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Abstract 

The past within the future is the emblematic title of the present paper to describe the actual 

situation of molecular topology (MT) and graph theory in drug design. Graph theory can be 

considered as a classical and well-known discipline, which however cannot be considered out 

of date because its role in chemistry has become more and more important during the last 

years. Graph theory is the theoretical support of molecular topology, a paradigm capable to 

depict molecules from a topological viewpoint. Thanks to a pure mathematical representation 

of chemical structures, molecular topology (MT) uses topological descriptors to operate 

biological, pharmacological, physical and chemical properties. The present paper illustrates 

another interesting application of MT, providing discrimination between drug and non-drug 

molecules based on simple graph differences. This original formalism may help in the 

difficult task of finding out new hit and lead compounds. 

 

1 Introduction 

A little bit of history: The Riemann zeta function  

The Riemann zeta function, ζ(s), named both by and for Bernhard Riemann [1], was first 

studied in the 18th century by Leonhard Euler, who defined it as a sum over all the natural 

numbers as: 

( ) ∑=
n

sn
s

1
 ζ  

where the power s is variable. 
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Euler demonstrated that the sum is finite for any value of 

ζ(s) is equal to π
2
/6: 

Euler also proved that the summatory

each prime number, what suggests some connection between the zeta function and the 

distribution of primes among the integers. 

Later on, in 1859, Riemann 

number greater than 1 but for any number either real or complex (excepting the numbers 

whose real part is equal to 1) [2]

The crossing points, where ζ(s

distribution of the zeros and thereby established a hypothesis, which

modern mathematics. 

Many years later, Montgomery [3

essential to understand the statistics of the fluctuations, so that 

matches that of the eigenvalues of a random Hermitian matrix, which is a large Hermitian 

matrix whose entries are random variables.

example U-238) and other patterns such as 

distribution along a strand of chromatin or prime numbers location among the integers.

1 exhibits the distribution patterns for different systems. 

distances between the levels vary significantly from one case to another, on aver

values are identical. 

Figure 1. Some interesting common patterns for

strated that the sum is finite for any value of s above 1. For example, for S=2, 
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Euler also proved that the summatory is equal to a product formula including one term for 

each prime number, what suggests some connection between the zeta function and the 

among the integers.  

 showed that the zeta function applies not only 

number greater than 1 but for any number either real or complex (excepting the numbers 

[2].  

s)=0, are called zeros of the zeta function. Riemann studied the 

os and thereby established a hypothesis, which represents a milestone in

Many years later, Montgomery [3] realized that pair-correlation function of the zeta zeros was 

essential to understand the statistics of the fluctuations, so that the distribution of the zeros 

matches that of the eigenvalues of a random Hermitian matrix, which is a large Hermitian 

matrix whose entries are random variables. It also fits the energy levels in heavy nuclei (for 

238) and other patterns such as galaxies layout across the universe, genes 

distribution along a strand of chromatin or prime numbers location among the integers.

1 exhibits the distribution patterns for different systems. It can be seen

distances between the levels vary significantly from one case to another, on aver

e interesting common patterns for a random Hermitian matrix

above 1. For example, for S=2, 

is equal to a product formula including one term for 

each prime number, what suggests some connection between the zeta function and the 

showed that the zeta function applies not only if s is a real 

number greater than 1 but for any number either real or complex (excepting the numbers 

zeros of the zeta function. Riemann studied the 

represents a milestone in 

correlation function of the zeta zeros was 

the distribution of the zeros 

matches that of the eigenvalues of a random Hermitian matrix, which is a large Hermitian 

It also fits the energy levels in heavy nuclei (for 

yout across the universe, genes 

distribution along a strand of chromatin or prime numbers location among the integers. Figure 

It can be seen that although the 

distances between the levels vary significantly from one case to another, on average their 

 

a random Hermitian matrix [1]. 
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Molecular topology and the Riemann zeta function 

Given the outlined above, we may wonder if it possible to establish some parallelism between 

Figure 1’s patterns and molecular topology. 

Molecular topology (MT) is a discipline based on graph theory that allows representing every 

molecular structure as with a particular topology [4,5]. One of the key advantages of this 

formalism is that the graph-molecule can be transformed into a matrix, called topological or 

adjacency matrix. Starting by the matrix, different sets of descriptors called topological 

indices (TIs) can be calculated [5]. TIs are an algebraic representation of the graph and they 

can be related to several properties of molecules [6]. Figure 2 shows the representation of 

isopentane as a graph, along with its topological matrix. 

 

Figure 2. The chemical graph and adjacency matrix of isopentane. 

 

The atoms are represented by vertices and the bonds by edges. To build up the topological 

matrix each one of the vertices (atoms) in the graph is randomly numbered. This way it is 

possible to assign any ordinal integer number to any vertex in the graph [6]. The 

mathematicians call TIs also as graph invariants, because they remain unaltered under 

isomorphism and their value must not depend on the order of numbering the vertices. As can 

be seen in Figure 2, the adjacency matrix is arranged so that its aij entries take value 1 if 

vertex i is linked to vertex j and 0 otherwise. 

Once calculated, the TIs can be correlated with many physical, chemical or biological 

properties of the graph associated chemical compounds [6]. 

Now, considering that every adjacency matrix A is also a Hermitian one (every symmetric 

matrix is a particular case of Hermitian) we analyse here the possibility to discover any type 

of pattern in the distribution of matrix A’s eigenvalues. Considering that A matrix cannot be a 

random one, if such pattern exists it could be disclosed averaging the eigenvalues of a large 

number of compounds. 
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This way, the randomness related to the big range of the matrix is supplied by a large number 

of smaller matrices what makes the outcome statistically significant. Following this method 

and after confirming the existence of a particular pattern, it is applied to the distinction 

between two categories of molecules: Drugs and Non-drugs. Concretely, the first 15 

eigenvalues from the edge adjacency matrix weighted by edge degrees of different molecular 

simple graphs were calculated. Altogether 4600 molecules (2300 drugs and 2300 non-drugs) 

were included in the study.  

 

2 Material and methods 

The mathematical and statistical methods used to achieve the objective are described. 

Dataset 

One half of the 4600 molecules dataset were drugs selected from the Comprehensive 

Medicinal Chemistry (CMC) database [7] while the other half, compounds not showing 

known pharmacological activity, were selected from the Sigma-Aldrich database [8]. The 

dataset for the different pharmacological classes analyzed independently was collected from 

the Prous databank [9], while the inactive compounds were selected from literature. 

Calculation of the topological descriptors. The Eigenvalues (EEig) 

Each compound was characterized by a set of the 15 first eigenvalues of the edge adjacency 

matrix weighted by edge degrees. Eigenvalues are a special set of scalars associated with a 

linear system of equations (i.e., a matrix equation) that are sometimes known as characteristic 

roots, characteristic values [10], proper values, or latent roots [11]. All indices were 

calculated with Dragon software version 5.4 [12]. 

Modeling techniques 

Linear discriminant analysis (LDA) is used to distinguish between drugs and non- drugs from 

the eigenvalues distribution. It is a statistical method to find the best linear combination of 

variables (eigenvalues in our case) that better distinguish between two or more categories or 

objects (in our case drug-molecules and nondrug-molecules). The software used for the 

statistical study was BMDP [13]. 
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3 Results and discussion 

Distribution of the eigenvalues 

Figure 3 shows the plot of the differences between each eigenvalue and its nearest neighbor, 

versus the mean value of the two neighboring eigenvalues for the first 15 eigenvalues of the 

edge adjacency matrix weighted by edge degrees (EEigx). A mixed set of 4600 molecules, 

half of them drugs and the other half non-drugs, was included in the analysis. 

 

Figure 3. Distribution of the average values of EEigx for the whole dataset. 

 

A simple observation of the determination coefficient (R
2
= 0.905) highlights a pretty good 

fitting to a three-degree polynomial, although for the first six eigenvalues, the dependence is 

clearly linear. The following step consisted in representing the distribution of the drug group 

(about 2300 compounds). 

 

Figure 4. Distribution of the average values of EEigx for the “drug” dataset. 
 

As it can be seen in Figure 4, the fitting improves significantly with respect to the mixed set. 

In fact, R
2
 rises up to 0.952, what means that the drugs fulfill the pattern much better than the 

y = 0.0207x3 - 0.1568x2 + 0.3729x + 0.0381

R² = 0.9047
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non-drugs. Finally, the same graphic representation was done for the set of non-drugs (Fig. 5). 

It is noteworthy that the regression is worse (R
2
=0.8604) and that the shape of the curve is 

broken down, particularly the first straight frame corresponding to the first six eigenvalues. 

 

Figure 5. Distribution of the average values of EEigx for the “non drugs” dataset. 

 

These results clearly demonstrate that there are different patterns of distribution for drugs and 

non-drugs, what can be used to discriminate between them. 

Finally, the difference of ordinates between drugs and non-drugs was plotted against the 

ordinal of the corresponding eigenvalue. As can be seen in Fig. 6, EEig09x is the eigenvalue 

showing the largest difference. 

 

Figure 6.- Eigenvalues differences drugs – non drugs versus eigenvalue #. 
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Therefore, it is to be expected that this eigenvalue, i.e. EEig09x, is to be the best discriminant 

eigenvalue to distinguish drugs from non-drugs. This was confirmed using LDA, as can be 

appreciated in Table 1. In the Table are also included the results for the discrimination of 

particular types of drugs (anti-Alzheimer, analgesics, antibacterials and antineoplastics).  

 

Table 1. Classification matrix obtained through the selected DF1-6 for the training set. 

Set A I TP 
 

FP TN FN 
Sensitivity 

(%) 

Specificity 

(%) 

 
Drugs + non drugs set         DF1 = 1.57EEig09x -3.19 

Training 1855 2287 1423 
 

807 1480 432 76.7 64.7 

 
Drugs + nondrugs set         DF2 = 1.29EEig11x -1.83 

Training 1855 2330 1246 
 

684 1646 609 67.2 70.6 

 
Anti-Alzheimer                  DF3 = 0.501EEig11x -0.866 

Training 520 523 351 
 

228 295 169 67.5 56.4 

 
Anti-bacterial                     DF4 = 1.52EEig09x -3.11 

Training 350 375 268 
 

135 240 82 76.5 64.0 

 
Analgesic                             DF5 = -0.44EEig11x +0.70 

Training 238 436 132 
 

149 287 106 55.5 65.8 

 
Anti-neoplastic                   DF6= -0.37EEig07x +1.01 

Training 464 629 195 
 

173 456 269 42.0 72.5 

 

A: number of active compound; I: number of inactive compounds; TP: true positive (active); 

FP: false positive (active); TN: true negative (inactive); FN: false negative (inactive). 

Sensitivity (%) =100xTP/(TP+FN), Specificity (%) =100xTN/(TN+FP) 
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Figure 7. Distribution of the average values of EEigx for four pharmacological groups of 

molecules. All the data was collected from the CMC and Prous databases. 
 

Taking into account the results depicted in Table 1 and Figure 7, it is noteworthy that the 

eigenvalues of the edge adjacency matrix perform very well not only to distinguish between 

drugs and non-drugs but also within the four classes of drugs analyzed here. Results not 

disclosed here point towards the following of the same pattern for other classes of drugs. The 

results were noteworthy, because the same pattern observed for the entire drugs group is 

reproduced in the particular classes of drugs analyzed. The only exception was the group of 

analgesics, which gave a worse correlation (R
2
= 0.67), although still statistically significant. 

Moreover, DF1 allows an overall accuracy of 70% (76.7% sensitivity and 64.7% specificity) 

as illustrated in Table 1, whereas DF2, which depends on EEig11x, reached the maximum 

specificity.  

Hence, both DFs can be used jointly or alternatively depending on our needs regarding 

sensitivity and specificity. 

Anyway, the stepwise application of both discriminant equations should yield a good record 

in selecting novel scaffolds with drug-like characteristics, because we have a good sensitivity 

plus a good specificity. 

Regarding specific classes of drugs seems like analgesics were the less accurate, while anti-

Alzheimer were the best. Antineoplastics differ from the others because the descriptor which 

most contributed was EEig07x (see DF6 equation in Table 1). The most interesting aspect of 

this equation lies in its ability to recognize the inactive compounds. With a 72.5% of correct 

classification, the specificity of the model is very high, as compared to the others. 

Altogether it is outstanding how structural descriptors based on simple graphs, i.e. no 

chemical or biological information was provided, were capable to correctly classify above 
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70% of the molecules either as drugs or as non-drugs. Moreover, the actual specificity is 

probably greater than 70% because not all the compounds in Aldrich database are non-drugs 

and it is to expect that a slight percentage of them are actually drugs. 

 

Application to frameworks 

Based on these interesting results, discriminant function was used to distinguish between 

frameworks showing drug and non-drug profiles. Frameworks are defined as a set of two or 

more un-substituted (clean) cycles linked by bonds [14]. In other words: a framework is the 

underlying rings and connectors [14]. 

The analysis of frameworks has proved to be a good strategy for the structure-activity study 

of drugs [15,16], among other reasons because the same framework can be common to many 

different molecules. Hence, it is possible to study different levels (graph / graph-node / graph-

node-bond), using identifiers able to differ one level from another [17]. An example of these 

three levels is shown in figure 8. 
 

 

Figure 8.- Framework identifier (FWID) for three frameworks (157 shows the graph level, 

343 or 1036 the graph/node level and 2, 4 or 5 the graph/node/bond level). 
 

Since our objective is to demonstrate the efficacy of molecular depiction using simple graphs, 

the equation DF1 was employed to select two sets of frameworks: one for drugs and another 

one for non-drugs. Table 2 shows the results for a small representative group of drug and non-

drug frameworks. 
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Table 2. Frameworks corresponding to non-drugs and drugs. Most of drugs exhibit positive 

values of EEig09x usually above 0.5. 

Framework Framework 

Drugs Classification EEig09x Non drugs EEig09x 

 

 

Aminoglycosides 2.296 

 

0.226 

 

Benzodiazepines 1.069 

 

0.407 

 

Morphine 1.379 
 

0.295 

 Penicillins 0.0  -0.879 

 
Quinolones 2.0 

 
-0.414 

 
Steroids 1.481 

 

0.382 

 

Sulfamides 0.147 
  

 

 
Tetracyclines 1.347 

 

 

 
 

 

As expected, there is a notable difference between the two groups. Thus, the majority of drugs 

show values of the discriminant index EEig09x above 0.5, while most of non-drugs show 

values below it. So, 0.5 is the threshold to distinguish both classes. As can be seen in Table 2, 

the frameworks of important pharmacological groups, such as benzodiazepines, quinolones, 

steroids, etc. show high EEig09x values, ranging from 1 to 2. A significant exception is that 

of penicillins (Eeig09x=0). We can conclude that EEig09x works quite well as discriminant 

between drugs and non-drugs. 

Briefly, in summary, the present results highlight how simple graphs associated with 

pharmacological active molecules are structurally different from those corresponding to 

molecules without pharmacological activity. However, it remains unclear if this difference is 

intrinsic to the pharmacological activity or to the fact that drugs exhibit particular structures, 

which are more likely to be found than those of non-drugs. This might be because of the bias 
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of chemists in pharmaceutical industry to synthesize molecules that have already shown 

pharmacological activity. In other words, consolidated drugs tend to be more synthesized in 

search of derivatives, establishing a process of rich gets richer [17] and a structural difference 

between drugs and non-drugs. We believe that although this factor may play an important 

role, it is not the reason for this difference, because many authors (including ourselves) have 

demonstrated that the molecular structures of drugs differ intrinsically from those of non-

drugs [18]. Under this view, it is noteworthy that this intrinsic structural difference can be 

disclosed in a straightforward manner by using simple graphs. 

 

4 Summary and conclusions 

The molecular simple graphs of organic compounds show a well-defined pattern of 

distribution of the eigenvalues from the edge adjacency matrix weighted by edge degrees. 

Such a pattern fits to a third degree polynomial, with a better fitting for drugs than for non-

drugs. The most discriminant eigenvalue (EEig09x), enables a discrimination of above 70% 

between a large set of 2300 compounds from CMC database (all drugs) and another set of 

2300 compounds from Sigma-Aldrich database (the very most of them non-drugs). This 

discriminating capability may also be extended to molecular frameworks so broaden the 

usefulness of the formalism for the design and discovery of new drugs. The distribution of the 

eigenvalues of the edge adjacency matrix weighted by edge degrees for molecular simple 

graphs is parallel to what observed by Montgomery in 1972 for the distribution of the 

eigenvalues of random hermitic matrices as far as the edge adjacency are particular case of 

Hermitian matrices. Moreover, the polynomial fiiting is better for drugs than for non-drugs, 

which makes the eigenvalues themselves the best discriminant variables between both types 

of molecules. Eigenvalues such as Eeig09x and Eeig11x, play a key role and are applicable to 

particular groups of drugs, such as analgesics, antibacterials, anti-Alzheimer, antineoplastics 

and others. 

These results are an important conceptual contribution about the relevance of molecular 

skeleton described in terms of simple graphs for the detection of drug activity. The role of the 

eigenvalues as discriminant variables is emphasized. Altogether, the present results imply that 

we may setup novel mathematical tools for drug design and discovery. 
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