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Abstract

A mini-review of developments in sampling algorithms applied to the design of
new catalysts and materials is presented. The data mining technology is
increasingly being used in new industrial processes, which require automatic
analysis of data and related results to proceed quickly to conclusions. However, for
some applications, absolute automation may not be appropriate. Unlike traditional
data mining contexts, processing of large amounts of data, some domains are
characterized by the scarcity of data, due to the cost and time involved in the
realization of simulations or the setting up of experimental apparatuses for the
collection of data. In such domains, therefore, it is prudent to balance the speed
through the automation and the utility of the generated data.

1 Introduction

The discovery of new materials is a key factor for the improvement of the industrial

competitiveness. This has been evidenced by the emergence of initiatives such as the
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Materials Genome Initiative [1-4] in 2011, Metallurgy Europe [5] in 2012, or the Materials
Research Consortium [6] that have boosted the data science in this area.

In recent years, data mining has invoked great attention in academia but also in industry
where this technology is more and more employed into new industrial processes, which
usually require automatic analysis of data in order to proceed quickly to conclusion/decision.
However, for some applications, an absolute automation may not be appropriate. In those
cases when there exists the possibility of evaluate a whole dataset, retrospective analysis can
yield algorithms to reproduce the obtained results, to gain deep insight in the key features
involved in the problem.

Few articles can be found where a library of potential catalysts is synthesized and tested,
and the results analyzed to get algorithms able to select reasonably the best catalysts [7-10].
Unlike traditional data mining contexts working with voluminous amounts of data, some
domains are actually characterized by a scarcity of data, owing to the cost and time involved
in conducting simulations or setting up experimental apparatus for data collection. In such
domains, it is hence prudent to balance speed through automation and the utility of the
generated data. Therefore, the human interaction and guidance must rule to attain better
quality output.

In many natural learning tasks, knowledge is gained iteratively, by making action,
queries, or experiments. Active learning (AL) is concerned with the integration of data
collection, design of experiments and data mining, for making better data exploitation. The
learner is not treated as a classical passive recipient of data to be processed. AL can be used in
two extreme cases. 1) The number of data available is very large, thus a mining algorithm uses
a selected data subset rather than the whole available data. ii) The researcher has the control
of data acquisition, and he has to pay attention on the iterative selection of samples for
extracting the greatest benefit from future data treatments. The second situation becomes
especially crucial when each data point is costly, the domain knowledge is imperfect, and
theory-driven approaches are inadequate such as for materials science fields and, especially,

heterogeneous catalysis [11].

2 Specificities of the domain of application: Towards an adequate
strategy

A catalytic reaction is a chemical reaction in which transformations are accelerated thanks to

a substance called catalyst. Starting molecules and intermediates, as soon as are formed, can
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interact with the catalyst in a specific/discriminating manner. This infers that some
transformation steps can be accelerated. Catalytic processes constitute the fundamentals of
modem chemical industries. Over 90% of the newly introduced chemical processes are
catalytic [12]. In the highly developed industrial countries, catalytic processes create about
20% of the Gross Domestic Product. Catalysis is responsible in the manufacture of over $3
trillion in goods and services. We will focus on heterogeneous catalysis which involves the
use of catalysts acting in a different phase from the reactants, typically a solid catalyst with
liquid or gaseous reactants. For further details, the reader is referred to [13].

During the whole catalytic development, a very large number of features and parameters
have to be screened and therefore any detailed and relevant catalyst description remains a
challenge. The selection of adequate input variables is a problem of the utmost importance
[14-16]. All these parameters generate an extremely large degree of complexity. As a
consequence, the entire catalyst development is long (~15 years) and costly. The conventional
catalyst development relies on fundamental knowledge and know-how. The main drawback of
this approach is to be a very time-consuming process, making and testing one material at a
time. Another drawback comes from the relative importance of intuition for the initial choices
of the development strategy [17]. To overcome these major drawbacks, attempts to shorten
this process by using high throughput (HT) technology have been reported since about 20
years [18-31]. The HT approach is more pragmatic-oriented. It implies the screening of
collections of samples.

It may be stressed out that the relevant parameters are usually unknown and some of them
cannot be directly and individually controlled. In addition, it is in general a combination of
factors that provides outstanding properties which are required to meet challenging targets.
Principal component analysis (PCA) has been used in the data analysis and dimensional
reduction in the hydrothermal synthesis of zeolites [32] and also to identify relevant key
features for catalytic activities in a dataset of pentanary-mixed metal oxides [33]. This last
approach allowed restricting the initial chemical diversity and focuses the sampling
techniques in the most promising candidates [34]. Other techniques used with the purpose of
reducing the parameters involved in the search are neural networks (NN) developments, such
as the NN analysis of factors controlling catalytic activity [35] or the numerical partial
differentiation of a trained NN pattern [36]. Another interesting feature of combinatorial
materials search is the dependence between the composition and the reproducibility of the

material properties [37,38].
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The tools necessary for the combinatorial approach can be classified into two main
categories i) HT equipments for fast and parallel synthesis and testing of catalysts and ii)
computational methods. HT experimentation has become an accepted and important strategy
in the development of catalysts and materials [39-44]. However, such an approach has more
success in the optimization than in the discovery [11,45]. Despite of the fast syntheses and the
testing robots, each catalytic experiment still requires a few hours. Here, the learner's most
powerful tool is its ability to act gathering the data.

The general problem considered here is the efficacy of experimental data selection in HT
of heterogeneous catalysis within a discovery program. Considering such domain, only very
fast screening tools should be employed aiming at finding the various "groups" of catalyst
outputs. This pre-screening of the search space shall extract information or knowledge from
the restricted selected sampling in order to provide guidelines and well defined boundaries for
further screenings and optimization. Here, the output performance is related to the
identification of classes. Ranking (if exists) is not taken into account since the objective is not
the optimization of the catalytic activity or selectivity. The chemist knowledge should permit
to define a priori broad and "poorly-previously-explored" parameter space, letting
opportunities to surprising or unexpected catalytic results. The typical distribution of catalytic
outputs usually exhibits unbalanced datasets for which an efficient learning can be hardly
carried out. Even if the overall recognition rate may be satisfactory, catalysts belonging to
rare but usually interesting classes can be misclassified.

The sampling strategy in HT material science, and especially in heterogeneous catalysis,
typically embodies an assessment of where might be a good location to collect data or to plan
experiments in iterative optimization, in the chemical space, to get information on the
selectivity or conversion [46]. This can be performed by an evolutionary algorithm [47-60] of
specific design criteria usually, homogeneous covering [61-65] or traditional design of
experiments [66-77] (DoE), the later is usually neglected due to the specificity of the different
methods and the restrictions imposed by the domain. Other techniques comprise the optimal
design of experiments, based on Levenberg-Marquard optimization scheme [78], the
multiobjective design of experiments [79,80], and the random forest regression [81]. For most
of studies, Simple Random Sampling (SRS) rules the domain. However, SRS should not be
underestimated, see [82] for a detailed explanation of the SRS robustness.
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Diversity monitoring is not a sampling method but merits to be mentioned here. It allows
enhancing the reliability of the sampling by selecting samples that maximize a parameter
based on distances [83].

In data science, Machine Learning (ML) can be defined as biomimetic modeling; in
contrast to Statistical modeling that relies on probability theory. The two most important
paradigms in ML are the supervised and the unsupervised learning techniques. Supervised
learning generates functions that relate inputs to known outputs. By contrast, unsupervised
learning models series of inputs. Applications of ML in materials science have been recently
reviewed [84].

Supervised learning could be interesting in sampling, but few papers deal with such
strategies in this domain. One of these methods, called mapping, has been used to guide
discovery studies [32,85-88]. The Mapping method develops relationships among properties
such as composition and synthesis conditions while these interactions may be obtained
without searching for hits or lead materials. Then, the results of mapping studies can be used
as inputs to guide subsequent screening or optimization experiments. The purpose of
screening experiments is said to identify iteratively, by accumulation of knowledge, hits or
small space regions of materials with promising properties. The last manner to guide the
chemist, called optimization, is when experiments are designed to refine material properties.
Mapping receives relatively little attention, being too often subsumed under screening. New
methodologies are presented that aims at generating successively new samples in order to
reach an improved final estimate of the entire search space investigated according to the
knowledge accumulated iteratively through samples selection and corresponding obtained
results.

A new iterative algorithm was proposed by the corresponding author of this review for
the characterization of the space structure [89]. This algorithm, called MAP for MAPping, is
able to: i) Increase the quality of the ML performed at the end of the first exploratory stage. ii)
Work independently from the choice of the supervised learning system. iii) Decrease the
misclassification rates of catalysts belonging to small frequency classes of performance. iv)
Handle both quantitative and qualitative features. v) Proceed iteratively while capturing
information contained into all the previous experiments. vi) Integrate inherent constraints
such as a priori fixed reactor capacity, i.e. the amount of the iteratively selected samples to be

labelled, and a maximum number of experiments to be conducted, so-called deadline.
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3 Active learning

Active learning (AL) assumes that the data is provided by a source which is controlled by the
researcher. Such control is used for different aims and in different ways. The various fields
for which one may wish to use AL are numerous such as optimization, where the learner
experiments to find a set of inputs that maximize some response variable, for example the
response surface methodology [90,91] which guides hill-climbing through the input space;
adaptive control, where one must learn a control policy by taking actions, one may face the
complication that the result of a specific action remains unknown during a time; model
selection problem for driving data collection in order to refine and discriminate a given set of
models. For all types ofapplication, the principal AL task is to determine an "optimal" sample
selection strategy. Such optimization is defined through a criterion, called selection scheme,
depending on the user aim. Therefore, considering the model selection problem, the approach
can either be motivated by the need to disambiguate among models or to gain the most
prediction accuracy from a ML algorithm, while requiring the fewest number of labels.

Before inspecting the different selection schemes proposed in the bibliography, it has to
be noted that new samples can either be created by the system or selected from an unlabeled
set. The first approach is not investigated here, and considering the domain of application, it
remains difficult to generate samples without lack of coherence. A system could produce non
existing materials to be labelled. This methodology has been explored and often describes
"impossible" catalysts [92,93]. For example: to prepare by a precipitation process a solid
consisting 0f 30% Ba, 50% Na, and 20% V (oxygen is excluded), using inorganic, non-halide
precursors flom aqueous solution, using suitable precursors, finding a precipitation agent
which would precipitate all three metals at the same time is virtually impossible.

The second approach is the most common and corresponds to the one we are concerned.
Two kinds of selection from an unlabeled set can be distinguished. The pool-based approach
allows the selection among a priori restricted set of unlabelled samples while the other one
allows picking up any sample to be labelled from an entire pre-defined search space.

Another criterion that should be taken into account when specifying an AL algorithm is
the exact role of the ML system. AL usually starts from a very small number of labelled
samples, and then iteratively asks for new samples. The following cases are discriminated on
the basis of the frequency of learning system update. The selection of new samples may be
done in order to update at each new round either the previously obtained model, increasing its

performance and accuracy, or a given criterion which remains independent from the learning
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system allowing a unique use of the ML when the whole selection is achieved. Using the
semantic used in feature selection domain, the first protocol may be called a wrapper
approach while the second one may be qualified as a filter. The advantage of using a wrapper
technique is that the selection is optimized considering the learning algorithm that has been
previously chosen. However, such choice is not always trivial, and depends on the complexity
of the underlying system investigated (which is usually unknown or difficult to quantify) but
also on the complexity of the ML system itself since considering complex algorithms it may
be delicate to elaborate the selection scheme. Moreover, for many configurations, such

methodology might be intractable.

3.1 Selection schemes

The primary question of AL is how to choose which points to try next. A simple strategy for
sampling is to target locations to reduce our wuncertainty in modelling, for example by
selecting the location that minimizes the posterior generalized variance of a function. The
distribution P(¥/X) being unknown, a classical approach consists in approximating P with
many samples but then a great amount of hypothesis and simplifications have to be done to
compute the estimated error reduction. For example, using a probabilistic classifier,
uncertainty sampling would pick the observation for which the predicted class probabilities
yield the greatest entropy. The query by committee utility [94,95] measures the classification
disagreement of a committee of classifiers. By choosing an example with large disagreement,
Cohn et al. [96] measured the expected reduction in the prediction of variance of NN and
other models. Another closely-related solution is to select the most ambiguous sample.
Ambiguity-directed sampling aims at clarifying the decision-making near the ambiguity.
Making the assumption that close elements are similar, the knowledge of one sample should
induce the knowledge of the neighboring. However, ambiguous points are likely to be
neighbors. It is therefore important to select ambiguous points spread over the distribution of
input variables. Other solutions for choosing these points are to look for "places" where there
is no data [97], where it is expected to change the model [98]. Thus, reference [99] relies on
measuring the variation in label assignments (of the unlabeled set) between the classifier
trained on the training set only and the classifiers trained on the training set with a single
unlabeled object added with all possible labels. Other closely related selection schemes are
investigated which aims at choosing points where the system performs poorly [100], and

where it was previously found data that resulted in learning [101]. Other solutions are directly
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induced by the domain of application, for instance, robot navigation studies [102]. In such
learning tasks, data-query is neither free nor of constant cost. Researchers try to integrate the
fact that the cost of a query depends on the distance from the current location in state space to
the desired query point. On the other hand, such notion of distance is not transferable to the

synthesis of materials.

4 Final remarks

Although the previously reviewed literature is very valuable and gives theoretical justification
of using AL, even without considering the specificities which make them unusable in our
case, most of the relevant articles require a degree of statistical sophistication which is beyond
the reach of most practitioners ofthe domain of high throughput materials science.

The empirical results of the method MAP have demonstrated the effectiveness of the
active mining strategy on synthetic datasets. The strategy has been tested against simple
random sampling (SRS) on numerous benchmarks with different levels of complexity [89].
The method is a stochastic group sequential biased sampling which iteratively proposes a
sample of the search space. The approach does not need to sample the entire combinatorial
space, but only enough to be able to identify the structure of classes without forgetting classes
obtained only with few experiments [89].

At the moment, such approach is used in a research program for the discovery of new

zeolites.
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