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Abstract

The geometric-arithmetic index (GA index for short) is a newly proposed graph invari-

ant, based on the end-vertex degrees of all edges of a graph, in mathematical chemistry.

Du et al. [On geometric arithmetic indices of (molecular) trees, unicyclic graphs and

bicyclic graphs, MATCH Commun. Math. Comput. Chem. 66 (2011), 681–697] deter-

mined the first six maximum values for the GA indices of trees. In this paper, we will

present a further ordering for the GA indices of trees, and determine the first fourteen

maximum values. In particular, the trees with the first fourteen maximum GA indices

are all molecular trees.

1 Introduction

Molecular descriptors play a significant role in mathematical chemistry, especially in the

QSPR/QSAR investigations. Among them, special place is reserved for the so-called

topological indices [2]. Nowadays, there exists a legion of topological indices that found

some applications in chemistry [6].
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The Randić connectivity index [5] is one of the most well-known topological indices,

which is based on the end-vertex degrees of all edges in a graph. Motivated by Randić

connectivity index, Vukičević and Furtula [7] proposed another topological index based

on the end-vertex degrees of all edges in a graph, which is named geometric-arithmetic

index (GA index for short).

Let G be a simple graph with vertex set V (G) and edge set E(G). For u ∈ V (G), let

du denote the degree of vertex u in G. The GA index of the graph G is defined as [7]

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
,

where the summation extends over all edges uv in G.

It is noted in [7] that the predictive power of GA index for physico-chemical properties

(e.g., boiling point, entropy, enthalpy and standard enthalpy of vaporization, enthalpy of

formation, acentric factor) is somewhat better that the one of Randić connectivity index.

In [7], Vukičević and Furtula established some lower and upper bounds for the GA

index of graphs, and identified the trees with the minimum and the maximum GA indices,

which are the star and the path, respectively. In [8], Yuan et al. gave the lower and upper

bounds for the GA index of molecular graphs in terms of the numbers of vertices and

edges, they also determined the n-vertex molecular trees with the minimum, the second

minimum and the third minimum, as well as the second maximum and the third maximum

GA indices.

Since then, the GA index received considerable attention of mathematicians also, but

there are few papers about it dedicated to molecular graphs [3, 4]. In [1], the authors

collected all hitherto obtained results on the GA index of graphs.

Recently, Du et al. [3] determined the trees with the first six maximum GA indices.

In this paper, we will extend this ordering, and determine the trees with the first fourteen

maximum GA indices.

2 Preliminary Results

Note that for an edge uv of a graph G,

2
√
dudv

du + dv
≤ 1

with equality if and only if du = dv. This fact will be used frequently in our proof.
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A pendant vertex is a vertex of degree one. A pendant edge is an edge incident with

a pendant vertex. A path u1u2 · · ·ur in a graph G is said to be a pendant path at u1 if

du1 ≥ 3, dui
= 2 for 2, . . . , r − 1 and dur = 1.

Lemma 1 [3] If there are k pendant paths in an n-vertex tree G, then

GA(G) ≤

(
2
√
6

5
+

2
√
2

3

)
k + n− 1− 2k .

Among the n-vertex trees with n ≥ 4, the path Pn is the unique tree with the maximum

GA index, which is equal to n− 3 + 4
√
2

3
, see [7].

The following results were obtained in [3].

Theorem A [3] Among the set of n-vertex trees,

(i) for n ≥ 7, the trees with a single vertex of maximum degree three, adjacent to three

vertices of degree two, are the unique trees with the second maximum GA index,

which is equal to n− 7 + 6
√
6

5
+ 2

√
2,

(ii) for n ≥ 7, the trees with a single vertex of maximum degree three, adjacent to one

vertex of degree one and two vertices of degree two, are the unique trees with the

third maximum GA index, which is equal to n− 6 + 4
√
6

5
+

√
3
2
+ 4

√
2

3
,

(iii) for n ≥ 10, the trees with exactly two adjacent vertices of maximum degree three,

each adjacent to two vertices of degree two, are the unique trees with the fourth

maximum GA index, which is equal to n− 9 + 8
√
6

5
+ 8

√
2

3
,

(iv) for n ≥ 10, the tree with a single vertex of maximum degree three, adjacent to two

vertices of degree one and one vertex of degree two, is the unique tree with the fifth

maximum GA index, which is equal to n− 5 + 2
√
6

5
+
√
3 + 2

√
2

3
,

(v) for n ≥ 11, the trees with exactly two vertices of maximum degree three, each ad-

jacent to three vertices of degree two, are the unique trees with the sixth maximum

GA index, which is equal to n− 11 + 12
√
6

5
+ 8

√
2

3
.
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3 Main Results

In this section, we present our main theorem.

Theorem 1 Among the set of n-vertex trees,

(i) for n ≥ 11, the trees with exactly two adjacent vertices of maximum degree three,

one is adjacent to two vertices of degree two, and the other is adjacent to one vertex

of degree two and one vertex of degree one, are the unique trees with the seventh

maximum GA index, which is equal to n− 8 + 6
√
6

5
+

√
3
2
+ 2

√
2,

(ii) for n ≥ 13, the trees with exactly three vertices of maximum degree three, say u, v, w,

where both u and v, and v and w are adjacent, each of u,w is adjacent to two vertices

of degree two, and v is adjacent to one vertex of degree two, are the unique trees

with the eighth maximum GA index, which is equal to n− 11 + 2
√
6 + 10

√
2

3
,

(iii) for n ≥ 13, the trees with exactly two non-adjacent vertices of maximum degree

three, one is adjacent to three vertices of degree two, and the other is adjacent to

two vertices of degree two and one vertex of degree one, are the unique trees with

the ninth maximum GA index, which is equal to n− 10 + 2
√
6 +

√
3
2
+ 2

√
2,

(iv) for n ≥ 13, the trees with exactly two adjacent vertices of maximum degree three,

each adjacent to one vertex of degree two and one vertex of degree one, or one is

adjacent to two vertices of degree two, and the other is adjacent to two vertices of

degree one, are the unique trees with the tenth maximum GA index, which is equal

to n− 7 + 4
√
6

5
+
√
3 + 4

√
2

3
,

(v) for n ≥ 14, the trees with exactly three vertices of maximum degree three, say u, v, w,

where u and v are not adjacent, and v and w are adjacent, u is adjacent to three

vertices of degree two, each of v, w is adjacent to two vertices of degree two, are the

unique trees with the eleventh maximum GA index, which is equal to n−13+ 14
√
6

5
+

10
√
2

3
,

(vi) for n ≥ 14, the trees with exactly three vertices of maximum degree three, say u, v, w,

where both u and v, and v and w are adjacent, each of u,w is adjacent to two vertices

of degree two, and v is adjacent to one vertex of degree one, or u is adjacent to two

vertices of degree two, v is adjacent to one vertex of degree two, and w is adjacent
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to one vertex of degree two and one vertex of degree one, are the unique trees with

the twelfth maximum GA index, which is equal to n− 10 + 8
√
6

5
+

√
3
2
+ 8

√
2

3
,

(vii) for n ≥ 14, the trees with a single vertex of maximum degree four, adjacent to four

vertices of degree two, and without vertices of degree three, are the unique trees with

the thirteenth maximum GA index, which is equal to n− 9 + 16
√
2

3
,

(viii) for n ≥ 14, the trees with exactly two non-adjacent vertices of maximum degree three,

each adjacent to two vertices of degree two and one vertex of degree one, or one is

adjacent to three vertices of degree two, and the other is adjacent to two vertices

of degree one and one vertex of degree two, are the unique trees with the fourteenth

maximum GA index, which is equal to n− 9 + 8
√
6

5
+
√
3 + 4

√
2

3
,

Proof: Let G be an n-vertex tree different from the six types of trees mentioned in

Theorem A with the first six maximum GA indices, where n ≥ 11. Obviously, there are

at least four pendant paths in G.

If there are k ≥ 6 pendant paths in G, then by Lemma 1, we have

GA(G) ≤

(
2
√
6

5
+

2
√
2

3

)
k + n− 1− 2k

≤

(
2
√
6

5
+

2
√
2

3

)
· 6 + n− 1− 2 · 6

< n− 9 +
8
√
6

5
+
√
3 +

4
√
2

3
.

Case 1. There are exactly four pendant paths in G.

In the following, there are still two subcases need to be considered.

Subcase 1.1. There are exactly two vertices of maximum degree three in G, and other

vertices are of degree one or two.

Subcase 1.2. There is a single vertex of maximum degree four in G, and other vertices

are of degree one or two.

Suppose that Subcase 1.1 holds. Denote by u and v the two vertices of maximum

degree three in G.

First suppose that there is exactly one pendant path of length one in G. If u and v

are adjacent in G, then we have

GA(G) = n− 8 +
6
√
6

5
+

√
3

2
+ 2

√
2 .
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If u and v are non-adjacent, then we have

GA(G) = n− 10 + 2
√
6 +

√
3

2
+ 2

√
2 .

Next suppose that there are exactly two pendant paths of length one in G. If u and

v are adjacent in G, then we have

GA(G) = n− 7 +
4
√
6

5
+
√
3 +

4
√
2

3
.

If u and v are non-adjacent, then we have

GA(G) = n− 9 +
8
√
6

5
+
√
3 +

4
√
2

3
.

Suppose that there are exactly three or four pendant paths of length one in G. Denote

by k the number of pendant paths of length one in G. Clearly, k = 3, 4. Then

GA(G) ≤ k · 2
√
1 · 3

1 + 3
+ (4− k)

(
2
√
1 · 2

1 + 2
+

2
√
2 · 3

2 + 3

)
+(n− 1)− (8− k)

=

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
k + n− 9 +

8
√
6

5
+

8
√
2

3

≤

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
3 + n− 9 +

8
√
6

5
+

8
√
2

3

< n− 9 +
8
√
6

5
+
√
3 +

4
√
2

3
.

Now suppose that Subcase 1.2 holds. Denote by k the number of pendant paths of

length one in G. Clearly, k = 0, 1, 2, 3. Then

GA(G) = k · 2
√
1 · 4

1 + 4
+ (4− k)

(
2
√
1 · 2

1 + 2
+

2
√
2 · 4

2 + 4

)
+(n− 1)− (8− k)

=

(
9

5
− 4

√
2

3

)
k + n− 9 +

16
√
2

3
.

If k = 0, i.e., all the four pendant paths in G are of length at least two, then

GA(G) = n− 9 +
16
√
2

3
.

If k = 1, 2, 3, then

GA(G) =

(
9

5
− 4

√
2

3

)
k + n− 9 +

16
√
2

3
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≤

(
9

5
− 4

√
2

3

)
1 + n− 9 +

16
√
2

3

< n− 9 +
8
√
6

5
+
√
3 +

4
√
2

3
.

Case 2. Suppose that there are exactly five pendant paths in G.

In this case, there are three subcases need to be considered.

Subcase 2.1. There are exactly three vertices of maximum degree three, and other

vertices are of degree one or two.

Subcase 2.2. There is a single vertex of maximum degree five in G, and other vertices

are of degree one or two.

Subcase 2.3. There is exactly one vertex of degree three, one vertex of maximum degree

four, and other vertices are of degree one or two.

Suppose that Subcase 2.1 holds. Note that there are at most two pairs of adjacent

vertices both of maximum degree three.

First suppose that there are exactly two pairs of adjacent vertices both of maximum

degree three. Denote by k the number of pendant paths of length one in G. Clearly,

0 ≤ k ≤ 5. Then

GA(G) = k · 2
√
1 · 3

1 + 3
+ (5− k)

(
2
√
1 · 2

1 + 2
+

2
√
2 · 3

2 + 3

)
+(n− 1)− (10− k)

=

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
k + n− 11 + 2

√
6 +

10
√
2

3
.

If k = 0, i.e., all the five pendant paths in G are of length at least two, then

GA(G) = n− 11 + 2
√
6 +

10
√
2

3
.

If k = 1, i.e., there is exactly one pendant path of length one in G, then

GA(G) = n− 10 +
8
√
6

5
+

√
3

2
+

8
√
2

3
.

If k = 2, 3, 4, 5, then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
k + n− 11 + 2

√
6 +

10
√
2

3

≤

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
2 + n− 11 + 2

√
6 +

10
√
2

3

-381-



< n− 9 +
8
√
6

5
+
√
3 +

4
√
2

3
.

Next suppose that any two vertices of maximum degree three are not adjacent. Denote

by k the number of pendant paths of length one in G. Clearly, 0 ≤ k ≤ 5. Then

GA(G) = k · 2
√
1 · 3

1 + 3
+ (5− k)

(
2
√
1 · 2

1 + 2
+

2
√
2 · 3

2 + 3

)

+4 · 2
√
2 · 3

2 + 3
+ (n− 1)− (14− k)

=

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
k + n− 15 +

18
√
6

5
+

10
√
2

3

≤ n− 15 +
18
√
6

5
+

10
√
2

3
< n− 9 +

8
√
6

5
+
√
3 +

4
√
2

3
.

Now suppose that there is exactly one pair of adjacent vertices both of maximum

degree three. Denote by k the number of pendant paths of length one in G. Clearly,

0 ≤ k ≤ 5. Then

GA(G) = k · 2
√
1 · 3

1 + 3
+ (5− k)

(
2
√
1 · 2

1 + 2
+

2
√
2 · 3

2 + 3

)

+2 · 2
√
2 · 3

2 + 3
+ (n− 1)− (12− k)

=

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
k + n− 13 +

14
√
6

5
+

10
√
2

3
.

If k = 0, i.e., all the five pendant paths in G are of length at least two, then

GA(G) = n− 13 +
14
√
6

5
+

10
√
2

3
.

If k = 1, 2, 3, 4, 5, then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
k + n− 13 +

14
√
6

5
+

10
√
2

3

≤

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
1 + n− 13 +

14
√
6

5
+

10
√
2

3

< n− 9 +
8
√
6

5
+
√
3 +

4
√
2

3
.

Suppose that Subcase 2.2 holds. Denote by k the number of pendant paths of length

one in G. Then

GA(G) = k · 2
√
1 · 5

1 + 5
+ (5− k)

(
2
√
1 · 2

1 + 2
+

2
√
2 · 5

2 + 5

)
+ (n− 1)− (10− k)
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=

(√
5

3
− 2

√
2

3
− 2

√
10

7
+ 1

)
k + n− 11 +

10
√
10

7
+

10
√
2

3

≤ n− 11 +
10
√
10

7
+

10
√
2

3
< n− 9 +

8
√
6

5
+
√
3 +

4
√
2

3
.

Now we suppose that Subcase 2.3 holds. Denote by k1 (k2, respectively) the num-

ber of pendant paths of length one attached to the unique vertex of degree three (four,

respectively) in G. Clearly, k1 = 0, 1, 2 and k2 = 0, 1, 2, 3. Then

GA(G) ≤ k1 ·
2
√
1 · 3

1 + 3
+ (2− k1)

(
2
√
1 · 2

1 + 2
+

2
√
2 · 3

2 + 3

)

k2 ·
2
√
1 · 4

1 + 4
+ (3− k2)

(
2
√
1 · 2

1 + 2
+

2
√
2 · 4

2 + 4

)
+(n− 1)− (10− k1 − k2)

=

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)
k1 +

(
9

5
− 4

√
2

3

)
k2

+n− 11 +
4
√
6

5
+

16
√
2

3

≤ n− 11 +
4
√
6

5
+

16
√
2

3
< n− 9 +

8
√
6

5
+
√
3 +

4
√
2

3
.

Finally, it is easy to check that

n− 9 +
8
√
6

5
+
√
3 +

4
√
2

3
< n− 9 +

16
√
2

3

< n− 10 +
8
√
6

5
+

√
3

2
+

8
√
2

3
< n− 13 +

14
√
6

5
+

10
√
2

3

< n− 7 +
4
√
6

5
+
√
3 +

4
√
2

3
< n− 10 + 2

√
6 +

√
3

2
+ 2

√
2

< n− 11 + 2
√
6 +

10
√
2

3
< n− 8 +

6
√
6

5
+

√
3

2
+ 2

√
2 .

From the above arguments, if GA(G) is not equal to one of these eight values, then

GA(G) < n− 9 +
8
√
6

5
+
√
3 +

4
√
2

3
.

Now the result follows easily.

The trees with the smallest number of vertices in Theorem 1 are listed in Appendix.

4 Conclusions

In this paper, we presented a further ordering for the GA indices of trees, and determined

the first fourteen maximum GA indices of trees. In particular, in our proof, we mainly
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investigated the GA indices of trees with exactly four or five pendant paths. If one want

to order more trees with large GA indices, it need only to consider the trees with more

pendant paths (e.g., the trees with exactly six or seven pendant paths).
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5 Appendix

In the following, the trees with the smallest number of vertices in Theorem 1 are listed.

 

Figure 1: The tree in Theorem 1 (i) with n = 11.

 

Figure 2: The tree in Theorem 1 (ii) with n = 13.

 

Figure 3: The tree in Theorem 1 (iii) with n = 13.

 

 

Figure 4: The tree in Theorem 1 (iv) with n = 13.

 

Figure 5: The tree in Theorem 1 (v) with n = 14.
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Figure 6: The tree in Theorem 1 (vi) with n = 14.

 

Figure 7: The tree in Theorem 1 (vii) with n = 14.

 

 

Figure 8: The tree in Theorem 1 (viii) with n = 14.
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