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Abstract

The question of finding extremal structures with respect to various graph indices
has received much attention in recent years. Among these graph indices, many
are defined on adjacent vertex degrees and maximized or minimized by the same
extremal structure. We consider a function defined on adjacent degrees of a tree,
T , to be f(x, y) and the connectivity function associated with f ,

Rf (T ) =
∑

uv∈E(T )

f(deg(u), deg(v)).

We first introduce the extremal tree structures, with a given degree sequence, that
maximize or minimize such functions under certain conditions. When a partial
ordering, called “majorization”, is defined on the degree sequences of trees on n
vertices, we compare the extremal trees of different degree sequences π and π′. As
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a consequence many extremal results follow as immediate corollaries. Our finding
provides a uniform way of characterizing the extremal structures with respect to a
class of graph invariants. We also briefly discuss the applications to specific indices.

1 Introduction

Graph invariants can be useful in many areas of applied sciences. In particular, chemical

indices have been popular and powerful tools in the research of chemical graph theory.

See for instance [3,4,7,8,11,17] for some applications. There have been many studies on

indices defined on adjacent vertex degrees. The most well known such index is probably

the Randić index [11]

R(T ) =
∑

uv∈E(T )

(deg(u)deg(v))−
1
2 .

This concept can be naturally generalized to

wα(T ) =
∑

uv∈E(T )

(deg(u)deg(v))α

for α 6= 0, also known as the connectivity index (see for example [5]). When α = 1,

this is also called the weight of a tree. In fact, Randić also proposed wα(T ) for α = −1,

later rediscovered and known as the Modified Zagreb index. The extremal trees for trees

in general [9], trees with restricted degrees [12] and trees with given degree sequence (the

non-increasing sequence of degrees of internal vertices) [5,14] have been characterized over

the years.

Natural variations of R(T ) and wα(T ) were brought forward as the sum-connectivity

index [25]

χ(T ) =
∑

uv∈E(T )

(deg(u) + deg(v))−
1
2

and the general sum-connectivity index [26]

χα(T ) =
∑

uv∈E(T )

(deg(u) + deg(v))α .

Many interesting mathematical properties on these two indices, including some extremal

results, can be found in [25,26] and the studies that follow.

Another variant of R(T ) was proposed more recently, as the harmonic index [7]

H(T ) =
∑

uv∈E(T )

2

deg(u) + deg(v)
,
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which takes the sum of the reciprocal of the arithmetic mean (as opposed to the geometric

mean in the case of R(T )) of adjacent vertex degrees. The extremal trees among simple

connected graphs and general trees were characterized in [24].

Other examples of such graph invariants includes the third Zagreb index [13], defined

as ∑
uv∈E(T )

(deg(u) + deg(v))2 .

It is easy to see that this is a special case of the general sum-connectivity index with

α = 2.

A slight variant of the third Zagreb index is the reformulated Zagreb index [10], defined

as ∑
uv∈E(T )

(deg(u) + deg(v)− 2)2 .

Last but certainly not the least, the Atom-Bond connectivity index [6], defined as

∑
uv∈E(T )

√
deg(u) + deg(v)− 2

deg(u)deg(v)
,

is a rather complicated example of such graph invariants that has recently received much

attention (for example, see [23]).

A fundamental question in the study of such invariants asks for the extremal structures

under certain constraints that maximize or minimize a chemical index. Many of such

extremal structures turned out to be identical for different but similar invariants. In

particular, the greedy tree (defined below) is often extremal among trees of a given degree

sequence (the non-increasing sequence of the vertex degrees).

Definition 1 (Greedy Tree) [15] With given vertex degrees, the greedy tree is achieved

through the following ”greedy algorithm”:

i Label the vertex with the largest degree as v (the root);

ii Label the neighbors of v as v1, v2, ..., assign the largest degrees available to them such

that deg(v11) ≥ deg(v12) ≥ . . .;

iii Label the neighbors of v1 (except v) as v11,v12,...,such that they take all the largest

degrees available and that deg(v11) ≥ deg(v12) ≥ . . ., then do the same for v2, v3, ...;
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iv Repeat (iii) for all the newly labeled vertices. Always start with the neighbors of the

labeled vertex with largest degree whose neighbors are not labeled yet.

Figure 1 shows an example of a greedy tree.

v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Figure 1. A greedy tree with degree sequence (4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, . . . , 1).

To facilitate our discussion, we call a bivariable function f(x, y), defined on N × N,

escalating if

f(a, b) + f(c, d) ≥ f(c, b) + f(a, d) for any a ≥ c and b ≥ d. (1)

For a tree T , let the connectivity function associated with f be

Rf (T ) =
∑

uv∈E(T )

f(deg(u), deg(v)). (2)

It is worth pointing out that (1) is essentially a discrete version of

∂2

∂x∂y
f(x, y) ≥ 0.

It is not difficult to see, that with different f , Rf (T ) describes various graph invariants

including many of the invariants mentioned above. The followings are shown in [15].

Theorem 1.1 [15] For any escalating function f and Rf (T ) defined as in (2), Rf (T ) is

maximized by the greedy tree among trees with given degree sequence.

Similarly, a bivariable function f(x, y) defined on N× N is de-escalating if

f(a, b) + f(c, d) ≤ f(c, b) + f(a, d) for any a ≥ c and b ≥ d. (3)

Theorem 1.2 [15] For any de-escalating function f and Rf (T ) defined as in (2), Rf (T )

is minimized by the greedy tree among trees with given degree sequence.
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Although greedy trees are interesting in their own right because of the close relation

between vertex degrees and valences of atoms, comparing greedy trees of different degree

sequences has proven to be an effective way of studying extremal tree structures in general.

This is exactly the goal of this note. Majorization techniques is a fruitful method for

localizing graph topological indicators and there is a wide literature (for example see

[1, 2, 20–22] etc.) about this topic.

First we recall the following partial ordering on degree sequences of trees of given

order.

Definition 2 (Majorization) Given two nonincreasing degree sequences π and π′ with

π = (d1, d2, ..., dn) and π′ = (d′1, d
′
2, ..., d

′
n), we say that π′ majors π if the following

conditions are met:

1
∑k

i=0 di 6
∑k

i=0 d
′
i for 1 6 k 6 n− 1

2
∑n

i=0 di =
∑n

i=0 d
′
i

We denote this by π / π′.

For example: Let π = (5, 5, 4, 4, 3, 3, 2, 1, ..., 1) and π′ = (5, 5, 5, 4, 3, 3, 2, 1, ..., 1). Then

π / π′.

The concept of majorization between degree sequences led to many interesting studies

on various graph indices, see for instance, [1, 2]. The following fact will be of crucial

importance to our argument.

Proposition 1.3 [16] Let π = (d0, ..., dn−1) and π′ = (d′0, ..., d
′
n−1) be two noincreasing

graphical degree sequences. If π/π′, then there exists a series of graphical degree sequences

π1, ..., πk such that π / π1 / ... / πk / π
′, where πi and πi+1 differ at exactly two entries, say

dj (d′j) and dk (d′k) of πi (πi+1), with d′j = dj + 1, d′k = dk − 1 and j < k.

In this note, we will first present our main result on the comparison between greedy

trees of different degree sequences with respect to the Rf (.) value. Then we will use our

main theorem to deduce many extremal results as immediate consequences. We will also

show some examples of the application of our findings to specific graph invariants.
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2 Main result

In this section we prove our main result, stated in Theorems 2.1 and 2.2.

Theorem 2.1 Given two degree sequences π and π′ with π / π′. Let T ∗
π and T ∗

π′ be the

greedy trees with degree sequences π and π′ respectively. For an escalating function f with

∂f

∂x
≥ 0 (4)

and
∂2f

(∂x)2
≥ 0, (5)

we have

Rf (T
∗
π ) ≤ Rf (T

∗
π′).

Proof. Given the conditions (1), (4) and (5), we want to show

Rf (T
∗
π ) ≤ Rf (T

∗
π′)

for

(d0, ..., dn−1) = π / π′ = (d′0, ..., d
′
n−1).

By Proposition 1.3 we may assume the degree sequences π and π′ differ at only two

entries, say dj0 (d′j0) and dk0 (d′k0) with d′j0 = dj0 + 1, d′k0 = dk0 − 1 for some j0 < k0. Let

T ∗
π contain the vertices u1 and u2 with degrees A := dj0 and C := dk0 respectively (note

that A ≥ C). We introduce the followings:

• let the parent of u1 have degree B;

• let the children of u1 have degrees B1,B2, ...,BA−1;

• let the parent of u2 have degree D;

• let the children of u2 have degrees D1,D2, ...,DC−1.

Note that, from the structure of greedy trees, we have D ≤ B and Di ≤ Bj for any

1 ≤ i ≤ C − 1 and 1 ≤ j ≤ A− 1.

Now consider the tree

Tπ′ = T ∗
π − {u2u3}+ {u1u3}

as in Figure 2. Note that Tπ′ has degree sequence π′ but is not necessarily a greedy tree.

-312-



u2 u2

u3

u1u1

u3

T ∗
π Tπ′

Figure 2. π = (4, 4, 3, 3, 3, 3, 2, 2, 1, . . . , 1) and π′ = (4, 4, 4, 3, 3, 2, 2, 2, 1, . . . , 1).

From T ∗
π to Tπ′ we have altered the contribution to Rf (.) associated with the vertices

u1, u2 and u3. Note that the degrees of u1 and u2 have changed to A + 1 and C − 1

respectively. Looking at the difference in the contributions to the function value between

u1 and its parent we have

f(A+ 1,B)− f(A,B).

Similarly we have

f(C,D)− f(C − 1,D)

for u2 and its parent. From the edge u2u3 to u1u3 we have a change in the function value

of

f(A+ 1,D1)− f(C,D1).

The change in the contributions of the function value between u1 and its children can be

represented by the sum
A−1∑
i=1

(f(A+ 1,Bi)− f(A,Bi)).

Similarly, the change in contributions to the function value between u2 and its children

can be represented by the sum

C−1∑
j=2

(f(C,Dj)− f(C − 1,Dj)).

Now we have Rf (Tπ′)−Rf (T
∗
π ) as

(f(A+ 1,D1)− f(C,D1)) (6)

+((f(A+ 1,B)− f(A,B))− (f(C,D)− f(C − 1,D))) (7)

+

(
A−1∑
i=1

(f(A+ 1,Bi)− f(A,Bi))−
C−1∑
j=2

(f(C,Dj)− f(C − 1,Dj))

)
. (8)

Next we consider each of these three terms (6), (7), and (8).
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• First note that

f(A+ 1,D1)− f(C,D1) ≥ 0

as
∂f

∂x
≥ 0 and A ≥ C.

• Next, note that

f(A+ 1,B)− f(A,B) = ∂f

∂x
(A′,B)

and

f(C + 1,B)− f(C,B) = ∂f

∂x
(C ′,B),

where A ≤ A′ ≤ A+ 1 and C ≤ C ′ ≤ C + 1.

Since A ≥ C, we have A′ ≥ C ′. Then our assumption
∂2f

(∂x)2
≥ 0 implies that

∂f

∂x
(A′,B) ≥ ∂f

∂x
(C ′,B)

and hence

f(A+ 1,B)− f(A,B) ≥ f(C,B)− f(C − 1,B).

Together with

(f(C,B)− f(C − 1,B)) > (f(C,D)− f(C − 1,D))

(as f is escalating and C ≥ C − 1, B ≥ D), we have

(f(A+ 1,B)− f(A,B))− (f(C,D)− f(C − 1,D)) ≥ 0.

• Similarly we have

(f(A+ 1,Bi)− f(A,Bi))− (f(C,Dj)− f(C − 1,Dj)) ≥ 0

for any i and j. Hence any term of
∑A−1

i=1 (f(A+1,Bi)−f(A,Bi)) is larger than every

term of
∑C−1

j=2 (f(C,Dj)−f(C−1,Dj). Also, note that
∑A−1

i=1 (f(A+1,Bi)−f(A,Bi))

has more terms than
∑C−1

j=2 (f(C,Dj) − f(C − 1,Dj) since A − 1 > C − 2, and that

f(A+1,Bi)− f(A,Bi) ≥ 0, f(C,Dj)− f(C − 1,Dj) ≥ 0 for any i, j (since
∂f

∂x
≥ 0).

Therefore

A−1∑
i=1

(f(A+ 1,Bi)− f(A,Bi))−
C−1∑
j=2

(f(C,Dj)− f(C − 1,Dj)) ≥ 0.

-314-



Thus all three terms (6), (7) and (8) are non-negative. Hence

Rf (Tπ′)−Rf (T
∗
π ) ≥ 0.

Note that Rf (T
∗
π′) ≥ Rf (Tπ′) by Theorem 1.1. Therefore

Rf (T
∗
π ) ≤ Rf (Tπ′) ≤ Rf (T

∗
π′).

Remark 1 Note that, as in condition (1), the discrete version of the conditions (4) and

(5) would be sufficient for our argument. We state Theorem 2.1 with
∂f

∂x
and

∂2f

(∂x)2
in

order to facilitate the presentation, as well as to simplify the application of the result.

Although we formulated our main theorem in terms of the escalating functions, it is

not difficult to see that the next theorem follows from the similar arguments. We omit

the details.

Theorem 2.2 Given two degree sequences π and π′ with π / π′. Let T ∗
π and T ∗

π′ be the

greedy trees with degree sequences π and π′ respectively. For a de-escalating function f

with
∂f

∂x
≤ 0 (9)

and
∂2f

(∂x)2
≤ 0, (10)

we have

Rf (T
∗
π ) ≥ Rf (T

∗
π′).

3 General extremal structures

First we assume the function f to be escalating and satisfies conditions (4), (5), and that

Rf (.) is defined as in (2). We now immediately have the following consequences. We

include a brief proof for each of them for completeness.

Corollary 3.1 Among all trees of order n, the star maximizes Rf (.).

Proof. Among all trees of order n, it is easy to see that the degree sequence (n−1, 1, . . . , 1)

majorizes all other degree sequences. Noting that the greedy tree with this degree sequence

is the star. The conclusion then follows from Theorems 1.1 and 2.1.
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Corollary 3.2 Among all trees of order n with given maximum degree ∆, the greedy tree

with degree sequence (∆,∆, . . . ,∆, q, 1, . . . , 1) (where 1 ≤ q ≤ ∆− 1) maximizes Rf (.).

In different literatures this extremal tree is sometimes called a “complete ∆-ary tree”,

“good ∆-ary tree”, or “Volkmann trees”.

Proof. It is easy to see that with given maximum degree, the claimed degree sequence

majorizes any other degree sequence under the same condition. The conclusion then

follows from Theorems 1.1 and 2.1.

Corollary 3.3 Among all trees of order n with s leaves, the greedy tree with degree se-

quence

s, 2, . . . , 2, 1, . . . , 1︸ ︷︷ ︸
s 1’s

 maximizes Rf (.). Such a tree is often called a “star like

tree”.

Proof. Given s leaves, the degree sequence must have exactly s 1’s. It is easy to see thats, 2, . . . , 2, 1, . . . , 1︸ ︷︷ ︸
s 1’s

 majorizes any other degree sequence with s 1’s. The conclusion

then follows from Theorems 1.1 and 2.1.

Corollary 3.4 Among all trees of order n with independence number α and degree se-

quence (α, 2, . . . , 2, 1, . . . , 1) maximizes Rf (.).

Proof. Let I be an independent set of T of exactly α vertices. For any leaf u /∈ I, the

unique neighbor v of u must be in I and I ∪ {u} − {v} is also an independent set of T .

Hence there exists an independent set of α vertices that contains all leaves. Consequently

there are at most α leaves. It is easy to see, under this condition, the claimed degree

sequence majorizes all others. The conclusion then follows from Theorems 1.1 and 2.1.

Corollary 3.5 Among all trees of order n with matching number β and degree sequence

(n− β, 2, . . . , 2, 1, . . . , 1) maximizes Rf (.).

Proof. Let M be a matching of T of exactly β edges, each of these edges contains at least

one vertex of degree at least 2. Hence there are at least β vertices of degree at least 2.

Under this condition, the claimed degree sequence majorizes all others. The conclusion

then follows from Theorems 1.1 and 2.1.
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Remark 2 Of course, it is easy to see the analogues of the above statements for de-

escalating functions satisfying conditions (9) and (10). We omit the exact statements

here.

4 Applications

In this section we explore the application of our results to specific graph invariants.

4.1 Connectivity index

When f(x, y) = xαyα, recall that

Rf (T ) =
∑

uv∈E(T )

(deg(u)deg(v))α

is the connectivity index, a natrual generalization of the well known Randić index. Con-

sider the case α > 0, we have

f(a, b) + f(c, d)− f(c, b)− f(a, d) = aαbα + cαdα − cαbα − aαdα = (aα − cα)(bα − dα) ≥ 0

for any a ≥ c and b ≥ d. Thus f(x, y) is escalating and Theorem 1.1 holds.

Similarly, f(x, y) is de-escalating for α < 0. Consequently we immediately have the

followings.

Theorem 4.1 ( [12,14]) Among trees with given degree sequence, the connectivity index

is maximized (minimized) by the greedy tree for α > 0 (α < 0).

Remark 3 Furthermore, if α > 1, it is easy to verify (4) and (5). Consequently Theo-

rem 2.1 holds and the corresponding corollaries in Section 3 hold.

4.2 General Sum-connectivity index and the third Zagreb index

When f(x, y) = (x+ y)α, recall that

Rf (T ) = χα(T ) =
∑

uv∈E(T )

(deg(u) + deg(v))α

is the general sum-connectivity index. It is simply the sum-connectivity index when α = 1.

We first show that χα(T ) is escalating (de-escalating) for α ≥ 1 (0 < α < 1).

Consider α ≥ 1 and let a ≥ c and b ≥ d. To show that f(x, y) is escalating it suffices

to show that

(a+ b)α − (b+ c)α ≥ (a+ d)α − (c+ d)α,
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which is equivalent to, through some calculus, the following:∫ a+b

b+c

αtα−1dt ≥
∫ a+d

c+d

αtα−1dt.

This can be rewritten as ∫ a

c

α(t+ b)α−1dt ≥
∫ a

c

α(t+ d)α−1dt,

which holds if and only if

α(t+ b)α−1 ≥ α(t+ d)α−1.

Since α ≥ 1, the last inequality is true if and only if b ≥ d.

Similarly, if 0 < α < 1 f(x, y) is de-escalating.

Consequently we have the following as a corollary to Theorem 1.1.

Theorem 4.2 Among trees with given degree sequence, the general sum-connectivity in-

dex is maximized (minimized) by the greedy tree for α ≥ 1 (0 < α < 1).

Remark 4 Furthermore, if α ≥ 0, it is easy to verify (4) and (5) for f(x, y) = (x +

y)α. Therefore Theorem 2.1 applies (when α ≥ 1 and f(x, y) is escalating) and the

corresponding corollaries in Section 3 hold.

Remark 5 Noting that the third Zagreb index is a special case of the general sum-

connectivity index with α = 2. Both Theorems 1.1 and 2.1, and their consequences from

Section 3 apply. We skip the exact statements.

Of course, the same can be concluded for the sum-connectivity index itself.

4.3 Reformulated Zagreb index

It is not difficult to see that although the reformulated Zagreb index, defined as∑
uv∈E(T )

(deg(u) + deg(v)− 2)2,

is not a special case of the general sum-connectivity index, it can be analyzed in very

similar ways.

Letting a ≥ c and b ≥ d,

(a+ b− 2)2 + (c+ d− 2)2 ≥ (b+ c− 2)2 + (a+ d− 2)2

is equivalent to

2b(a− c)− 2d(a− c) ≥ 0,

which holds by our conditions.

Thus f(x, y) is escalating and Theorem 1.1 holds.
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Theorem 4.3 Among trees with given degree sequence, the reformulated Zagreb index is

maximized by the greedy tree.

Remark 6 Furthermore, it is easy to verify (4) and (5) for f(x, y) = (x + y − 2)2 .

Therefore Theorem 2.1 applies and the corresponding corollaries in Section 3 hold.

4.4 Atom-Bond connectivity index

When f(x, y) =

√
x+ y − 2

xy
, the Atom-Bond connectivity (ABC) index

∑
uv∈E(T )

√
deg(u) + deg(v)− 2

deg(u)deg(v)

is perhaps one of the most complicated graph invariants defined on adjacent vertex de-

grees. In [18] it is shown that the greedy tree achieves the minimum ABC index among

trees of given degree sequence. In order to prove that f(x, y) =

√
x+ y − 2

xy
is de-

escalating, we first prove the following facts.

Lemma 4.1 For all positive integers c and d,

f(c+ 1, d+ 1) + f(c, d) ≤ f(c, d+ 1) + f(c+ 1, d). (11)

Proof. Since (
1

c+ 1
+

1

d
− 2

(c+ 1)d

)(
1

c
+

1

d+ 1
− 2

c(d+ 1)

)
−
(
1

c
+

1

d
− 2

cd

)(
1

c+ 1
+

1

d+ 1
− 2

(c+ 1)(d+ 1)

)
=

(
1

c
− 1

c+ 1

)(
1

d
− 1

d+ 1

)
> 0,

we have

(f(c, d+ 1) + f(c+ 1, d))2 − (f(c+ 1, d+ 1) + f(c, d))2

= 2

√(
1

c+ 1
+

1

d
− 2

(c+ 1)d

)(
1

c
+

1

d+ 1
− 2

c(d+ 1)

)

−2

√(
1

c
+

1

d
− 2

cd

)(
1

c+ 1
+

1

d+ 1
− 2

(c+ 1)(d+ 1)

)
+

2

cd(c+ 1)(d+ 1)
> 0.

Hence (11) holds.
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Lemma 4.2 For any nonnegative integer k and positive integers c, d,

f(c+ k, d+ 1) + f(c, d) ≤ f(c, d+ 1) + f(c+ k, d). (12)

Proof. Through repeated applications of (11), we have

f(c+ k, d+ 1)− f(c+ k, d) ≤ f(c+ k − 1, d+ 1)− f(c+ k − 1, d)

≤ f(c+ k − 2, d+ 1)− f(c+ k − 2, d)

≤ ......

≤ f(c, d+ 1)− f(c, d).

So (12) holds.

Proposition 4.4 The function f(x, y) =

√
x+ y − 2

xy
is de-escalating on N× N.

Proof. By the definition of de-escalating functions, we only to prove the following in-

equality

f(a, b) + f(c, d) ≤ f(c, b) + f(a, d) for any a ≥ c and b ≥ d.

Let a = c+k and b = d+r with nonnegative integers k, r. Through repeated applications

of (12), we have

f(a, b)− f(c, b) = f(c+ k, d+ r)− f(c, d+ r)

≤ f(c+ k, d+ r − 1)− f(c, d+ r − 1)

≤ f(c+ k, d+ r − 2)− f(c, d+ r − 2)

≤ ......

≤ f(c+ k, d)− f(c, d)

= f(a, d)− f(c, d).

So f(x, y) =

√
x+ y − 2

xy
is de-escalating on N× N.

By Proposition (4.4) and Theorem 1.1, we have the following statement.

Theorem 4.5 Among trees with given degree sequence, the atom–bond connectivity

(ABC) index is minimized by the greedy tree.

Although the greedy tree is indeed extremal, unfortunately (9) and (10) do not both

hold in order to apply Theorem 2.2.
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5 Concluding remarks

We considered functions defined on adjacent vertex degrees and the corresponding topo-

logical indices. With certain additional conditions we show not only the characterization

of extremal graphs, but also the comparison between extremal graphs with different degree

sequences. This statement, based on the majorization between degree sequences, leads to

many extremal results as immediate consequences. We also explored the application of

our main theorem on a variety of popular graph indices.
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