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Abstract

In this paper we find extremal values of the number of inlets and the num-
ber of bay regions over PHSh, the set of pericondensed hexagonal systems with h
hexagons. As an application, we determine extremal values of vertex-degree-based
topological indices over PHSh.

1 Introduction

In this paper we study a special class of hexagonal systems, the so-called pericondensed

hexagonal systems. These are hexagonal systems with at least one internal vertex. For the

definition of hexagonal systems and details of their theory we refer to the book [11]. The

hexagons of a hexagonal system can be classified according to the number and position

of edges shared with the adjacent hexagons. Figure 1 shows the 12 different types of

hexagons that can occur in a hexagonal system.
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Figure 1. The twelve types of hexagons that can occur in hexagonal systems and
the structural features on the perimeter of a hexagonal system.

When going along the perimeter of a hexagonal system H, certain features may be en-

countered [11], called fissure, bay, cove and fjord, which correspond respectively to vertex

degree sequences (2, 3, 2), (2, 3, 3, 2), (2, 3, 3, 3, 2) and (2, 3, 3, 3, 3, 2) (see Figure 1). The

number of fissures, bays, coves and fjords are denoted respectively by f (H) , B (H) , C (H)

and F (H). The parameter

r = r (H) = f (H) +B (H) + C (H) + F (H)

is called the number of inlets of H [18].

Another quantity much studied in the theory of hexagonal systems is the number of

bay regions b = b (H) defined as

b = b (H) = B (H) + 2C (H) + 3F (H) .

When H is a hexagonal system with h hexagons, these two quantities are connected via

the relation [2]

r = 2 (h− 1)− (b+ ni) , (1)

where ni is the number of internal vertices H has.
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Figure 2. Linear hexagonal chain Lh.

Recall that H is a catacondensed hexagonal system if ni (H) = 0 and it is a peri-

condensed hexagonal system if ni (H) ≥ 1. We will denote by HSh the set of hexagonal

systems, CHSh the set of catacondensed hexagonal systems and PHSh the set of pericon-

densed hexagonal systems with h hexagons. In [2] it was shown that the linear hexagonal

chain Lh (see Figure 2) attains the maximal value of r among all hexagonal systems in

HSh and consequently in CHSh, since Lh is a catacondensed hexagonal system. In [19]

it was shown that the minimal value of r over CHSh is attained in the hexagonal system

Eh (see Figure 3), and recently the authors in [4] found that the minimal value of r over

HSh is attained in Bh (see Figure 4). Hence the extremal value problem of r over CHSh

and HSh is settled.

Eh (h even) Eh (h odd)

Figure 3. Hexagonal systems with maximal value of b over HSh.
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Figure 4. Hexagonal system Bh with minimal number of inlets over HSh.

Regarding the number of bay regions b over CHSh, since ni (H) = 0 for all H ∈ CHSh,

it follows from (1) that

r (H) = 2 (h− 1)− b (H) ,

and so

b (H) ≤ b (Eh) =

⌈
3

2
h− 7

2

⌉
, (2)

for all H ∈ CHSh. The minimal value of b over CHSh is clearly attained in Lh, since

b (Lh) = 0. In HSh the minimal is attained in convex hexagonal systems, i.e. hexagonal

systems W for which b (W ) = 0 (see [2]), and the maximal in Eh as you can see in [3].

h odd h even

Figure 5. Convex pericondensed hexagonal systems.

So naturally arises the question: is it possible to find sharp upper and lower bounds

for r and b over PHSh? It turns out that the minimal value of r is attained again in

Bh, since Bh is a pericondensed hexagonal system. Also, it is easy to construct convex
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pericondensed hexagonal systems (see Figure 5) and so these have minimal b over PHSh.

Moreover, we show in Theorem 2.1 of this paper that Mh (see Figure 6) attains the

maximal value of r among all hexagonal systems in PHSh.

Figure 6. Hexagonal systems Mh with maximal number of inlets over PHSh.

Perhaps the most interesting question is:

Problem 1.1 Which pericondensed hexagonal systems attain the maximal value of b.

In our main result we give a sharp upper bound for the value of b over PHSh. More

precisely, we show in Theorem 2.3 that b(H) ≤
⌈
3
2
h− 11

2

⌉
for all H ∈ PHSh (h ≥ 4).

Moreover, the pericondensed hexagonal system Fh (see Figure 7) attains the maximal

value of b.

Figure 7. Hexagonal system with maximal value of b over PHSh .

As an application of the results mentioned above, we determine extremal values of

vertex-degree-based topological indices over PHSh. Recall that a vertex-degree-based
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topological index TI of G is defined as

TI (G) =
∑

1≤i≤j≤n−1

mijϕij (3)

where {ϕij} is a set of non-negative real numbers and 1 ≤ i ≤ j ≤ n− 1, and mij is the

number of i-j-edges, i.e. edges between vertices of degree i and degree j ( [9], [12], [13], [15],

[21]). Many of the well-known topological indices are particular cases of this expression;

for instance, when ϕij =
1√
ij

we obtain the Randić index ( [24]), one of the most widely

used in applications to physical and chemical properties ( [6], [16], [17], [25]). Due to the

success of the Randić index many other topological indices appeared in the mathematical-

chemistry literature, which are particular cases of the formula given in (3): in the second

Zagreb index ϕij = ij [10], in the atom-bond-connectivity index ϕij =
√

i+j−2
ij

[7], in the

geometric-arithmetic index ϕij =
2
√
ij

i+j
[26], in the sum-connectivity index ϕij =

1√
i+j

[29],

in the augmented Zagreb index ϕij =
(ij)3

(i+j−2)3
[8] and in the harmonic index ϕij =

2
i+j

[28],

just to mention a few.

Results on the extremal values of TI over HSh and CHSh have appeared recently in

the literature ( [1], [2], [3], [5], [20], [22], [23]). In this paper we address the extremal value

problem over PHSh. More specifically, under certain conditions on the set of numbers

{ϕij} (which most of the well-known topological indices satisfy), we find extremal values

of TI over PHSh (Theorems 3.1 and 3.2).

2 Extremal values of the number of inlets and num-

ber of bay regions

We first determine the extremal values of r over PHSh. It was shown in [4] that the

hexagonal system Bh (see Figure 4) has
⌈√

3 (h− 1)
⌉

inlets and this is the minimal

number of inlets among all hexagonal systems in HSh. Since Bh is a pericondensed

hexagonal system, then Bh attains the minimal number of inlets in PHSh.

Theorem 2.1 Let h ≥ 4. Then for all P ∈ PHSh⌈√
3 (h− 1)

⌉
= r (Bh) ≤ r (P ) ≤ r (Mh) = 2 (h− 2) .

Proof. We only have to prove the upper bound. Let P ∈ PHSh and assume that
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ni (P ) ≥ 2. Then b (P ) + ni (P ) ≥ 2 and so by (1)

r (P ) = 2 (h− 1)− (b (P ) + ni (P ))

≤ 2 (h− 1)− 2 = 2 (h− 2)

If ni (P ) = 1 then b (P ) ≥ 1 by [1, Lemma 2.3]. Hence b (P ) + ni (P ) ≥ 2 and again

r (P ) ≤ 2 (h− 2). Finally, it is easy to show that r (Mh) = 2 (h− 2) (see Figure 6).

Now we look at the bounds for b over PHSh. For every positive integer h we can easily

construct convex pericondensed hexagonal systems as we can see in Figure 5. These have

obviously minimal number of bay regions in PHSh. So now we are interested in finding

the maximal number of bay regions among all hexagonal systems in PHSh. We know

that the maximal value of b over HSh is attained in the catacondensed hexagonal system

Eh (see Figure 3). This result appeared in [Cru-13, Theorem 3.4] and its proof is based

on a (long and complicated) result by Wu and Deng [27, Theorem 10] about the general

connectiviy index Rα of hexagonal systems. We now give a simpler proof that depends

directly on the structure of the hexagonal system, and a small variation of this result will

give us the maximal value of b over PHSh.

Recall that every hexagonal system with h ≥ 2 hexagons is obtained from a hexagonal

system with h − 1 hexagons by adding a hexagon of type L1 (one-contact addition), or

P2 (two-contact addition), or L3 (three-contact addition), or P4 (four-contact addition)

or L5 (five-contact-addition) (see [11]). In particular, every hexagonal system has one of

the mentioned hexagons: L1, P2, L3, P4 and L5. The proof of our next result is based on

this observation.

Another well-known relation [11] we will use frequently from now on is

m22 (H) = b (H) + 6. (4)

Theorem 2.2 Let H ∈ HSh with h ≥ 2. Then

b(H) ≤
⌈
3

2
h− 7

2

⌉
.

Proof. The proof is by induction on h. It is easy to check the result for h = 2, 3, 4.

Let h ≥ 5 and assume that the result is true for any hexagonal system with less than h

hexagons. Let H be a hexagonal system with h hexagons. We consider several cases:
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1. H contains a L3, P4 or L5 hexagon, or a P2 hexagon of the form depicted in Figure

8. In this case we will show that there exists a (sub)hexagonal system H1 with h−1

hexagons such that b(H) ≤ b(H1)+1. If this is so then by induction we easily obtain

b(H) ≤ b(H1) + 1 ≤
⌈
3

2
(h− 1)− 7

2

⌉
+ 1 ≤

⌈
3

2
h− 7

2

⌉
.

Note that in each case, splitting H into the dark shadowed (sub)hexagonal system

H1 of h − 1 hexagons and the corresponding hexagon L3, P4, L5 or P2, we obtain

at least five new 2-2-edges. Hence

m22(H) ≤ m22(H1) + 6− 5 = m22(H1) + 1,

and from relation (4) we deduce

b(H) ≤ b(H1) + 1.

Figure 8. Hexagonal systems used in the proof of Theorem 2.2, case 1.

2. H contains a P2 hexagon of the form depicted in Figure 9. In this case we will show

that there exist (sub)hexagonal systems H1 and H2 of H, with h1 ≥ 2 and h2 ≥ 2

hexagons respectively, such that h = h1 + h2 and b(H) ≤ b(H1) + b(H2) + 3. Then

by induction

b(H) ≤ b(H1) + b(H2) + 3 ≤
⌈
3

2
h1 −

7

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+ 3 ≤

⌈
3

2
h− 7

2

⌉
.

Splitting H into the two hexagonal systems H1 and H2, where H1 is the dark

shadowed (sub)hexagonal system, we obtain at least three new 2-2-edges in H1 and

H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 3.
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Figure 9. Hexagonal systems used in the proof of Theorem 2.2, case 2.

3. H contains a L1 hexagon and the hexagon adjacent to it is not A3. In this case we

show that there exist two (sub)hexagonal systems H1 and H2 of H, with h1 ≥ 2 and

h2 ≥ 2 hexagons respectively, such that h = h1 + h2 and b(H) ≤ b(H1) + b(H2) + 3

and the result follows as in part 2 of this theorem.

Let X be the hexagon adjacent to the L1 hexagon in H. Then X must be L2, A2,

P3 or L4 (see Figure 10). In each case, we split H into the two hexagonal systems

H1 and H2, where H1 is the dark shadowed (sub)hexagonal system, obtaining at

least three new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 3.

Figure 10. Hexagonal systems used in the proof of Theorem 2.2, case 3.

4. H contains a A3 hexagon and X is one of the hexagons next to it which is not A3 nor

L1. Then we will show that there exist (sub)systems H1 and H2 of H, with h1 ≥ 2

and h2 ≥ 2 hexagons respectively, such that h = h1+h2 and b(H) ≤ b(H1)+b(H2)+3

The result would follow as in part 2 of this theorem.

Clearly X must be a L2, L4, A2 or P3 hexagon (see Figure 11). In each case, we

split system H into the two (sub)hexagonal systems H1 and H2, where H1 is the
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dark shadowed (sub)hexagonal system, obtaining at least three new 2-2-edges in H1

and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 3.

Figure 11. Hexagonal systems used in the proof of Theorem 2.2, case 4.

5. Finally, all hexagons in H are L1 or A3. Then H is a catacondensed hexagonal

system and the result follows by (2).

Now we can find the maximal value of b over the set PHSh.

Theorem 2.3 Let H ∈ PHSh with h ≥ 4. Then

b(H) ≤
⌈
3

2
h− 11

2

⌉
.

Proof. The proof is by induction on h. It is easy to check the result for h = 4, 5, 6.

Let h ≥ 7 and assume that the result is true for any pericondensed hexagonal system

with less than h hexagons. Let H be a pericondensed hexagonal system with h hexagons.

First assume that ni(H) ≥ 5.

1. H contains a L3, P4 or L5 hexagon, or a P2 hexagon of the form depicted in Figure

8. Then by part 1 of the proof of Theorem 2.2, there exists a (sub)hexagonal system

H1 with h − 1 hexagons such that b(H) ≤ b(H1) + 1. Moreover, since ni(H) ≥ 5,

H1 ∈ PHSh−1. Hence by induction we deduce

b(H) ≤ b(H1) + 1 ≤
⌈
3

2
(h− 1)− 11

2

⌉
+ 1 ≤

⌈
3

2
h− 11

2

⌉
.

2. H satisfies any of the cases 2, 3 or 4 in the proof of Theorem 2.2. Then there exist

two (sub)hexagonal systems H1 and H2 of H, with h1 ≥ 2 and h2 ≥ 2 hexagons

respectively, such that h = h1+h2 and b(H) ≤ b(H1)+ b(H2)+ 3. Since ni(H) ≥ 5,

-478-



one of the two hexagonal systems is pericondensed, say H1. Then by induction we

deduce

b(H) ≤ b(H1) + b(H2) + 3 ≤
⌈
3

2
h1 −

11

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+ 3

≤
⌈
3

2
h− 11

2

⌉
.

The only possibility left is case 5 in Theorem 2.2, but this cannot occur since H ∈

PHSh. So we only have to consider when 1 ≤ ni(H) ≤ 4.

If ni(H) = 4 then the proof works the same as in the case ni(H) ≥ 5 except when

there is a L5 hexagon. Note that in the splitting of H in that case, none of the (sub)hexag-

onal systems is pericondensed. However, if ni(H) = 4 then we can split H (see Figure

12) into the two (sub)hexagonal systems H1 and H2, where H1 is the dark shadowed

(sub)hexagonal system with at least four hexagons. In this case, we obtain at least three

new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 3.

Since H1 is pericondensed (with exactly one internal vertex), the results follow as in part

2 of this theorem. Note that if H1 has exactly three hexagons, then one of these hexagons

is a P2 hexagon and the results follows as in part 1 of this theorem.

Figure 12. Pericondensed hexagonal systems with ni ∈ {2, 3, 4}.

If ni(H) = 3 then H does not contain a L5 hexagon. Again, the proof works as in

the case ni(H) ≥ 5 except when H contains a P4 hexagon. However, since ni(H) = 3 we

can split H into the two (sub)hexagonal systems H1 and H2 (see Figure 12), where H1 is
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the dark shadowed (sub)hexagonal system with at least four hexagons. In this case, we

obtain at least three new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 3.

Since H1 is pericondensed (with exactly one internal vertex), the results follow as in part

2 of this theorem. Note that if H1 has exactly three hexagons, then one of these hexagons

is a P2 hexagon and the results follows as in part 1 of this theorem.

If ni(H) = 2, H is of the form depicted in Figure 12. Note that one internal vertex is

highlighted and the other one belongs to the dark shadowed (sub)hexagonal system. We

split system H into the two (sub)hexagonal systems H1 and H2, where H1 is the dark

shadowed (sub)hexagonal system. If H2 has two or more hexagons, we obtain at least

three new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 3.

Since H1 is pericondensed, the results follow as in part 2 of this theorem.

On the other hand, if H2 consists of only one hexagon then the system H has the form

(a) or the form (b) depicted in Figure 13. Note that in case (b) one internal vertex is

highlighted and the other one belongs to the dark shadowed (sub)hexagonal system. In

each case, we split system H into the two (sub)hexagonal systems H1 and H2, where H1

is the dark shadowed (sub)hexagonal system.

Figure 13. Pericondensed hexagonal systems with ni = 2 when H2 consists of only
one hexagon.
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In case (a) we obtain at least five new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 5,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 1.

Since neither H1 nor H2 are pericondensed, by Theorem 2.2 we deduce

b(H) ≤ b(H1) + b(H2) + 1 ≤
⌈
3

2
h1 −

7

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+ 1

≤
⌈
3

2
h− 11

2

⌉
.

In case (b) we obtain at least three new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 3.

Since H1 is pericondensed, the results follow as in part 2 of this theorem.

Finally, if ni(H) = 1, we split H into three (sub) hexagonal system H1, H2 and H3 of

H as depicted in Figure 14, where h = h1 + h2 + h3. If h2 = h3 = 1 then

m22(H) ≤ m22(H1) + 6 + 6− 4− 4− 3 = m22(H1) + 1,

or equivalently,

b (H) ≤ b (H1) + 1.

From Theorem 2.2

b (H) ≤ b (H1) + 1 ≤
⌈
3

2
(h− 2)− 7

2

⌉
+ 1

≤
⌈
3

2
h− 11

2

⌉
.

If h2 > 1 and h3 = 1 then

m22(H) ≤ m22(H1) +m22(H2) + 6− 4− 3− 3 = m22(H1) +m22(H2)− 4,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 2.
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From Theorem 2.2 and the fact that h = h1 + h2 + 1 we obtain

b (H) ≤ b (H1) + b (H2) + 2

≤
⌈
3

2
h1 −

7

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+ 2

≤
⌈
3

2
h− 11

2

⌉
.

Now, if h2 > 1 and h3 > 1 we obtain at least nine new 2-2-edges. Hence

m22(H) ≤ m22(H1) +m22(H2) +m22(H3)− 9,

or equivalently,

b (H) ≤ b (H1) + b (H2) + b (H3) + 3.

It follows from Theorem 2.2 and the fact that h = h1 + h2 + h3 that

b (H) ≤ b (H1) + b (H2) + b (H3) + 3

≤
⌈
3

2
h1 −

7

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+

⌈
3

2
h3 −

7

2

⌉
+ 3

≤
⌈
3

2
h− 11

2

⌉
.

Figure 14. Split of pericondensed (sub)hexagonal system H with ni = 1.

The hexagonal system Fh depicted in Figure 7 have maximal value of b over the set of

pericondensed hexagonal systems with h hexagons.

3 Extremal values of TI over PHSh

We first note that a hexagonal system only has vertices of degree 2 and 3, so the expression

for TI given in (3) simplifies as

TI (H) = m22ϕ22 +m23ϕ23 +m33ϕ33. (5)
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From the well known relations [18] in a hexagonal systemH with n vertices and h hexagons

m22 = n− 2h− r + 2

m23 = 2r

m33 = 3h− r − 3,

the fact that

n = 4h+ 2− ni

and from (5), we deduce that for any two hexagonal systems S, U ∈ HSh

TI (S)− TI (U) = q [r (S)− r (U)] + ϕ22 [ni (U)− ni (S)] , (6)

where

q = 2ϕ23 − ϕ22 − ϕ33.

By (1) we can also express the variation of TI in terms of the number of bay regions

TI (S)− TI (U) = q [b (U)− b (S)] + (q + ϕ22) [ni (U)− ni (S)] . (7)

Most of the topological indices studied in the literature satisfy the condition

−ϕ22 ≤ q < 0, (8)

as we can see in Table 1.

ij 1√
ij

2
√
ij

i+j
2

i+j
1√
i+j

(ij)3

(i+j−2)3

√
i+j−2

ij

q -1 -.0168 -.0404 -.0333 -.0138 -3.3906 .0404
ϕ22 4 .5 1 .5 .5 8 0.70

Table 1. Values of q and ϕ22 for well-known VDB topological indices.

We next find the minimal value of TI over PHSh under the condition (8). Recall that

the spiral hexagonal system Sh has maximal number of internal vertices

ni (Sh) = 2h+ 1−
⌈√

12h− 3
⌉

among all hexagonal systems in HSh [14]. In [22] we characterize the values of h for which

there exists a convex hexagonal system W with maximal number of internal vertices, i.e.

ni (W ) = 2h+ 1−
⌈√

12h− 3
⌉
. (9)

Note that W ∈ PHSh. Hence we deduce from [22, Theorems 1.1 and 3.1]:
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Theorem 3.1 Let TI be a vertex-degree-based topological index of the form (3).

1. If there exists a convex hexagonal system W with h hexagons satisfying (9) and

−ϕ22 ≤ q < 0 then W has minimal TI-value among all hexagonal systems in

PHSh.

2. If there is no convex hexagonal system with h hexagons satisfying (9) and −ϕ22

2
≤

q < 0, then the spiral Sh has minimal TI-value over PHSh.

The maximal TI-value in PHSh is attained in the pericondensed hexagonal system

Fh (see Figure 7), as we can see in our next result.

Theorem 3.2 Let TI be a vertex-degree-based topological index of the form (3). If

−ϕ22 ≤ q < 0 then Fh has maximal TI-value over PHSh.

Proof. Let P ∈ PHSh. Then ni (P ) ≥ 1. It follows from (7) and Theorem 2.3 that

TI (Fh)− TI (P ) = q [b (P )− b (Fh)] + (q + ϕ22) [ni (P )− ni (Fh)]

= q

[
b (P )−

⌈
3

2
h− 11

2

⌉]
+ (q + ϕ22) [ni (P )− 1] ≥ 0.

Consequently, TI (Fh) ≥ TI (P ) for all P ∈ PHSh.

Remark 3.3 The condition −ϕ22

2
≤ q < 0 holds for most of the well-known topological

indices, as we can see in Table 1. Consequently, for all these indices the extremal values

of TI over PHSh are determined for all h, by Theorems 3.1 and 3.2.

In the case of the Atom-Bond-Connectivity index q > 0.

Theorem 3.4 Let TI be a vertex-degree-based topological index of the form (3). If q > 0

then Mh has maximal TI-value among all hexagonal systems in PHSh.

Proof. Let P ∈ PHSh. Then ni (P ) ≥ 1. By (6) and Theorem 2.1

TI (Mh)− TI (P ) = q [r (Mh)− r (P )] + ϕ22 [ni (P )− ni (Mh)]

= q [2 (h− 2)− r (P )] + ϕ22 [ni (P )− 1] ≥ 0.

Hence TI (Mh) ≥ TI (P ) for all P ∈ PHSh.
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[12] I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertex–

degree–based topological indices, J. Serb. Chem. Soc. 78 (2013) 805–810.

[13] I. Gutman, Degree–based topological indices, Croat. Chem. Acta 86 (2013) 351–361.

[14] F. Harary, H. Harborth, Extremal animals, J. Comb. Inf. Syst. Sci. 1 (1976) 1–8.

-485-



[15] B. Horoldagva, I. Gutman, On some vertex–degree–based graph invariants, MATCH

Commun. Math. Comput. Chem. 65 (2011) 723–730.

[16] L. Kier, L. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic

Press, New York, 1976.

[17] L. Kier, L. Hall, Molecular Connectivity in Structure–Activity Analysis, Wiley, New

York, 1986.
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