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Abstract

Given a graph G = (V,E), the variable first and second Zagreb indices are de-
fined by λM1(G) =

∑
vi∈V d2λi and λM2(G) =

∑
vivj∈E dλi · dλj , where di is the

degree of the vertex vi and λ is any real number. Let Gν be the class of connected
graphs with cyclomatic number ν (ν ≥ 1). In this paper, we give a lower bound on
λM2(G)− λM1(G) in terms of ν and λ in Gν for all λ ∈ (0, 1] and characterize the
extremal graphs.

1 Introduction

Let G = (V, E) be a simple connected graph with |V (G)| = n vertices and |E(G)| = m

edges. For vi ∈ V (G), di is the degree of the vertex vi of graph G, i = 1, 2, . . . , n. The

average of the degrees of the vertices adjacent to vertex vi is denoted by µi. A pendant

vertex is a vertex of degree one. The cyclomatic number of a connected graph is equal to

ν = m − n + 1, i. e., its number of independent cycles. Clearly, ν ≥ 0 for all connected

graphs. If a graph G has ν = 0, ν = 1 and ν = 2, then it is called tree, unicyclic and
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bicyclic, respectively. We denote the class of connected graphs with cyclomatic number

ν ≥ 1 by Gν .

The vertex independence number of a graph, often called simply “the” independence

number, is the cardinality of the largest independent vertex set (no two vertices in the

independent set are adjacent), i.e., the size of a maximum independent vertex set. The

independence number is most commonly denoted by α(G). Formally,

α(G) = max{|U | : U ⊂ V (G) independent}

for a graph G, where V (G) is the vertex set of G and |U | denotes the cardinal number of

the set U . The cycle graph with n vertices is called Cn.

The classical first Zagreb index M1 and second Zagreb index M2 of graph G (see [6,10,

18–20] and the references therein) are among the oldest and the most famous topological

indices and they are defined as

M1(G) =
∑
vi∈V

d2i and M2(G) =
∑

vivj∈E

di · dj .

Caporossi and Hansen [3, 4] conjectured that, for all connected graphs G it holds that

M1(G)

n
≤ M2(G)

m
(1)

and the bound is tight for complete graphs.

Although this conjecture is disproved for general graphs [11], it is true for chemical

graphs [11], trees [24], unicyclic graphs [16], bicyclic graphs except one class [22], and

graphs with small difference between the maximum and minimum vertex degrees [23].

Moreover, it has been shown that for every ν ≥ 2, there exists a connected graph in which

the inequality (1) does not hold [13] and (1) holds for some special kind of graphs [7,14].

Nowadays the relation (1) is usually referred to as the Zagreb indices inequality.

The Zagreb indices have been generalized to variable first and second Zagreb indices

defined as

λM1(G) =
∑
vi∈V

d2λi and λM2(G) =
∑

vivj∈E

dλi · dλj .

The generalization of the Zagreb indices inequality to the variable Zagreb indices has been

analyzed, namely for which λ it holds that

λM1(G)

n
≤

λM2(G)

m
, (2)

-352-



where λ is any real number.

If λ ∈ [0, 1] then it is true for chemical graphs [25], trees [26], unicyclic graphs [12],

graphs with small difference between the maximum and minimum vertex degrees [17]. If

λ ∈ [0,
√
2/2], then (2) holds for all graphs [1, 2, 25].

Recently, much attention is being paid to the comparison of M1 and M2 of graph

G. Direct comparisons were obtained on the Zagreb indices for trees [8, 21] and cyclic

graphs [5]. Recently, the difference of the classical first and second Zagreb indices of a

graph G has been studied in [9,15] and determined a few basic properties of the reduced

second Zagreb index.

The classical Zagreb indices were directly compared in the above mentioned few papers,

but the variable Zagreb indices were not directly compared. From this point of view, we

characterize the graphs G ∈ Gν with minimum value of the difference of the variable first

and second Zagreb indices for all λ ∈ (0, 1] and give a lower bound on λM2(G)− λM1(G)

in terms of ν and λ ∈ (0, 1].

2 Difference of the variable Zagreb indices of graphs

Let a pendant vertex vk be adjacent to a vertex v` of connected graph G, different from

the star graph. Then we consider the following inequality∑
vr : v`vr∈E

r 6=k

dλr ≥ 2λ + d` − 2, where λ ∈ (0, 1] (3)

which is used in the proof of Lemma 1 of [12]. It is easy to see that if d` µ` − d` ≥ 2, then

the inequality in (3) is strict.

Hence we reformulate the Lemma 1 in [12] as follows.

Lemma 1. Let λ ∈ (0, 1] and G be a connected graph, possessing two adjacent vertices vi

and vj of degree greater than one. Also let a pendant vertex vk be adjacent to a vertex vl.

Let the graph G′ be obtained from G by adding edges vivk and vkvj in G− vivj − vkvl .

(i) If d` µ` − d` = 1, then

λM2(G)− λM1(G) ≥ λM2(G
′)− λM1(G

′).

(ii) If d` µ` − d` ≥ 2, then

λM2(G)− λM1(G) > λM2(G
′)− λM1(G

′).
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Lemma 2. Let G be a graph in Gν and λ ∈ (0, 1]. If λM2(G) − λM1(G) is minimum,

then G does not contain any pendant vertex.

Proof. We prove this result by contradiction. For this let G be a graph with at least

one pendant vertex in Gν and λ ∈ (0, 1] such that λM2(G) − λM1(G) is minimum. Let

vk be a pendant vertex that is adjacent to a vertex v` in G. Also let vi and vj be two

adjacent vertices in a cycle of G. Then, clearly di ≥ 2 and dj ≥ 2. We now apply the

transformation considered in Lemma 1 to G. Let the graph G′ be obtained from G by

adding edges vivk and vjvk in G− vivj − vkv` . Then G′ ∈ Gν and by Lemma 1,

λM2(G)− λM1(G) ≥ λM2(G
′)− λM1(G

′) .

If G′ contains a pendant vertex, then we repeat the above transformation and non-

increase the value λM2 − λM1. We continue this process and after several times, we can

obtain a graph G∗∗ in Gν such that di ≥ 2 for all vi ∈ V (G∗∗). Let G∗ be a graph with

exactly one pendant vertex in Gν such that

λM2(G)− λM1(G) ≥ λM2(G
′)− λM1(G

′) ≥ · · · ≥ λM2(G
∗)− λM1(G

∗)

≥ λM2(G
∗∗)− λM1(G

∗∗) .

Thus G∗∗ does not contain any pendant vertex and G∗ contains exactly one pendant

vertex vr with vr vs ∈ E(G∗), (say), such that ds µs ≥ ds + 2 for vs ∈ V (G∗) (Otherwise,

G∗∗ contains a pendant vertex, a contradiction). By Lemma 1, we have

λM2(G
∗)− λM1(G

∗) > λM2(G
∗∗)− λM1(G

∗∗) .

Therefore

λM2(G)− λM1(G) > λM2(G
∗∗)− λM1(G

∗∗) .

This inequality is strict then it contradicts the fact that λM2(G)− λM1(G) has minimum

value. This completes the proof of the lemma.

Lemma 3. Let G be a graph in Gν and λ ∈ (0, 1]. Also let λM2(G) − λM1(G) be

minimum. If di ≥ 3, then dj = 2 for all vj, vi vj ∈ E(G).

Proof. Once again, we prove this result by contradiction. Assume that there are two

adjacent vertices vi and vj in G such that di > 2 and dj > 2. We denote by G′ the

graph obtained from G − vi vj by inserting a new vertex vk such that vi vk ∈ E(G′) and

vj vk ∈ E(G′) . Then clearly G′ ∈ Gν and d(vk) = 2. Therefore, we have

λM1(G)− λM1(G
′) = −22λ (4)
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and

λM2(G)− λM2(G
′) = dλi d

λ
j − 2λ (dλi + dλj ). (5)

From (4) and (5) we obtain

λM2(G)− λM1(G)−
(
λM2(G

′)− λM1(G
′)
)

= dλi d
λ
j − 2λ (dλi + dλj ) + 22λ

= (dλi − 2λ)(dλj − 2λ) > 0,

since di > 2, dj > 2 and λ ∈ (0, 1]. Thus

λM2(G)− λM1(G) >λ M2(G
′)− λM1(G

′).

This contradicts the fact that λM2(G)− λM1(G) is minimum. Hence di ≤ 2 or dj ≤ 2.

By Lemma 2, we have that G does not contain any pendant vertex. Since G is connected,

we conclude that di = 2 and/or dj = 2 for any edge vi vj ∈ E(G). This completes the

proof.

An edge e of a graph G is said to be contracted if it is deleted and its end vertices are

identified, the obtained graph is denoted by G · e.

Lemma 4. Let e be an edge with end vertices of degree two in a graph G. Then

λM2(G)− λM1(G) =λ M2(G · e)− λM1(G · e) for all λ ∈ R.

Proof. By an elementary calculation, we have

λM1(G)− λM1(G · e) = 22λ and λM2(G)− λM2(G · e) = 22λ .

From the above results, we get the required result.

Lemma 5. For fixed λ ∈ (0, 1],

f(x, λ) = xλ+1 2λ − x2λ − x 22λ−1.

Then f(x, λ) is an increasing function on x ≥ 4.

Proof. Let us consider a function

g(x, λ) = (λ+ 1) 2λ − 2λxλ−1.

Then g′(x, λ) = 2λ (1−λ)xλ−2 ≥ 0 for x ≥ 4 and hence g′(x, λ) is an increasing function

on x ≥ 4. Therefore we have

g(x, λ) ≥ g(4, λ) = (λ+ 1) 2λ − 2λ 4λ−1 = 2λ
[
λ+ 1− λ 2λ−1

]
≥ 2λ ≥ 1.
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Since x ≥ 4, using the above result, we have

f ′(x, λ) = xλ
[
(λ+ 1) 2λ − 2λxλ−1

]
− 22λ−1 ≥ xλ − 22 λ−1 ≥ 22 λ − 22 λ−1 > 0.

Hence we get the required result.

Figure 1. Subdivision of the Petersen graph.

Let Γ be a class of graphs H = (V, E) in Gν such that 2 ≤ di ≤ 3 (there exists a

vertex vk in H such that dk = 3) for all vi ∈ V (H) and the set of vertices of degree three

is an independent set in H. Therefore any graph in Γ is a molecular graph (recall that a

connected graph with maximum degree at most 4 belongs to a family of molecular graphs

depicting carbon compounds).

It is not difficult to illustrate the graphs in Γ with cyclomatic number ν. The subdivi-

sion graph of a graph G is obtained by inserting new vertices of degree two on each edge

of G. Hence a subdivision of any 3-regular graph with cyclomatic number ν is in Γ. For

example, a subdivision of the Petersen graph is 6-cyclic graph and is in Γ (see Figure 1).

We now calculate the difference between the variable Zagreb indices for the graphs G in

Γ.

Lemma 6. Let G be a graph in Γ. Then

λM2(G)− λM1(G) = (ν − 1)
(
3λ+1 2λ+1 − 2 · 32λ − 3 · 22λ

)
.

Proof. We denote by G1 the graph obtained from G (� Cn) by contracting all edges with

end vertices of degree two. Then G1 contain vertices of degree two and three, and vertices

of degree two are adjacent to vertices of degree three. Let k be the number of vertices

of degree three in the graph G1. Therefore the number of vertices of degree two is 3k/2

as the number of edges in G1 is 3k. Moreover, the cyclomatic number of G1 is ν and by

Lemma 4, we have

λM2(G)− λM1(G) = λM2(G1)− λM1(G1) .

-356-



Now,

λM1(G1) = 32λ k + 3 · 22λ−1 k and λM2(G1) = 3λ+1 2λ k.

Since G1 has 5k/2 vertices and 3k edges, therefore ν − 1 = k/2 for G1. Thus, we obtain

λM2(G1)− λM1(G1) =
k

2

(
2λ+13λ+1 − 2 · 32λ − 3 · 22λ

)
= (ν − 1)

(
3λ+1 2λ+1 − 2 · 32λ − 3 · 22λ

)
.

From the above, we get the required result.

Now we are ready to give a lower bound on λM2 − λM1 in Gν for all λ ∈ (0, 1] and

characterize the extremal graphs.

Theorem 1. Let G be a graph in Gν and λ ∈ (0, 1]. Then

λM2(G)− λM1(G) ≥ (ν − 1)
(
3λ+1 2λ+1 − 2 · 32λ − 3 · 22λ

)
(6)

with equality holding if and only if G ∼= Cn or G ∈ Γ.

Proof. For G ∼= Cn, ν = 1 and hence the equality holds in (6). Otherwise, G � Cn. Since

G ∈ Gν , we must have ∆ ≥ 3. The first variable Zagreb index can also be expressed as

λM1(G) =
∑

vivj∈E

(
d2λ−1
i + d2λ−1

j

)
.

By Lemma 2, if λM2(G)− λM1(G) is minimum, then G has vertices of degree two or

more. Again by Lemma 3, if λM2(G) − λM1(G) is minimum, then G has for any edge

vi vj ∈ E(G), di = 2 or/and dj = 2, that is, the set of vertices of degree greater than 2 (if

exists), is an independent set. Therefore, we have

λM2(G)− λM1(G) =
∑

vivj∈E

dλi d
λ
j −

∑
vivj∈E

(
d2λ−1
i + d2λ−1

j

)
=

∑
vivj∈E

(
dλi d

λ
j − d2λ−1

i − d2λ−1
j

)
≥

∑
vi∈V, di>2

di
(
dλi 2

λ − d2λ−1
i − 22λ−1

)
(7)

because dλi d
λ
j − d2λ−1

i − d2λ−1
j = 0 for di = dj = 2, vivj ∈ E.
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Figure 2. Graphs of two functions.

Consider the function

f(x, λ) = xλ+1 2λ − x2λ − x 22λ−1 , x ≥ 3 and λ ∈ (0, 1].

By Lemma 5, f(x, λ) is an increasing function for x ≥ 4. From Figure 2, one can easily

see that f(4, λ) > f(3, λ). Hence

λM2(G)− λM1(G) ≥
∑

vi∈V, di>2

(
3λ+1 2λ − 32λ − 3 · 22λ−1

)
.

Suppose that

λM2(G
′)− λM1(G

′) =
∑

vi∈V, di>2

(
3λ+1 2λ − 32λ − 3 · 22λ−1

)
.

Let m (m′) and n (n′) be the number of edges and vertices in G (G′), respectively. Since

G, G′ ∈ Gν , we have ν − 1 = m − n = m′ − n′. Since G′ has vertices of degree 2 and 3,

then the number of vertices of degree 3 is exactly 2(m′ − n′) in G′. Then we have

λM2(G)− λM1(G) ≥ 2(m′ − n′)
(
3λ+1 2λ − 32λ − 3 · 22λ−1

)
= (ν − 1)

(
3λ+1 2λ+1 − 2 · 32λ − 3 · 22λ

)
.

The first part of the proof is done.

Suppose that equality holds in (6) with G � Cn. By Lemmas 2 and 3 with the above

results, we conclude that all the vertices in G have degree 2 or 3 and the set of vertices

of degree 3 is an independent set in G, that is, G ∈ Γ.

Conversely, one can easily see that the equality holds in (6) for G ∈ Γ, by Lemma 6.
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Finally, note that the main result of [12] and one result of [5] directly follow from

Theorem 1 when ν = 1 and λ = 1, respectively.

Corollary 7. [12] Let G be a unicyclic graph of order n. For all λ ∈ (0, 1], we have

λM2(G) ≥λ M1(G) with equality holding if and only if G ∼= Cn.

Corollary 8. Let G be a graph in Gν. Then M2(G) − M1(G) ≥ 6(ν − 1) with equality

holding if and only if G ∈ Cn or G ∈ Γ.

Corollary 9. [5] Let G (∈ Gν) be a graph of order n with m edges. If n ≥ 5(ν − 1), then

M2(G) − M1(G) ≥ 6(ν − 1) = 6m − 6n with equality holding if and only if G ∈ Cn or

G ∈ Γ.
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