and D
c[v] = 1;
D[v] = 0;
for every child u of v do

DFS3(u);
c[v] = c[v] + c[u];
D[v] = D[v] +D[u] + c[u];

end

Algorithm 4: Compute Balaban index of the rooted tree

Function DFS4(vertex v)
Data: Tree T with child links, and arrays c and D
Result: The final solution is stored in the global variable J
for every child u of v do

D[u] = D[v]− c[u] + (n− c[u]);
J = J + 1/sqrt(D[v] ∗D[u]);
DFS4(u);

end

References

[1] M. B. Ahmadi, H. Alimorad Dastkhezr, An algorithm for computing the Merrifield–

Simmons index, MATCH Commun. Math. Comput. Chem. 71 (2014) 355–359.

[2] A. R. Ashrafi, H. Shabani, M. V. Diudea, Balaban index of dendrimers, MATCH

Commun. Math. Comput. Chem. 69 (2013) 151–158.

[3] A. T. Balaban, Highly discriminating distance–based topological index, Chem. Phys.

Lett. 89 (1982) 399–404.

-672-

[4] A. Behmaram, H. Yousefi–Azari, A. R. Ashrafi, Wiener polarity index of fullerenes

and hexagonal systems, Appl. Math. Lett. 25 (2012) 1510–1513.

[5] I. M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo, The maximum clique prob-

lem, in: D. Z. Du, P. M. Pardalos (Eds.), Handbook of Combinatorial Optimization,

Kluwer, Boston, 1999.

[6] C. Bron, J. Kerbosch, Algorithm 457: Finding all cliques of an undirected graph,

Commun. ACM 16 (1973) 575–577.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms ,

MIT Press, Cambridge, 2001.

[8] H. Deng, On the Balaban index of trees, MATCH Commun. Math. Comput. Chem.

66 (2011) 253–260.

[9] H. Deng, On the sum–Balaban index, MATCH Commun. Math. Comput. Chem. 66

(2011) 273–284.

[10] A. A. Dobrynin, R. C. Entringer, I. Gutman, Wiener index of trees: theory and

applications, Acta Appl. Math. 66 (2001) 211–249.

[11] W. Du, X. Li, Y. Shi, Algorithms and extremal problem on Wiener polarity index,

MATCH Commun. Math. Comput. Chem. 62 (2009) 235–244.

[12] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry , Springer–

Verlag, Berlin, 1988.

[13] I. Gutman, On the Hosoya index of very large molecules, MATCH Commun. Math.

Comput. Chem. 23 (1988) 95–103.

[14] I. Gutman, S. Klavžar, M. Petkovšek, P. Žigert, On Hosoya polynomials of benzenoid

graphs, MATCH Commun. Math. Comput. Chem. 43 (2001) 49–66.

[15] H. Hosoya, A newly proposed quantity characterizing the topological nature of struc-

tural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971) 2332–2339.

[16] H. Hosoya, The topological index Z before and after 1971, Int. El. J. Mol. Des. 1

(2002) 428–442.

-673-

[17] A. Ilić, Eccentric connectivity index, in: I. Gutman, B. Furtula (Eds.), Novel Molec-

ular Structure Descriptors – Theory and Applications II , Univ. Kragujevac, Kragu-

jevac, 2010.

[18] A. Ilić, S. Klavžar, D. Stevanović, Calculating the degree distance of partial Hamming

graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 411–424.

[19] A. Ilić, G. H. Yu, L. H. Feng, On the eccentric distance sum of graphs, J. Math.

Anal. Appl. 381 (2011) 590–600.

[20] A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener index,

Graphs Comb. 29 (2013) 1403–1416.

[21] R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry , Wiley, New

York, 1989.

[22] V. Stix, Finding all maximal cliques in dynamic graphs, Comput. Opt. Appl. 27

(2004) 173–186.

[23] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors , Wiley–VCH, Wein-

heim, 2002.

[24] S. Wagner, I. Gutman, Maxima and minima of the Hosoya index and the Merrifield–

Simmons index, Acta Appl. Math. 112 (2010) 323–346.

[25] R. Yuster, U. Zwick, Fast sparse matrix multiplication, ACM Trans. Alg. 1 (2005)

2–13.

[26] J. Zhang, X. Chen, W. Sun, A linear time algorithm for the Hosoya index of an

arbitrary tree, MATCH Commun. Math. Comput. Chem. 75 (2016) 703–714.

-674-

