
An Algebraic Approach to Enumerating

Non–Equivalent Double Traces in Graphs

Nino Bašića, Drago Bokalb, Tomas Boothbyc, Jernej Rusd,∗

aFAMNIT, University of Primorska, Slovenia
nino.basic@famnit.upr.si

bFaculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
bokal@uni-mb.si

cDepartment of Mathematics, Simon Fraser University, Canada
tboothby@sfu.ca

dAbelium d.o.o., Slovenia
jernej.rus@gmail.com

(Received December 14, 2016)

Abstract

Recently designed biomolecular approaches to build single chain polypeptide
polyhedra as molecular origami nanostructures have risen high interest in various
double traces of the underlying graphs of these polyhedra. Double traces are walks
that traverse every edge of the graph twice, usually with some additional condi-
tions on traversal direction and vertex neighborhood coverage. Given that double
trace properties are intimately related to the efficiency of polypeptide polyhedron
construction, enumerating all different possible double traces and analyzing their
properties is an important step in the construction. In the paper, we study the
automorphism group of double traces and present an algebraic approach to this
problem, yielding a branch-and-bound algorithm.

1 Introduction

Gradǐsar et al. presented a novel self-assembly strategy for polypeptide nanostructure

design in 2013 [14]. Their research was already improved by Kočar et al. in 2015, who

developed another alternative strategy to design topofolds — nanostructures built from

polypeptide arrays of interacting modules that define their topology [16]. Such approaches

∗Corresponding author.

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 78 (2017) 581-594

 ISSN 0340 - 6253

are paving the way to a significant breakthrough in the field of protein origami, an area

advancing a step ahead of DNA origami, where many researchers have spent the better

part of the past decade by folding the molecules into dozens of intricate shapes.

A polyhedron P that is composed from a single polymer chain can be naturally rep-

resented by a graph G(P) of the polyhedron. As every edge of G(P) corresponds to a

coiled-coil dimer in the self-assembly process, exactly two biomolecular segments are asso-

ciated with every edge of G(P). Hence, every edge of G(P) is in its biomolecular structure

replaced by two copies, resulting in a graph G′(P) obtained from G(P) by replacing every

edge with a digon. The graph G′(P) is therefore Eulerian, and its Eulerian walks (i.e.,

walks that traverse every edge of G(P) precisely twice), called double traces of G(P), play

a key role in modeling the construction process. Note that the argument shows that every

graph admits a double trace.

Double traces with additional properties related to stability of the constructed polyhe-

dra were introduced as a combinatorial model underlying these approaches to polypeptide

polyhedra design in [15] and [8]. Stability of the resulting polyhedron depends on two

additional properties: one relates to whether in the double trace the neighborhoods of

vertices can be split, and the other defines whether the edges of the double trace are

traversed twice in the same or in different directions.

To define the first property, let an alternating sequence W = w0e1w1 . . . w2m−1e2mw2m,

where ei is an edge between vertices wi−1 and wi, be a double trace — a closed walk which

traverses every edge of the graph exactly twice. Note that we always consider the vertex

sequence of a double trace with indices taken modulo 2m. (Since the graph G(P) is

simple, so are all our other graphs, except G′(P). Hence, a double trace is completely

described by listing the vertices of the corresponding walk and we sometimes write double

trace as a sequence consisting only of vertices.) For a set of vertices N ⊆ N(v), a double

trace W has a N-repetition at vertex v, if whenever W comes to v from a vertex in N

it also continues to a vertex in N (clearly ∅ and N(v) always form a repetition—trivial

repetition). More formally W has a N repetition at v if the following implication holds:

for every i ∈ {0, . . . , 2m− 1} : if v = wi then wi+1 ∈ N if and only if wi−1 ∈ N.

Then, W is a strong trace if W is for every vertex v without nontrivial N -repetitions at

v. It is a nontrivial result of [8] that every graph admits a strong trace. A weaker concept

of d-stable trace requires that whenever W has an nonempty N -repetition at some vertex

-582-

v, then |N | > d (there is no N -repetition for 1 ≤ |N | < d). Fijavž et al. [8] showed that

G admits a d-stable trace if and only if δ(G) ≥ d.

For the second property, note that there are precisely two directions to traverse an

edge e = uv. If the same direction is used both times W traverses e, then e is a parallel

edge w.r.t. W , otherwise it is an antiparallel edge. A double trace W is parallel, if

all edges of G are parallel w.r.t. W and is antiparallel, if all the edges are antiparallel.

Interestingly, antiparallel traces appeared (under a different name) two centuries ago in

a study of properties of labyrinths by Tarry [23], who observed (in our language) that

every connected graph admits an antiparallel double trace. Fijavž et al. extended this by

characterizing the graphs that admit an antiparallel strong trace [8], and Rus upgraded

the result to characterize graphs that admit an antiparallel d-stable trace [20]. The former

characterization can be algorithmically verified using algorithms of [11], but regarding the

latter, it is only known that the existence of antiparallel 1-stable traces can be verified

using Thomassen’s modification of the aforementioned algorithm, as published in [24]

and later corrected by Benevant López and Soler Fernández in [2]. Similar modification

of algorithm for spanning tree parity problem presented in [12] would work for d > 1

as well, rendering the problem “Does there exist an antiparallel d-stable trace in G?”

polynomially tractable. It was also analytically proven that some structures (tetrahedron

from [14] for example) can not be constructed using only parallel or only antiparallel coiled

coil dimers. In this direction Wang et. al. [25, 26] recently investigated which conditions

should a subgraph induced by parallel and antiparallel edges fulfill, respectively. Some

additional research was also made in [3] and [5].

It is easy to obtain new traces from a given trace: one can change direction of tracing or

start at a different vertex. Also, if graph possesses certain symmetries, these may reflect

in the trace. Such changes do not alter any properties of the trace, hence we call the

resulting traces equivalent, and we are interested in non-equivalent traces, as introduced

in [15]:

Definition 1.1 Two double traces W and W ′ are called equivalent if W ′ can be obtained

from W (i) by reversion of W, (ii) by shifting W, (iii) by applying a permutation on W

induced by an automorphism of G, or (iv) using any combination of the previous three

operations. If that is not the case, W and W ′ are non-equivalent.

Two double traces W and W ′ are called different if their vertex sequences are not the

-583-

same. Two different double traces may be equivalent. It is easy to see that equivalence

of double traces is an equivalence relation on the set T of all different double traces, and

hence on any subset (such as strong traces, d-stable traces etc.). The main contribution

of our paper is designing for each of the subsets of interest an algorithm that, for a given

graph as an input, outputs precisely one representative of each equivalence class. This

representative will be the unique minimal element for the following linear ordering, called

lexicographical ordering of double traces. We assume that the vertices of G are linearly

ordered as v0 < v1 < · · · < vn−1, and that v0, v1 are adjacent. This linear ordering induces

an ordering on the set of double traces as follows:

Definition 1.2 Given two double traces W = w0 . . . w2m and W ′ = w′0 . . . w
′
2m, W is

lexicographically smaller or equal to W ′, denoted W ≤lex W
′, if and only if W = W ′ or

the first wi, which is different from w′i, is smaller than w′i.

As lexicographical order is a linear order, it is clear that any finite set S of double

traces has a unique lexicographically smallest member. We call that member the canonical

representative of S.

For a more detailed treatment of double-trace related definitions we refer the reader

to [8]. For other terms and concepts from graph theory not defined here, we refer to [27].

An automorphism π ∈ Aut(G) acts on T by mapping a double trace W = w0 . . . w2m

to π(W) = π(w0) . . . π(w2m). Let ρ : T → T be a reversal that maps W = w0 . . . w2m

to W ′ = w2mw2m−1 . . . w0, and, for i = 0, . . . , 2m, let σi be an i-shift that maps W =

w0 . . . w2m to W ′′ = wi . . . w2m+i. Note that σ0 = σ2m = id. Then the group Aut(G), the

group R = {id, ρ}, and the group S = {σi | i = 0, . . . , 2m − 1} are three groups acting

on T (or its subsets such as strong traces, d-stable traces etc.). Note that groups R and

S do not commute and 〈R, S〉 is a dihedral group of symmetries of a regular (2m)-gon,

where |E(G)| = m. Therefore, the orbits of the direct product Γ = Aut(G) × 〈R, S〉

are precisely the equivalence classes of double traces for the relation from Definition 1.1.

Hence, a canonical representative of each equivalence class is the lexicographically smallest

element of each class. We say that a double trace is canonical, if it is the lexicographically

smallest element of its orbit, meaning that every element of Γ maps it to a lexicographically

larger (or equal) element. Note that to verify canonicity of a particular double trace, it

is not enough to check whether the generators of Γ map it to a larger element (we leave

finding an example to the reader).

-584-

It is easy to see that every canonical double trace starts with v0v1 (by assumption,

these two vertices are adjacent) and that every double trace is equivalent to at least one

canonical double trace. Double traces (not necessary canonical) starting with v0v1 are

called simple. More details on graph automorphisms can be found in [13], but we do

conclude this introduction with an example of the action of Γ on T in the case of the

tetrahedron.

Action of Γ on the set T of all 672 strong traces of a tetrahedron can be graphically

presented. Strong traces are vertices of an arc-labeled digraph D(T ,Γ) (which conse-

quently has 672 vertices). An arc (i.e., a directed edge) from vertex U to W exists when

an element of Γ maps the trace U to the trace W ; the label on that arc is the element

of Γ that maps U to W . Note that all (strongly) connected components of that digraph

correspond to orbits under the action of Γ. In the case of a tetrahedron, Γ partitions

T into 3 orbits of orders 288, 288, and 96. In other words, the digraph is a union of

three complete digraphs of orders 288, 288, and 96. This fact coincides with the results of

Table 1 (presented in Section 3). Subgroups Aut(G), R, and S partition T into 28 orbits

of order 24, 336 orbits of order 2, and 56 orbits of order 12, respectively. The digraph

D(T ,Γ) defined above is a very dense one. A more sparse digraph can be defined if a

set of generators of Γ is used instead of the whole group. Such digraph is more conve-

nient for making observations. The subgroup S is generated by the element σ1 and the

subgroup R is generated by ρ. In the case of the tetrahedron Aut(G) ∼= S4. It is known

that every symmetric group on a finite set is 2-generated, i.e., a minimal set of generators

has cardinality at most 2. Let the vertices of the tetrahedron be labeled with numbers

1, 2, 3 and 4. Then Aut(G) = 〈α1, α2〉 where α1 = (1 2) and α2 = (1 2 3 4). There-

fore, Γ = 〈α1, α2, σ1, ρ〉. We may encode traces of the tetrahedron as words of length 13

which comprise of digits 1, . . . , 4. The reader can verify that W = 1342312412341 is a

strong trace in the tetrahedron. Figure 1 shows a small out-neighborhood of the vertex

1342312412341 in the digraph D(T , (α1, α2, σ1, ρ)) that is described above.

1342312412341

2413423123412

α2

2341321421342

α1

3423124123413

σ1

1432142132431

ρ

Figure 1. The out-neighborhood of the vertex 1342312412341 in the digraph
D(T , (α1, α2, σ1, ρ)).

-585-

This is (to our knowledge) the first analysis of the automorphism group of a double

trace. We proceed as follows. In Section 2, we use the automorphism group to devise

a branch-and-bound algorithm that outputs each canonical strong double trace of G

precisely once. The main idea of the algorithm is avoiding isomorphic double traces

by extending minimal forms. Such an idea was first presented in [7] and [19] where it

was called the orderly generation. It is not difficult to see that with minor adjustments,

this algorithm can enumerate other varieties of double traces, such as d-stable traces,

parallel double traces, or antiparallel double traces. We conclude, in Section 3, with

some numerical results that reveal possible varieties in designing polyhedral polypeptide

nanostructures.

2 Enumerating strong traces with branch-and-bound

strategy

In this section we assume that the n vertices of some arbitrary, but fixed, connected

graph G with m edges are linearly ordered as v0 < v1 < · · · < vn−1, and that v0, v1 are

adjacent. Therefore every canonical double trace of G starts with v0v1. We denote the

automorphism group of double traces in graph G with Γ. To make the arguments more

transparent, let W and W ′ from now on be two different double traces. We first give some

additional observations.

Definition 2.1 Let W = w0 . . . w2m be a double trace of a graph G. An initial segment

init(W) of W is the shortest continuous subsequence of W such that init(W) starts in w0

and contains all the vertices from V (G).

Definition 2.2 Let W = w0 . . . w2m be a double trace. Then an i-initial segment of W ,

denoted Wi, is a subsequence of first i vertices in W , i.e., Wi = w0 . . . wi−1.

Definition 2.3 A double trace W is i-canonical if for every π ∈ Γ, the relation Wi ≤lex

π(Wi) holds.

Lemma 2.4 A double trace W of length 2m is canonical if and only if W is i-canonical

for all i, 1 ≤ i ≤ 2m.

Proof. Let a double trace W = w0 . . . w2m be i-canonical for every i, 1 ≤ i ≤ 2m.

Suppose that W is not canonical. Since W is also 2m-canonical, W2m ≤lex π(W2m) for

-586-

every π ∈ Γ. Therefore, if W is not canonical, there exists an automorphism π ∈ Γ, for

which wi = π(wi) for every 0 ≤ i ≤ 2m − 1 and π(w2m) < w2m. This is absurd, since

w0 = w2m.

Let now W be a canonical double trace of length 2m. Suppose that for some i, 1 ≤

i ≤ 2m, W is not i-canonical. Then there exists π ∈ Γ, such that π(Wi) <lex Wi. Because

W is canonical, it follows that W ≤lex γ(W) for every γ ∈ Γ. Therefore, W ≤lex π(W).

From Definition 1.2 it is clear that W ≤lex W
′ implies Wi ≤lex W

′
i for every i. Therefore,

Wi ≤lex π(Wi), a contradiction. �

We first explain the auxiliary algorithms used in the main Algoritm 4. If G is a graph

with m edges and p ≤ 2m, then vertex sequence Wp = w0 . . . wp−1 is a partial double trace

if there exists a double trace W of G for which Wp is its p-initial segment. Analogously, we

define partial double trace for other varieties of double traces (strong and d-stable traces).

Let Wp be a partial double trace of length p. Let Wp represent all double traces in G for

which their p-initial segment is equal to Wp. We say that Wp is lexicographically smaller

than or equal to a different partial double trace W ′
p if Wp ≤lex W

′
p (i.e., if Wp = W ′

p or

the first wi, which is different from w′i, is smaller than w′i). We say that Wp is canonical

if at least one double trace from Wp is canonical. Stabilizer of a partial double trace Wp

is defined as the subset of all automorphisms in Γ which map at least one double trace

from Wp back to (not necessary the same) double trace from Wp.

Feasible neighbor of wp−1 in a partial double trace Wp is any vertex v ∈ N(wp−1) for

which it holds that Wp+1 = w0 . . . wp−1v (that is obtained from Wp by adding v) is also a

partial double trace. This can be analogously defined for partial strong traces and d-stable

traces, where we have to be careful that v does not cause any new nontrivial repetition of

excessive order. For antiparallel or parallel double traces we additionally forbid vertices

that cause parallel or antiparallel edges in partial double trace, respectively.

Algorithm 1 loops through all the feasible neighbors of the last vertex wp−1 in a partial

double trace Wp = w0 . . . wp−1 and checks which of them, if added to Wp (to obtain partial

double trace Wp+1), will retain a canonical partial double trace. Partial double traces

obtained in this procedure are added to a queue Q.

At each step we use the automorphism group of double traces Γ in order to eliminate

all partial double traces that would not lead to a construction of a canonical double

trace. We achieve that by considering only the lexicographically smallest representative

-587-

Algorithm 1 Extend Feasibly

Input: a partial double trace Wp = w0 . . . wp−1,
A ⊆ Γ,
a queue Q of partial double traces.

Output: updated queue Q
V ′ = Feasible Neighbors(wp−1)
V ′′ = Canonical Extension(V ′,Wp, A)
for v ∈ V ′′ do
Wp+1 = w1 . . . wp−1v
Av = Prune(A,Wp+1)
if Wp+1 is canonical partial double trace then

append (Wp+1, Av) to Q

of each orbit of the automorphism group. Simultaneously, we would like to fix vertices

that are already in a partial double trace, since we have already checked it for canonicity.

Therefore, Algorithm 2 returns the automorphisms that are in the stabilizer of partial

double trace Wp+1 (in each step only the last position p has to be checked). Note that

until the double trace is not completed, we can not determine for each automorphism from

Γ if the automorphism lies in the stabilizer of the partial double trace. The problem is in

shifting, since we can not always deteremine how all first p places of the shifted partial

double trace look like. Therefore, we do not discard such an automorphism at this point.

Algorithm 2 Prune

Input: a set of automorphisms A of double traces,
partial double trace Wp.

Output: pruned set of automorphisms A′ of double traces.
A′ = ∅
for π ∈ A do

if (π in stabilizer of partial double trace Wp) or (it can not be determined if π is in
a stabilizer of Wp) then

append π to A′

return A′

Algorithm 3 loops through all the feasible neighbors of the last vertex wp−1, denoted

V ⊆ N(wp−1), of a partial double trace Wp = w0 . . . wp−1. For every v ∈ V it constructs

a new partial double trace Wp+1 = w0 . . . wp−1v. Denote a set of those new partial double

traces with Wp+1 and analyses orbits of Aut(G) ∩ A (no shifts and reverses are allowed,

therefore each orbit contains an even smaller number of partial double traces) acting on the

set of these new partial double traces. Then for every such orbit O this algorithm selects a

vertex v ∈ V for which the partial double trace Wp = w0 . . . wp−1v is the lexicographically

-588-

smallest among all partial double traces in O. Note that in practice, this algorithm should

only check the position p since Algorithm 2 ensures that for every π ∈ Aut(G) ∩ A the

vertices w0, . . . , wp−1 are fixed.

Algorithm 3 Canonical Extension

Input: a partial double trace Wp = w0 . . . wp−1,
a set of feasible neighbors V ⊆ N(wp−1),
a set of automorphisms A ⊆ Γ.

Output: the set V ′ ⊆ V that for each orbit O of Aut(G) ∩A acting on Wp+1 contains a
vertex v for which Wp+1 = w0 . . . wp−1v is the lexicographically smallest partial double
trace of orbit O.
if A = ∅ or A = {id} then

return V
V ′ = ∅
for v ∈ V do
V ′′ = {v}
v′ = v
for π ∈ Aut(G) ∩ A do

append π(v) v V ′′

if w0 . . . wp−1π(v) <lex w0 . . . wp−1v
′ then

v′ = π(v)
append v′ to V ′

V = V \ V ′′
return V ′

We now present the main Algorithm 4, which enumerates strong traces for an arbitrary

graph. In the rest of the section, we prove the correctness of Algorithm 4.

Algorithm 4 Enumerate Strong Traces

Input: a graph G with m edges,
the automorphism group Γ of double traces of G.

Output: the list L of all canonical non-equivalent double traces.
W1 = v0v1
A = Aut(G)
A = Prune(A,W1)
Q = {(W1, A)}
while Q not empty do

(W,A) = head of Q
remove (W,A) from Q
if |W | = 2m then

add W to L
else
Extend Feasibly(W,A,Q)

return L

-589-

Theorem 2.5 Let W be a double trace, which was given as an output of Algorithm 4.

Then W is canonical.

Proof. Each partial double trace Wp, which was added to Q by the Algorithm 1 is i-

canonical for every 1 ≤ i ≤ p. For the special case of p = 2m then follows, that a double

trace added by an Algorithm 1 to Q (and is also returned in set L by the Algorithm 4) is

i-canonical, for every 1 ≤ i ≤ 2m. By the Lemma 2.4 such W is canonical. �

All double traces, which were given as an output of Algorithm 4 are non-equivalent.

Otherwise some equivalence class of double traces would include two canonical double

traces, which contradicts the definition of canonical double trace.

Theorem 2.6 Let W be a canonical double trace. Then W is given as an output of

Algorithm 4.

Proof. Suppose the contrary. Let W = w0 . . . w2m be a canonical double trace which is

not given as an output of Algorithm 4. By observations made in Section 1, W starts with

v0v1. There exists the largest integer i (at least i = 1, if no other) such that Wi is the

i-initial segment of some canonical double trace which is an output of Algorithm 4. Let

Wi be the set of all (canonical) double traces which are given as an output of Algorithm 4

and have Wi as their i-initial segment. Let Vi+1 be the set of vertices that lie at the

(i + 1)-th position in (canonical) double traces from Wi. It follows that wi+1 /∈ Vi+1.

Since W is a double trace, wi+1 was in Algorithm 4 (in Algorithm 3, to be more precise)

part of feasible neighbors of wi for every double trace from Wi. Since it was never added,

it follows that in the same orbit of Aut(G) ⊆ Γ that contains W , there also lies another

(lexicographically smaller) double trace W ′ ∈ Wi. That contradicts the fact that W is

canonical. �

We presented an algorithm which enumerates all non-equivalent double traces of a

graph G. To enumerate only strong traces or only d-stable traces of the graph G, we

just have to restrict the conditions on feasible neighbors. For strong traces, we need to

forbid non-trivial repetitions. For d-stable traces, we need to forbid repetitions of order

at most d. It is also possible to enumerate parallel or antiparallel double traces. For some

edge e = uv, which is already present in a partial double trace Wi, we need to store the

information on the direction of traversal (which can be either from u to v or vice versa).

This imposes additional restrictions on the set of feasible neighbors of vertices u and v.

-590-

3 Concluding remarks and numerical results

We conclude with some numerical results. In Tables 1, 2 and 3, we present enumerations

of non-equivalent strong traces for platonic solids, prisms, and some other interesting

polyhedra which could be the next candidates to be constructed from coiled-coil-forming

segments. Note that d, n, m, ST , aST and pST stand for the degree of the graph (if the

graph is regular), the number of its vertices and edges, the number and the CPU time used

to enumerate strong traces, the number and the CPU time used to enumerate antiparallel

strong traces, and number and the CPU time used to enumerate parallel strong traces in

Tables 1, 2 and 3, respectively. Note that the listed CPU times are measured in seconds.

For comparison, CPU times for a brute-force search algorithm (first generating all double

traces and then checking for each of them if it is canonical) are also given in brackets. In

addition to the number of strong traces, the algorithm for every strong trace also returns

its vertex sequence. Therefore, it can be used for a thorough analysis of some properties

that nanostructures, which self-assemble from these strong traces, would have. Further,

this analysis helps to select a strong trace with the maximal probability of giving rise to

a stable nanostructure of desired shape.

ST pST

graph d n m # CPU time # CPU time

tetrahedron 3 4 6 3 0.003 (0.003) 0 n/a

cube 3 8 12 40 0.009 (0.012) 0 n/a

octahedron 4 6 12 21479 1.860 (4.470) 262 0.056 (0.111)

dodecahedron 3 20 30 2532008 1962.620 (4943.810) 0 n/a

Table 1. Number of strong traces and parallel strong traces for platonic solids.

All the calculations were made with Algorithm 4 using the open source mathematical

software SageMath and computational resources at SageMathCloud [22] (8GB of RAM,

4 CPU cores). It was observed in [8], that a graph G admits a parallel strong trace if

and only if G is Eulerian, and that G admits an antiparallel strong trace if and only if

there exists a spanning tree T of G with the property that every component of the co-tree

G − E(T) is even. Therefore, we omit the information about antiparallel and parallel

strong traces for graphs not admitting them. Some of these calculations were already

presented in [14] and [15].

Another possible approach to strong trace construction exploits the observation that

-591-

ST aST

graph d n m # CPU time # CPU time

K2�C3 3 6 9 25 0.004 (0.004) 2 0.004 (0.004)

K2�C4 3 8 12 40 0.010 (0.012) 0 n/a

K2�C5 3 10 15 634 0.047 (0.059) 10 0.005 (0.005)

K2�C6 3 12 18 3604 0.377 (0.576) 0 n/a

K2�C7 3 14 21 21925 3.210 (4.060) 76 0.024 (0.035)

K2�C8 3 16 24 134008 26.060 (32.920) 0 n/a

K2�C9 3 18 27 833685 210.760 (285.460) 536 0.332 (0.507)

K2�C10 3 20 30 5212520 1719.770 (2258.790) 0 n/a

Table 2. Number of strong traces and antiparallel strong traces for prisms.

ST aST

graph d n m # CPU time # CPU time

4-pyramid n/a 5 8 52 0.003 (0.004) 4 0.003 (0.003)

3-bipyramid n/a 5 9 470 0.009 (0.018) 0 n/a

Table 3. Number of strong traces and antiparallel strong traces in 4-pyramid and
3-bipyramid.

a strong trace can be nicely drawn on a surface in which the given graph is embedded.

This surface can be cut along certain edges which results in one or more surfaces with

boundary. Each of the resulting surfaces with boundary carries a part of the information

about the strong trace. The strong trace can be reconstructed by gluing those smaller

pieces back together. This topological approach will be elaborated in [1].

Acknowledgments : The authors would like to thank Gunnar Brinkmann for many helpful

suggestions and Anders Skovgaard Knudsen who independently calculated the number of

strong traces in platonic solids and shared the results for comparison. This research was

supported in part by Slovenian Research Agency under research grants P1-0294, P1-0297,

L7-5459 and L7-5554.

References

[1] N. Bašić, D. Bokal, T. Pisanski, J. Rus, Graph embeddings yield natural strong trace

realizations, in preparation.

[2] E. Benevant López, D. Soler Fernández, Searching for a strong double tracing in a

graph, Top 6 (1998) 123–138.

-592-

[3] H. J. Broersma, F. Göbel, k-Traversable graphs, Ars Comb. 29 (1990) 141–153.

[4] R. B. Eggleton, D. K. Skilton, Double tracings of graphs, Ars Comb. 17 (1984)

307–323.

[5] J. A. Ellis-Monaghan, A. McDowell, I. Moffatt, G. Pangborn, DNA origami and the

complexity of Eulerian circuits with turning costs, Nat. Comput. 14 (2015) 491–503.

[6] L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii

Academiae Scientiarum Imperialis Petropolitanae 8 (1741) 128–140.

[7] I. A. Faradžev, Constructive enumeration of combinatorial objects, Colloques in-

ternationaux C.N.R.S. No260 - Problémes Combinatoires et Théorie des Graphes ,

Orsay, 1976, pp. 131–135.

[8] G. Fijavž, T. Pisanski, J. Rus, Strong traces model of self–assembly polypeptide

structures, MATCH Commun. Math. Comput. Chem. 71 (2014) 199–212.

[9] H. Fleischner (Ed.), Eulerian Graphs and Related Topics. Vol. 1 , North–Holland,

Amsterdam, 1990.

[10] H. Fleischner (Ed.), Eulerian Graphs and Related Topics. Vol. 2 , North–Holland,

Amsterdam, 1991.

[11] M. L. Furst, J. L. Gross, L. A. McGeoch, Finding a maximum–genus graph imbed-

ding, J. Assoc. Comput. Mach. 35 (1988) 523–534.

[12] H. N. Gabow, M. Stallman, An augmenting path algorithm for linear matroid parity,

Combinatorica 6 (1986) 123–150.

[13] C. Godsil, G. Royle, Algebraic Graph Theory , Springer, New York, 2001.

[14] H. Gradisar, S. Božič, T. Doles, D. Vengust, I. Hafner Bratkovič, A. Mertelj, B. Webb,

A. Šali, S. Klavžar, R. Jerala, Design of a single–chain polypeptide tetrahedron

assembled from coiled–coil segments, Nat. Chem. Biol. 9 (2013) 362–366.

[15] S. Klavžar, J. Rus, Stable traces as a model for self-assembly of polypeptide nanoscale

polyhedrons, MATCH Commun. Math. Comput. Chem. 70 (2013) 317–330.

[16] V. Kočar, S. Božič Abram, T. Doles, N. Bašić, H. Gradǐsar, T. Pisanski, R. Jer-

ala, Topofold, the designed modular biomolecular folds: polypeptide-based molec-

ular origami nanostructures following the footsteps of dna, WIREs Nanomed.

Nanobiotech. 7 (2015) 218–237.

[17] B. D. McKay, A. Piperno, Practical Graph Isomorphism, II, J. Symb. Comput. 60

(2014) 94–112.

-593-

[18] T. Pisanski, A. Žitnik, Representing graphs and maps, in: L. W. Beineke, R. J. Wil-

son (Eds.), Topics in Topological Graph Theory , Cambridge Univ. Press, Cambridge,

2009, pp. 151–180.

[19] R. C. Read, Every one a winner, Annals Discr. Math. 2 (1978) 107–120.

[20] J. Rus, Antiparallel d-stable traces and a stronger version of Ore problem, J. Math.

Biol., in press.

[21] G. Sabidussi, Tracing graphs without backtracking, in: R. Henn, P. Kall, B. Korte,

O. Krafft, W. Oettli, K. Ritter, J. Rosenmüller, N. Schmitz, H. Schubert, W. Vogel

(Eds.), Methods of Operations Research XXV, Part 1 , Univ. Heidelberg, Heidelberg,

1977, pp. 314–332.

[22] The Sage Developers, Sage Mathematics Software (Version 7.4.(2016-10-18), 2016,

http://www.sagemath.org.

[23] G. Tarry, Le problème des labyrinthes, Nouv. Ann. 3 (1895) 187–190.

[24] C. Thomassen, Bidirectional retracting-free double tracings and upper embeddability

of graphs, J. Comb. Theory Ser. B 50 (1990) 198–207.

[25] J. Wang, G. Hu, M. Ji, Almost parallel strong trace model of self-assembly polypep-

tide nanostructure, MATCH Commun. Math. Comput. Chem. 77 (2017) 783–798.

[26] J. Wang, X. Jin, M. Ji, On the existence of F -strong trace of a graph when F induces

a forest, MATCH Commun. Math. Comput. Chem. 77 (2017) 799–812.

[27] D. B. West, Introduction to Graph Theory , Prentice Hall, Upper Saddle River, 1996.

-594-

