
Difference of Zagreb Indices and Reduced Second

Zagreb Index of Cyclic Graphs with Cut Edges

Batmend Horoldagva1∗, Lkhagva Buyantogtokh2,

Shiikhar Dorjsembe1

1Department of Mathematics, Mongolian National University of Education,
Baga toiruu-14, Ulaanbaatar, Mongolia

horoldagva@msue.edu.mn , shiihardorjsembe@yahoo.com

2Department of Mathematics, Sungkyunkwan University,
Suwon 440-746, Republic of Korea
buyantogtokh.lhag@yahoo.com

(Received November 28, 2016)

Abstract

The classical first and second Zagreb indices of a graph G are defined as M1(G) =∑
v∈V dG(v)

2 and M2(G) =
∑

uv∈E(G) dG(u) dG(v) , where dG(v) is the degree of the vertex

v of graph G. The reduced second Zagreb index of a graph G is defined as MR2(G) =∑
uv∈E(G)(dG(u)− 1)(dG(v)− 1). Recently, the reduced second Zagreb index and difference

of Zagreb indices of trees were studied. In this paper, we determine the graphs having

maximum and minimum reduced second Zagreb index in the class of cyclic graphs of order

n with k cut edges. Moreover difference of the classical Zagreb indices are studied.

1 Introduction

Let G = (V,E) be a connected graph with vertex set V (G) and edge set E(G). Denote

by dG(u), the degree of the vertex u of G. A pendant vertex is a vertex of degree
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one. An edge of a graph is said to be pendant if one of its end vertices is a pendant

vertex. For v ∈ V (G), NG(v) denotes the neighbors of v. The maximum degree of

G is denoted by ∆(G). A cut edge in a graph G is an edge whose removal increases

the number of connected components of G. The cyclomatic number of a connected

graph is equal to ν = m− n+ 1, i. e., its number of independent cycles. If ν > 1 for

a graph G then it is called cyclic graph. If a graph G has ν = 0 and ν = 1 then it is

called tree and unicyclic, respectively. For a subset E of E(G), we denote by G− E

the subgraph of G obtained by deleting the edges in E. Similarly, the graph obtained

from G by adding a set of edges E is denoted by G+ E. If E = {e} we write G− e

and G+ e.

The classical first Zagreb index M1 and second Zagreb index M2 of graph G are

among the oldest and the most famous topological indices and they are defined as

M1(G) =
∑

u∈V (G)

(dG(u))
2 and M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

In 1972, the quantities the Zagreb indices were found to occur within certain approx-

imate expressions for the total π-electron energy [19]. In 1975, these graph invariants

were proposed to be measures of branching of the carbon–atom skeleton [18]. For

details of the mathematical theory and chemical applications of the Zagreb indices,

see [4,10,12,16,17,25,27,29,35] and the references cited therein. The Zagreb indices

were independently studied in the mathematical literature under other names [3,9,28].

Caporossi and Hansen [5, 6] conjectured that, for all connected graphs G it holds

that
M1(G)

n
≤ M2(G)

m
(1)

and the bound is tight for complete graphs. Although this conjecture is disproved for

general graphs [20], it was just the beginning of a long series of studies [1,2,21,24,26,

33, 34] in which the validity or non-validity of (1) was considered for various classes

of graphs.

Recently, much attention is being paid to the comparison of M1 and M2 of graph

G. Direct comparisons were obtained on the Zagreb indices for trees [11, 31] and

cyclic graphs [7, 22, 30]. The difference of the Zagreb indices of a graph G has been
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studied in [15, 23]. Recently, Furtula et al. [15] showed that the difference of the

Zagreb indices is closely related to the vertex-degree-based graph invariant

MR2(G) =
∑

uv∈E(G)

(dG(u)− 1)(dG(v)− 1)

and determined a few basic properties of MR2.

The extremal first and second Zagreb indices of graphs of order n with k cut

edges were studied in [8, 13, 14, 32]. Note that a connected graph of order n has at

most n − 1 cut edges and if k = n − 1 then it is a tree. Trees with extremal RM2

were studied in [15, 23]. For nonnegative integers n and k with 0 ≤ k < n − 1, we

denote by Gk
n the set of connected cyclic graphs of order n with k cut edges. In this

paper, we determine the graphs that have maximum and minimum reduced second

Zagreb indices RM2 in Gk
n. Moreover, the graphs with extremal M2 −M1-value are

characterized.

2 Graphs with maximum RM2 or M2 − M1

For u ∈ V (G), the set of all pendant neighbors of u is denoted by N1
G(u).

Lemma 1. Let G be a connected graph and uv be a non-pendant cut edge in G. Let

N1
G(u) = NG(u) \ {v}. Also let u0 ∈ NG(u) \ {v} and v0 ∈ NG(v) \ {u}. Consider the

graph G′ = G− {u0u}+ {u0v0}. Then

RM2(G
′) ≥ RM2(G)

with equality holding if and only if N1
G(v0) = NG(v0) \ {v}.

Proof. We have dG′(ω) = dG(ω) for ω 6= u, v0 whereas dG′(u) = dG(u) − 1 and

dG′(v0) = dG(v0)+ 1. Since uv is a cut edge in G, we have uv0 6∈ E(G). Hence by the

definition of the reduced second Zagreb index, we get

RM2(G
′)−RM2(G)

=
∑

ui∈NG(u)\{v}

(dG(ui)− 1)(dG(u)− 2) + (dG(u)− 2)(dG(v)− 1)

+
∑

x∈NG(v0)\{v}

(dG(x)− 1)dG(v0) + dG(v0)(dG(v)− 1)
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−
∑

ui∈NG(u)\{v}

(dG(ui)− 1)(dG(u)− 1)− (dG(u)− 1)(dG(v)− 1)

−
∑

x∈NG(v0)\{v}

(dG(x)− 1)(dG(v0)− 1)− (dG(v0)− 1)(dG(v)− 1)

=
∑

x∈NG(v0)\{v}

(dG(x)− 1)−
∑

ui∈NG(u)\{v}

(dG(ui)− 1)

=
∑

x∈NG(v0)\{v}

(dG(x)− 1) ≥ 0. (2)

since dG(ui) = 1 for all ui ∈ NG(u) \ {v} and dG(x) ≥ 1 for all x ∈ NG(v0) \ {v}.

Suppose now that equality holds in (2). Then we must have∑
x∈NG(v0)\{v}

(dG(x)− 1) = 0 .

Hence dG(x) = 1 for all x ∈ NG(v0) \ {v}, that is N1
G(v0) = NG(v0) \ {v}. This

completes the proof.

G G′

Fig. 1. The graphs G and G′

An edge uv of a graph G is said to be contracted if it is deleted and its end vertices

u and v are identified, the obtained graph is denoted by G · uv. Also the identified

vertex in G · uv is denoted by one of u and v. Denote by Gn,m, the set of connected

cyclic graphs of order n with m edges.

Proposition 2. Let G be a graph in Gn,m. If RM2(G) is maximum, then all cut edges

of G are pendant.

Proof. Conversely, suppose that uv is a non-pendant cut edge in G. We distinguish

the following two cases.

Case (1) : N1
G(u) = NG(u) \ {v} or N1

G(v) = NG(v) \ {u}.

Assume that N1
G(u) = NG(u) \ {v}. If N1

G(vi) = NG(vi) \ {v} for all vi in NG(v), then
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G is a tree with diameter at most four and it contradicts the assumption that Gn,m.

Hence there exists a vertex v0 in NG(v) \ {u} such that N1
G(v0) 6= NG(v0) \ {v}. Let

u0 ∈ NG(u) \ {v}. We consider the graph G′ = G− {u0u}+ {u0v0}. Then G′ ∈ Gn,m

and by Lemma 1, we have

RM2(G
′) > RM2(G).

But it contradicts the fact that RM2(G) is maximum in Gn,m.

Case (2) : N1
G(u) 6= NG(u) \ {v} and N1

G(v) 6= NG(v) \ {u}.

Assume that |N1
G(u)| ≥ |N1

G(v)|. Then we prove that a connected component con-

taining vertex v is a tree in the graph G− uv. Let N1
G(v) = {v1, v2, . . . , vt} and v0 be

a vertex in NG(v) \ (N1
G(v) ∪ {u}) such that

∑
x∈NG(v0)\{v}(dG(x) − 1) is maximum.

Also let G∗ be the obtained graph by joining a pendant vertex y to the vertex v0 of

G · uv. Consider the graph (see Fig. 1).

G′ = G∗ − {vv1, vv2, . . . , vvt}+ {v0v1, v0v2, . . . , v0vt}.

Then G′ ∈ Gn,m. Also we have dG′(y) = 1 and dG′(ω) = dG(ω) for ω 6= u, v0 whereas

dG′(u) = dG(u) + dG(v) − t − 2, dG′(v0) = dG(v0) + t + 1. For convinience, set

S = {v1, v2, . . . , vt, u, v0}. Then by the definition of the reduced second Zagreb index,

we get

RM2(G
′)−RM2(G) =

∑
x∈NG(u)\{v}

(dG(x)− 1)(dG(u) + dG(v)− t− 3)

+
∑

x∈NG(v)\S

(dG(x)− 1)(dG(u) + dG(v)− t− 3)

+ (dG(u) + dG(v)− t− 3)(dG(v0) + t)

+
∑

x∈NG(v0)\{v}

(dG(x)− 1)(dG(v0) + t)

−
∑

x∈NG(u)\{v}

(dG(x)− 1)(dG(u)− 1)− (dG(u)− 1)(dG(v)− 1)

−
∑

x∈NG(v)\S

(dG(x)− 1)(dG(v)− 1)− (dG(v0)− 1)(dG(v)− 1)

−
∑

x∈NG(v0)\{v}

(dG(x)− 1)(dG(v0)− 1)
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that is,

RM2(G
′)−RM2(G) =

∑
x∈NG(u)\{v}

(dG(x)− 1)(dG(v)− t− 2)

+
∑

x∈NG(v)\S

(dG(x)− 1)(dG(u)− t− 2)

+
∑

x∈NG(v0)\{v}

(dG(x)− 1)(t+ 1)

− (dG(u)− t− 2)(dG(v)− t− 2)

+ (dG(u)− t− 2)(dG(v0)− 1). (3)

Since uv is a non-pendant cut edge in G, N1
G(u) 6= NG(u) \ {v} and N1

G(v) 6= NG(v) \

{u}, we have

dG(u) ≥ t+ 2 and dG(v) ≥ t+ 2. (4)

Now from (4) and dG(x) ≥ 2 for all x ∈ NG(v) \ S, one can easily see that∑
x∈NG(v)\S

(dG(x)− 1)(dG(u)− t− 2)− (dG(u)− t− 2)(dG(v)− t− 2) ≥ 0. (5)

Therefore from (4), (3) and (5), we get

RM2(G
′) ≥ RM2(G). (6)

If the above inequality is strict, then it contradicts the fact that RM2(G) is maximum

in Gn,m.

Suppose now that equality holds in (6). Then the equality holds in (5) and the

remaining summands in (3) must be zero. Thus from (3), we have∑
x∈NG(u)\{v}

(dG(x)− 1)(dG(v)− t− 2) = (dG(u)− t− 2)(dG(v0)− 1) = 0 (7)

and ∑
x∈NG(v0)\{v}

(dG(x)− 1) = 0. (8)

Since N1
G(u) 6= NG(u)\{v}, there exists a vertex x in NG(u)\{v} such that dG(x) ≥ 2.

Also since the vertex v0 in NG(v) \ (N1
G(v) ∪ {u}), we have dG(v0) ≥ 2. Thus from

(7), we get

dG(u) = dG(v) = t+ 2. (9)
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From (8), dG(x) = 1 for all x ∈ NG(v0) \ {v}, that is N1
G(v0) = NG(v0) \ {v}. By the

choice of the vertex of v0, we have

N1
G(vi) = NG(vi) \ {v} for all vi ∈ NG(v) \ {u}. (10)

From this, we conclude that a connected component containing vertex v is a tree in

G− uv.

On the other hand from (9), |N1
G(u)| = t because dG(v) ≥ 2 and there exists

a vertex x in NG(u) \ {v} such that dG(x) ≥ 2. Thus we have N1
G(v) = N1

G(u).

Therefore, similarly the above we can prove that a connected component containing

vertex u is also a tree in G− uv. Hence, G is a tree with diameter at most 5. But it

contradicts the assumption that G ∈ Gn,m.

The number of cut edges of the considered graph G′ in each case of the proof of

Proposition 2 is equal to the number of cut edges of G. i.e., If G ∈ Gk
n, then also

G′ ∈ Gk
n. Hence we have the following corollary.

Corollary 3. Let G be a graph in Gk
n. If RM2(G) is maximum, then all k cut edges

of G are pendant.

Lemma 4. Let G be a connected graph and uv 6∈ E(G). Consider the graph G′ =

G+ uv. Then RM2(G
′) > RM2(G).

Proof. We have dG(w) = dG′(w) for w 6= u, v whereas dG′(u) = dG(u) + 1 and

dG′(v) = dG(v) + 1. Hence by the definition of RM2, we get

RM2(G
′)−RM2(G)

= dG(u)
∑

x∈NG(u)

(dG(x)− 1) + dG(v)
∑

x∈NG(v)

(dG(x)− 1) + dG(u)dG(v)

− (dG(u)− 1)
∑

x∈NG(u)

(dG(x)− 1)− (dG(v)− 1)
∑

x∈NG(v)

(dG(x)− 1)

=
∑

x∈NG(u)

(dG(x)− 1) +
∑

x∈NG(v)

(dG(x)− 1) + dG(u)dG(v) > 0

since G is connected. Thus RM2(G
′) > RM2(G).

Let N be positive integer, N ≥ 2. KN be a complete graph of order N , and

let v1, v2, . . . , vN be its vertices. For i = 1, 2, . . . , N , let ri be non-negative integers,
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Fig. 2. The graph G(4, 3, 2, 2, 1, 0) in G(18, 6) ⊆ G12
18 .

labeled so that r1 ≥ r2 ≥ · · · ≥ rN . Construct the graphG(r1, r2, . . . , rN) by attaching

ri pendent vertices to the vertex vi of KN . The graph G(r1, r2, . . . , rN) has thus

n = N +
∑N

i=1 ri vertices. For given values N ≥ 2 and n ≥ N , the set of all graphs

G(r1, r2, . . . , rN) constructed in the above described manner is denoted by G(n,N)

(see Fig. 2). Obviously G(n,N) ⊆ Gn−N
n .

Proposition 5. Let G be a graph in Gk
n. If G has maximum the reduced second Zagreb

index, then G ∈ G(n, n− k).

Proof. By Corollary 3, all k cut edges of G are pendant. If G /∈ G(n, n−k) then there

exist two non-adjacent vertices of degrees greater than one in the graph G. We join

these two non-adjacent vertices and denote by G′ the obtained graph. Then G′ ∈ Gk
n

and RM2(G
′) > RM2(G) by Lemma 4. But it contradicts the fact that RM2(G) is

maximum in Gk
n.

Theorem 1. Let G be a graph in Gk
n. If RM2(G) is maximum then

G ∼= G(r1, r2, . . . , rn−k), where | rp − rq |≤ 1 for 1 ≤ p, q ≤ n− k.

Proof. By Proposition 5, we have G ∈ G(n, n − k). Hence there exist nonnegative

integers r1, r2, . . . , rn−k, labeled so that r1 ≥ r2 ≥ · · · ≥ rn−k with r1+r2+· · ·+rn−k =

k and G = G(r1, r2, . . . , rn−k). Now we show that | rp − rq |≤ 1 for 1 ≤ p, q ≤ n− k.

Let v1, v2, . . . , vn−k be vertices of the graph G(r1, r2, . . . , rn−k) whose degrees are

greater than one. Then dG(vi) = ri + n− k − 1 for i = 1, 2, . . . , n− k. By definition

of the reduced second Zagreb index, we get

RM2(G) =
∑

1≤i<j≤n−k

(ri + n− k − 2)(rj + n− k − 2)
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=
∑

1≤i<j≤n−k

rirj + (n− k − 2)
∑

1≤i<j≤n−k

(ri + rj) + (n− k − 2)2
(
n− k

2

)

=
∑

1≤i<j≤n−k

rirj + (n− k − 1)(n− k − 2)

(
k +

(n− k)(n− k − 2)

2

)
since r1 + r2 + · · · + rn−k = k. Therefore RM2(G) is maximum if and only if∑
1≤i<j≤n−k

rirj is maximum. Let now
∑

1≤i<j≤n−k

rirj with r1 + r2 + · · · + rn−k = k

is maximum.

Suppose that there are integers rp and rq in G(r1, r2, . . . , rn−k) such that rp − rq ≥

2. Then we transform G(r1, r2, . . . , rn−k) into another graph G(r′1, r
′
2, . . . , r

′
n−k) with

r′p = rp − 1, r′q = rq + 1 and r′i = ri for all i 6= p, q.

An elementary calculation gives

∑
1≤i<j≤n−k

r′ir
′
j −

∑
1≤i<j≤n−k

rirj = (rp − 1)

(
1 +

∑
i 6=p

ri

)
+ (rq + 1)

∑
i 6=p, q

ri

− rp
∑
i 6=p

ri − rq
∑
i 6=p, q

ri = rp − rq − 1 > 0

and it contradicts that
∑

1≤i<j≤n−k

rirj is maximum. Thus we have |rp − rq| ≤ 1.

The reduced second Zagreb index satisfies the identity [15]

RM2(G)− |E(G)| = M2(G)−M1(G). (11)

By using the identity (11), similarly as above we prove that all results in this

section hold for the difference of M2 and M1. Hence we have the following theorem.

Theorem 2. Let G be a graph in Gk
n. If M2(G) − M1(G) is maximum then G ∼=

G(r1, r2, . . . , rn−k), where | rp − rq |≤ 1 for 1 ≤ p, q ≤ n− k.

3 Graphs with minimum RM2 or M2 − M1

The vertex independence number of a graph, often called simply the independence

number, is the cardinality of the largest independent vertex set, i.e., the size of a

maximum independent vertex set. The cycle graph with n vertices is called Cn. Let
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Γ be a class of graphs H = (V,E) in Gν such that 2 ≤ di ≤ 3 (there exists a vertex

vk in H such that dk = 3) for all vi ∈ V (H) and the set of vertices of degree three

is an independent set in H. The cycle of a graph G is denoted by C(G). We denote

the class of connected graphs with cyclomatic number ν ≥ 1 by Gν .

Lemma 6. [30] Let G be a graph in Gν . Then

M2(G)−M1(G) ≥ 6(ν − 1)

with equality holding if and only if G ∼= Cn or G ∈ Γ

S(m1,m2, . . . ,mp) is a unicyclic graph of order n with girth p and n − p pendant

vertices, where mi is the number of pendant vertices adjacent to i-th vertex of the

cycle. We consider that the vertices in the cycle are numbered clockwise. Clearly∑p
i=1mi = n − p and S(0, 0, . . . , 0) = Cn. Denote S = {S(m1,m2, . . . ,mp) | mi−1 =

mi+1 = 0 for mi 6= 0 , 2 ≤ i ≤ p, mp+1 = m1}.

Lemma 7. [22] Let G be a unicyclic graph with cycle length p. Then

M2(G)−M1(G) ≥
∑

u∈V (C(G))

dG(u)− 2p (12)

with equality if and only if G ∈ S.

Let Bp
n (p ≤ n) be the unicyclic graph with n − p pendant vertices and its each

pendant vertex is adjacent to one vertex of Cp . In particular, Bn
n = Cn , a cycle

of order n. Denote by Cp
n,∆ (∆ ≥ 4) a unicyclic graph obtained by identifying two

pendant vertices of the path Pn−∆−p+2 with the center of star K1,∆−1 and one vertex

of cycle Cp, respectively. Denote C∆ = {C p
n, ∆ | 3 ≤ p ≤ n−∆− 1}.

Lemma 8. [22] Let G be a unicyclic graph of order n with maximum degree ∆. Then

M2(G)−M1(G) ≥


∆− 2 if d = 0

∆ if d = 1

2 if d > 1 ,

(13)

where d is the length of the shortest path from the maximum degree vertex u to the

cycle C(G). The equalities hold in (13) if and only if G ∼= Bp
n, G

∼= Cp
n,∆, ∆ + p = n,

and G ∈ C∆, respectively.
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Denote by Cp
n,3 (n− p ≥ 4) a unicyclic graph obtained by identifying two pendant

vertices of the path Pn−p−1 with the center of star K1,2 and one vertex of cycle

Cp, respectively. Also denote by Cp
n,2 (n − p ≥ 2) a unicyclic graph obtained by

identifying one pendant vertex of the path Pn−p+1 with one vertex of cycle Cp. Denote

Up
n = C∆ ∪ {Cp

n,2, C
p
n,3}, where p ≥ 3. Obviously Up

n ⊆ Gn−p
n and each unicyclic graph

G in Up
n has n− p cut edges.

Now we are ready to characterize lower bound on M2−M1 and RM2 in Gk
n. From

the identity (11), it follows that RM2(G) is minimum if and only if M2(G)−M1(G)

is minimum in Gk
n . Therefore, we give the proof of the following results for only

M2 −M1.

Proposition 9. Let G be a graph in Gk
n . If M2(G) −M1(G) or RM2 is minimum,

then G is unicyclic.

Proof. Since G ∈ Gk
n, we have ν ≥ 1. It is easy to see that M2(H) −M1(H) = 2 for

all H ∈ Un−k
n ⊆ Gk

n. Hence M2(G)−M1(G) ≤ 2 since M2(G) −M1(G) is minimum.

If G is not unicyclic graph, then ν ≥ 2 and by Lemma 6, we get

M2(G)−M1(G) ≥ 6(ν − 1) ≥ 6.

This completes the proof.

We denote by A 2
n , a class of unicyclic graphs of order n obtained by attaching two

pendant edges to the two non-adjacent vertices of the cycle Cn−2.

Theorem 3. Let G be a graph in Gk
n . Also let M2(G) − M1(G) or RM2(G) be

minimum.

(i) If k = 0, then G ∼= Cn.

(ii) If k = 1, then G ∼= Bn−1
n .

(iii) If k = 2, then G ∼= Cn−1
n,2 , G ∼= Bn−2

n , or G ∈ A2
n

(iv) If k ≥ 3, then G ∈ Un−k
n .

Proof. We mentioned that RM2(G) is minimum if and only if M2(G) − M1(G) is

minimum in Gk
n . Therefore we characterize the graphs such that M2(G)−M1(G) is

minimum.

Since M2(G) − M1(G) is minimum in Gk
n , G is unicyclic graph by Proposition 9.

Hence, the first two parts of Theorem 3 are trivial.
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(iii) If G ∼= Cn−1
n,2 , G ∼= Bn−2

n , or G ∈ A2
n then one can easily see that M2(G) −

M1(G) = 2. Otherwise G is a unicyclic graph of order n obtained by attaching

two pendant edges to the two adjacent vertices of the cycle Cn−2 and in this case

M2(G)−M1(G) = 3.

(iv) If G ∈ Un−k
n then M2(G)−M1(G) = 2. Suppose that G /∈ Un−k

n . To show that

M2(G) −M1(G) > 2, we distinguish the following two cases. Let d be the length of

the shortest path from the maximum degree vertex to the cycle C(G).

Case (1) : d ≥ 1. If d = 1 then ∆ ≥ 3 and M2(G)−M1(G) ≥ ∆ ≥ 3 by Lemma 8. If

d > 1 then M2(G)−M1(G) > 2 because C∆ is a subset of Un−k
n .

Case (2) : d = 0. If ∆ ≥ 5 then M2(G)−M1(G) ≥ ∆− 2 ≥ 3 by Lemma 8. If ∆ = 4

then M2(G) − M1(G) ≥ ∆ − 2 = 2 with equality if and only if G ∼= Bn−k
n . From

the definition of Bn−k
n , we have k = ∆ − 2 = 2 and it contradicts the assumption

that k ≥ 3. Let now ∆ = 3. Then all vertices of degree 3 must be on the cycle.

Since G /∈ Un−k
n , there are at least two vertices of degree three on the cycle. Then by

Lemma 7

M2(G)−M1(G) ≥
∑

u∈V (C(G))

dG(u)− 2(n− k) ≥ 2

with equality if and only if G ∈ A 2
n . Hence if M2(G)−M1(G) = 2, then it contradicts

the assumption that k ≥ 3.

Corollary 10. Let G be a cyclic graph. Then

(i) M2(G)−M1(G) = 0 or RM2(G) = n if and only if G ∼= Cn.

(ii) M2(G)−M1(G) = 1 or RM2(G) = n+ 1 if and only if G ∼= Bn−1
n .

(iii) M2(G) − M1(G) = 2 or RM2(G) = n + 2 if and only if G ∼= Cn−1
n,2 , G ∼= Bn−2

n ,

G ∈ A2
n or G ∈ Un−k

n .
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