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Abstract

The total multiplicative sum Zagreb index of a simple graph G is defined as
T∏
(G) :=∏

u,v∈V (G)

(dG(u) + dG(v)), while Π1(G) :=
∏

uv/∈E(G)

(dG(u) + dG(v)) represents the first multi-

plicative sum Zagreb coindex. Both graphical invariants were introduced by Xu, Das and

Tang in [10]. We obtained extremal values of those indices on the class of unicyclic and

bicyclic graphs.

1 Introduction

In this paper we consider only finite simple graphs. Let G = (V,E) be a graph with

n = |V (G)| vertices and m = |E(G)| edges. For each vertex v ∈ V , let dG(v) denote the

degree of a vertex v in G and ∆(G) the maximum vertex degree of the graph G. We will

omit the subscript G whenever the graph is clear from the context.

A graphical invariant is a some number related to a graph whose value remains fixed

under graph automorphisms. In chemical graph theory, these invariants are also called

the topological indices. In this paper, we consider few topological indices: multiplicative
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sum Zagreb index

Π∗
1(G) :=

∏
uv∈E(G)

(dG(u) + dG(v)),

first multiplicative Zagreb coindex

Π1(G) :=
∏

uv/∈E(G)

(dG(u) + dG(v)),

and total multiplicative sum Zagreb index

T∏
(G) :=

∏
u,v∈V (G)

(dG(u) + dG(v)).

While the first one was introduced and studied in [1], the other two were introduced

in [10]. Considering definitions of those topological indices, we cannot avoid an impression

that the names of the multiplicative sum Zagreb index and first multiplicative Zagreb

coindex do not reflect the substantial mathematical relation between them. Nevertheless,

that connection is nicely highlighted in Lemma 2.5 of [10]∏
1
(G) ·

∏∗

1
(G) =

T∏
(G). (?)

It is this connection that allowed us to come to a result given in the title of the paper.

The paper is organized as follows. In Section 2 we listed some graph transformations

and show how they affect total multiplicative sum Zagreb index. We used those graph

transformations in Section 3, and presented extremal values of total multiplicative sum

Zagreb index on the class of unicyclic graphs. Following the same approach in Section 4

and Section 5, we obtained the extremal values of total multiplicative sum Zagreb index

on the class of and bicyclic graphs graphs. Relying on the identity (?) and results in the

sections 3, 4 and 5, we easily got extremal values of first multiplicative Zagreb coindex

on the the class of unicyclic and bicyclic graphs.

2 Transformations and the degree sequence theorem

The degree sequence of an undirected graph is the non-increasing sequence of its vertex

degrees.

Remark 1: If G and G̃ are two graphs with the same degree sequences, then
T∏
(G) =

T∏
(G̃).

For the sake of brevity, from now on we write total index instead of total multiplicative

sum Zagreb index.

-418-



In this section, we give an overview of some known and some new graph transforma-

tions that will be used in the course of searching for extremal values of the total index and

consequently multiplicative coindex for unicyclic and bicyclic graphs. We should empha-

size that some of transformations, presented in this section, have already been introduced,

as in [9], under different names like: transformation A, transformation B, ... However,

we consider that the names we propose have a stronger visual impression and therefore

make the proofs more comprehensive.

For each transformation we will show how that transformation affects the total index;

that is, we will compare the total index of the initial and resulting graph. In order to

obtain these comparisons we will need the following theorem:

Theorem 2.1 (Degree sequence theorem). Let G, G̃ be nontrivial graphs, with com-

mon vertex set V and u, v ∈ V such that dG(u) = a, dG(v) = b, dG̃(u) = a + k,

dG̃(v) = b − k, for some k ≥ 0, and dG̃(x) = dG(x) for each x ∈ V \{u, v}. Then, it

holds:

1.
T∏
(G) =

T∏
(G̃) if and only if k = 0 or k = b− a.

2.
T∏
(G) <

T∏
(G̃) if and only if k < b− a.

3.
T∏
(G) >

T∏
(G̃) if and only if k > b− a.

Proof. Denote by N set V \{u, v}. Since the degrees of vertices from N are the same in

G and G̃, we will use dy instead of dG(y) and dG̃(y) for each y ∈ N .

By the definition of total index, we have

T∏
(G)

T∏
(G̃)

=

∏
y∈N

(dy + a)(dy + b)∏
y∈N

(dy + a+ k)(dy + b− k)
.

It is easy to see that

(dy + a)(dy + b) = (dy + a+ k)(dy + b− k) ⇐⇒ k = 0 or k = b− a,

and, for k > 0 and for each y ∈ N

k < b− a =⇒ (dy + a)(dy + b) < (dy + a+ k)(dy + b− k),
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b− a < k =⇒ (dy + a)(dy + b) > (dy + a+ k)(dy + b− k).

These implies the final conclusion.

Now, we are ready to introduce some useful graph transformations.

Pendant-paths (PP) transformation. Let G be a nontrivial graph and u, v ∈ G ver-

tices, not necessarily different, such that dG(v) > 3 and P : uu1 . . . u` and Q : vv1v2 . . . vs

be two paths in G that hang on these two vertices. Denote by G̃ the graph created from

G in a way that these two paths are being ”concatenated”, so the tail v1v2 . . . vs of path

Q is attached to u`. Thus, we get the path: uu1 . . . u`v1v2 . . . vs in the new graph G̃.

PP

G G̃

u v

u1

u`

v1

vs

u v

u1

u`
v1 vs

Figure 1

Since dG(v) > 3 and dG(u`) = 1 and since the PP transformation increases by k = 1

the degree of vertex u` and decreases by k = 1 the degree of vertex v, it follows, by

Theorem 2.1, that the PP transformation increases the total index.

Contraction to path (CP) transformation. Let G be a nonempty graph whose

vertex u has degree dG(u) > 3 and u is the starting vertex of the path P : uu1u2 . . . u`

of length ` > 1. Let v be the neighbor of u so that v is out of P , u and v have no

common neighbor and dG(v) > 2. Let us denote by G · uv graph obtained from G by the

contraction of edge uv onto vertex u, and denote by G̃ graph obtained from G · uv by

inserting vertex v on the edge u`−1u` (i.e. by subdivision of edge u`−1u` with vertex v).

If dG(u) = a and dG(v) = b, then

dG̃(u) = a+ b− 2, dG̃(v) = 2.
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CP

G G̃

u v

u1

u`

u

v

u1

u`

u`−1 u`−1

Figure 2

Hence, CP transformation increases the degree of vertex u by k = b−2, and decreases the

degree of the vertex v by k = b− 2. The degrees of all other vertices remain unchanged.

By using Theorem 2.1 we conclude the following:

(i) if dG(v) > 2, then the CP transformation increases total index;

(ii) if dG(v) = 2, then the CP transformation doesn’t change total index.

The comet Hn,i is a unicyclic graph with the cycle Ci on which is attached a path of

length n− i, i = 3, . . . , n− 1.

Cn−1

. . .

Hn,3

Hn,4

Hn,n−1

Figure 3

Conclusion. The comets Hn,3, . . . , Hn,n−1 have the same total index. The same conclu-

sion follows immediately from Remark 1.

Contraction to star (CS) transformation. Let u and v be adjacent vertices of the

graph G that have no common neighbor in G and dG(u) = a, dG(v) = b, where a > b > 2.

If e := uv, let us denote by G̃ = (G · e) + uv the graph obtained by the contraction of the

edge e onto the vertex u and then adding a pendent vertex v to u.
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CS

G G̃

u v u

Figure 4

Now we have:

dG̃(u) = a+ b− 1 and dG̃(v) = 1.

Hence, the CS transformation increases the degree of vertex u by k = b − 1 > 0, degree

of the vertex v decreases by k = b − 1, while degrees of all the other vertices remain

unchanged.

If a = b then k > b − a, so by using Theorem 2.1 (inequality 3.), then the CS

transformation decreases the total index i.e.

T∏
(G) >

T∏
(G̃).

Remark 2: The total index of cycle Cn is greater than the total index of comet Hn,i

for each i = 3, . . . , n− 1.

If a > b then k > b− a. Thus, by Theorem 2.1 (inequality 3.) the CS transformation

decreases the total index.

Star translation (ST) transformation. Let v ∈ V (G) and let v1, v2, . . . , vk be pen-

dent vertices and neighbours of v. Let u ∈ V (G)\{v1, . . . , vk}.

Let us denote by G̃ graph

(G− {vv1, . . . , vvk}) + {uv1, . . . , uvk}

obtained by ”moving” the star H = G[v, v1, v2, . . . , vk] from vertex v to vertex u.

Let dG(v) = b and dG(u) = a.

By using Theorem 2.1 we have

(1) if b− k = a then the ST transformation doesn’t change the total index;

(2) if b− k > a then the ST transformation increases the total index;

(3) if b− k < a then the ST transformation decreases the total index.
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ST

G

uv v u

G̃

v1 vkv2 v1 v2
vk

Figure 5

Edge to path (EP) transformation. Let G be a nontrivial graph and u, v ∈ G two

adjacent vertices, such that dG(u) ≥ 3. Let W : uu1 . . . u` be a path in G. Denote by G̃

the graph created from G in a way that the edge uv is removed and the new edge u`v is

added.

EP

G

u v

vu

G̃
u1

u1
u`

u`

Figure 6

By using the EP transformation, the degree of vertex u decreases by 1, the degree of

the vertex u` increases by 1, while the degrees of all other vertices remain unchanged.

Consider two vertices, u and u`, in the sense of Theorem 2.1. Clearly dG(u`) = 1,

dG(u) ≥ 3, while after the transformation we have dG̃(u`) = dG(u`)+1, dG(u) = dG̃(u)−1.

Thus, k = 1, and since k < dG̃(u)− dG̃(u`), it follows that
T∏
(G) <

T∏
(G̃).

3 Unicyclic graphs extremal with respect

to total index

By iterative use of the PP transformation, any tree of a unicyclic graph G can be trans-

formed into a path, and all paths will make, by the PP transformation, a unique path.

We have already concluded that the PP transformation increases the total index, so in the
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family of unicyclic graphs with n vertices and whose cycle contains k vertices, maximum

of the total index is attained on the comet Hn,k. Now, by Remark 2, it follows that in

the family of unicyclic graphs with n vertices, maximum of the total index is attained on

the cycle Cn.

Similarly, by iterative use of the CS transformation on a unicyclic graph G, one can

obtain the unicyclic graph with stars attached on its cycle. Then, by further applying the

ST transformation we get a graph H with only one star attached on the cycle. Hence,

T∏
(H) 6

T∏
(G).

It follows that in the family of unicyclic graphs with n vertices and cycle Ck, minimum

of the total index is attained on the graph Ck
n, whose cycle Ck contains a vertex adjacent

to n− k pendent vertices.

Ck

Figure 7. The graph Ck
n .

By further repeating of the CS transformation, we obtain a unicyclic graph with the

cycle C3 containing one vertex adjacent to n−3 pendent vertices. Therefore, we conclude

that among unicyclic graphs with n vertices, the minimum of the total index is attained

on the graph presented by the Figure 8.

C3

Figure 8. The graph C3
n .

4 Maximum of total index on bicyclic graphs

Denote by B(n) the set of connected bicyclic graphs of order n. As in [8] and [9], the

structure of two independent cycles in G ∈ B(n) can be divided into the following three

cases:
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(I) The two cycles Cp and Cq in G have only one common vertex u;

(II) The two cycles Cp and Cq in G are linked by a path of length r > 0;

(III) The two cycles Ck+i and Ck+j in G have a common path of length k > 0.

The graphs Cp,q, Cp,r,q and Θk,i,j (where 1 ≤ k ≤ min{i, j}) corresponding to the cases

above shown in the Figure 9 are called main subgraphs of G ∈ B(n) of type (I), (II)

and (III), respectively.

Type I: Cp,q

Cp Cqu Cp Cq

Type II: Cp,r,q

a f1 fr−1 b

Type III: Θk,i,j

s
v1 vk−1

t

u1 u2 ui−1

z1 z2 zj−1

Figure 9. Main subgraphs of bicyclic graphs.

By iterative use of the PP transformation, one can transform every tree in a graph

G into a path, and later, employing the same transformation, we get an unique path

concatenating all other paths. As we already stated, the PP transformation increases the

total index of a graph. Therefore, we end up with a graph whose main subgraph is one

of the three types given above and that has one pendant path W : w1w2 . . . w` attached

at some vertex. Depending on which vertex the path W is attached to, we consider some

situations.

1. The main subgraph of a graph is of type I.

If the path W is attached to the vertex u, then we can move it and attach to any

vertex x in those two cycles, Cp or Cq. Now, we can apply the EP transformation
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on the vertex x and some of its adjacent vertices y of degree 2. As we already

determined, it also increases the total index of a graph. Finally, we get a graph of

type I, where one of the circles is expanded by the size of the path W .

u

Figure 10. Bicyclic graph G1 of type I.

2. The main subgraph of a graph is of type II.

If the path W were attached to any of the vertices: a, b, f1, . . . , fr−1, we can move

it and attach to any vertex x inside one of the cycles, other than a or b. Now, we

can apply the EP transformation on the vertex x and some of its adjacent vertices

y of degree 2, which again increases the total index of a graph. Note, it is still a

graph of type II with one of the circles expanded by the size of path W . Further,

we can insert vertices {f1, . . . , fr−1} into one of the circles, which does not change

the degrees of the graph and therefore does not change the total index. Finally, we

get the graph with two cycles, connected by the edge ab as in the figure below

a b

Figure 11. Bicyclic graph G2 of type II.

As we can see, it is still a graph of type II, where the path between two cycles is

reduced to the length 1.

3. The main subgraph of a graph is of type III.

In this case, we can basically copy the approach from the previous case. So, let us

suppose that the path W were attached to any of the vertices: s, t, v1, . . . , vk−1. As

before, we move it and attach to some vertex inside one of the cycles, other than s

or t, which, by Theorem 2.1, increases the total index of a graph. Again, we apply
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the EP transformation on the vertex x and some of its adjacent vertices y of degree

2, which also increases the total index of a graph. Further, we can insert vertices

{v1, . . . , vk−1} into one of the circles; that does not change the degrees of the graph

and therefore does not change the total index. Finally, we get a graph of type III,

with two cycles sharing the st edge, as in the figure below

s t

Figure 12. Bicyclic graph G3 of type III.

As we can see, it is still a graph of type III, where two cycles share just one edge.

It has been shown that every bicyclic graph from B(n) could be transformed into one of

the basic three types of bicyclic graphs: G1 (Figure 10), G2 (Figure 11) or G3 (Figure 12),

which have greater total index compared to the original graph we considered. Therefore,

we need to determine which one of the three graphs G1, G2 or G3 has the greatest total

index. Certainly, all three graphs are of order n and it is clear that the degree sequences

of G2 and G3 are the same. Hence, we should just compare G1 and G2.

There are n− 1 vertices of degree 2 and one vertex of degree 4 in G1. Hence

T∏
(G1) = (2 + 2)

(n−1
2

)
(2 + 4)n−1 = 4

(n−1
2

)
6n−1.

There are n− 2 vertices of degree 2 and two vertices of degree 3 in G2, so

T∏
(G2) = (2 + 2)

(n−2
2

)
(2 + 3)n−2(2 + 3)n−2(3 + 3) = 4

(n−2
2

)
52n−4 · 6.

Therefore,
T∏
(G2)

T∏
(G1)

=

(
25

24

)n−2

,

which means that
T∏
(G2) >

T∏
(G1). This fact leads to the conclusion that the maximum

of the total index for the class of bicyclic graphs B(n) is achieved on graphs G2 or G3.
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5 Minimum of total index on bicyclic graphs

In order to find the bicyclic graph with the minimal total index we use a technique similar

to the one of unicyclic graphs: consecutive repetition of the CS transformation leads to

the bicyclic graph with two triangles and hanging stars, whose total index is less than the

index of the starting graph. In the next step we repeat the ST transformation until we

carry over the incoming graph of type I or III to the graph R1 (Figure 13), or in the case

of incoming graph of type II to the graph R2 (Figure 13).

R1 R2

Figure 13

Now, it remains to compare the total index of the graphs R1 and R2 with n > 5

vertices. We obtain

T∏
(R1)

T∏
(R2)

=
2
(n−5

2

)
· nn−5 · 34(n−5) · (n+ 1)4 · 4

(4
2

)
2
(n−4

2

)
· nn−4 · 32(n−4) · 4n−3 · (n+ 1)2 · (n+ 2) · 52

=
32n−12 (n+ 1)2

23n−23 25n(n+ 2)
=

8388608 · 9n

13286025 · 8n
· (n+ 1)2

n2 + 2n

which is greater than 1 for each n > 5.

6 Unicyclic and bicyclic graphs extremal with

respect to multiplicative sum Zagreb coindex

Firstly, we quote Lemma 2.5 of [10]:

Lemma 6.1. For a connected graph G, we have
∏

1(G) ·
∏∗

1(G) =
T∏
(G).

By using this Lemma, Theorem 3.8 of [9], and Section 3, it follows

Theorem 6.2. In the family of unicyclic graphs with n vertices, the maximum of the

multiplicative sum Zagreb coindex is attained on the cycle Cn, and the minimum of the

multiplicative sum Zagreb coindex is attained on the graph C3
n (Figure 8).

-428-



In the same manner, by using Lemma 6.1, Theorem 3.11 of [9], and Section 5, we have

the next assertion

Theorem 6.3. In the family of bicyclic graphs the minimum of the multiplicative sum

Zagreb coindex is achieved on graph R1 (Figure 13).

Finally, by using Lemma 6.1, Theorem 3.11 of [9], and Section 4, we obtain

Theorem 6.4. In the family of bicyclic graphs the maximum of the multiplicative sum

Zagreb coindex is achieved on graphs G2 and G3 (Figure 11, 12).
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