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Abstract

For a connected graph, the first Zagreb eccentricity index is defined as the sum
of the squares of the eccentricities of the vertices, and the second Zagreb eccen-
tricity index is defined as the sum of the products of the eccentricities of pairs of
adjacent vertices. We determine the trees with minimum Zagreb eccentricity indices
when domination number, maximum degree, and bipartition size are respectively
given, and we also discuss the trees with maximum Zagreb eccentricity indices when
domination number is given.

1 Introduction

LetG be a simple connected graph with vertex set V (G) and edge set E(G). For u ∈ V (G),

degG(u) or deg(u) denotes the degree of u in G. For u ∈ V (G), eG(u) or e(u) denotes the

eccentricity of u in G, which is equal to the largest distance from u to other vertices.

The Zagreb indices have been introduced more than forty years ago by Gutman and

Trinajstić [10,11], which are the most known and widely studied topological indices [3,9,

13,23,24,26]. The first Zagreb index of G is defined as

M1(G) =
∑

u∈V (G)

deg2(u),
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while the second Zagreb index of G is defined as

M2(G) =
∑

uv∈E(G)

deg(u)deg(v).

It should be pointed out that the Zagreb indices and their variants are useful molecular

descriptors which found considerable use in QSPR and QSAR studies as summarized by

Todeschini and Consonni [18, 19]. Several graph invariants based on vertex eccentricities

attract some attention in chemistry and subject to large number of studies. In an analogy

with the first and the second Zagreb indices, Vukičevic and Graovac [20] and Ghorbani

and Hosseinzadeh [8] introduced two types of Zagreb eccentricity indices by replacing

degrees by eccentricity of the vertices. Thus the first Zagreb eccentricity index of G is

defined as

ξ1(G) =
∑

u∈V (G)

e2(u),

while the second Zagreb eccentricity index of G is defined as

ξ2(G) =
∑

uv∈E(G)

e(u)e(v).

Some mathematical and computational properties of the Zagreb eccentricity indices have

been obtained in [4, 21]. Among them, various lower and upper bounds for the Zagreb

eccentricity indices were given, the n-vertex trees with the first a few smallest and largest

Zagreb eccentricity indices for n ≥ 6 were determined, the trees with minimum and

maximum Zagreb eccentricity indices were determined when diameter, number of pendent

vertices, and matching number are respectively given, and the trees with maximum Zagreb

eccentricity indices when maximum degree is given. [2] presented some properties, upper

and lower bounds of the Zagreb eccentricity indices and also characterized the extremal

graphs. [12] computed the generalized hierarchical product of the Zagreb eccentricity

indices.

In this paper, we determine the trees with minimum Zagreb eccentricity indices when

domination number, maximum degree, and bipartition size are respectively given, and

we also determine the trees with maximum Zagreb eccentricity indices when domination

number γ = 2, dn
3
e, n

2
.

For u, v ∈ V (G), dG(u, v) or d(u, v) denotes the distance between u and v in G. Let

Sn, Pn, Cn and Kn be the n-vertex star, path, cycle and complete graph, respectively.
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For a connected graph G, the radius r(G) and the diameter D(G) are, respectively, the

minimum and the maximum eccentricities of the vertices of G. The set of all vertices of

minimum eccentricity is the center of a graph. A tree has exactly one central vertex or two

adjacent central vertices. For a tree T , if T has one central vertex, then D(T ) = 2r(D);

if T has two adjacent central vertices, then D(T ) = 2r(T )− 1.

For a subset M of V (G) (E(G), respectively), G−M denotes the graph obtained from

G by deleting the vertices in M and their incident edges (the edges in M , respectively).

For a subset M of the edge set of the complement of G, G + M denotes the graph

obtained from G by adding the edges in M . In the case M is a single vertex {v} (edge

{e}, respectively), then G−M is denoted by G− v (G− e, respectively), and G+ {e} is

denoted by G+ e.

2 Zagreb eccentricity indices and domination num-

ber

A subset S of V (G) is called a domination set of the graph G if for every vertex u ∈

V (G) \ S, there exists a vertex v ∈ S such that u is adjacent to v. The domination

number of G, denoted by γ(G), is defined as the minimum cardinality of domination sets

of G. For an n-vertex connected graph G, it is known [14] that γ(G) ≤ bn
2
c. The equality

case was characterized independently in [5,22]. Let Tn,γ be the set of n-vertex trees with

domination number γ, where 1 ≤ γ ≤ bn
2
c. Note that Tn,1 = {Sn}. Therefore, we can

suppose that 2 ≤ γ ≤ bn
2
c.

A matching M of the graph G is a subset of E(G) such that no two edges in M share a

common vertex. The matching number of G, denoted by β(G), is defined as the maximum

cardinality of matchings of G. For an n-vertex graph, if n = 2β(G), then G has a perfect

matching. Obviously, Sn is the unique n-vertex graph with the matching number β = 1.

It has been shown in [1] that a graph G without isolated vertices has a γ(G)-set S

such that for each vertex u ∈ S, there exists a vertex in V (G) \ S that is adjacent to u

but no other vertices in S. Thus we have the following lemma.

Lemma 2.1 For a graph G, we have γ(G) ≤ β(G).

For 3 ≤ β ≤ bn
2
c, let Tn,β be the tree obtained by attaching β−1 paths on two vertices

to the central vertex of the star Sn−2β+2. Obviously, the matching number of Tn,β is β.
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Lemma 2.2 [21] Let T be an n-vertex tree with matching number β.

(i) If β(T ) = 2, then ξ1(T ) ≥ 9n − 10 and ξ2(T ) ≥ 6n − 8 with either equality if and

only if T has diameter 3.

(ii) If 3 ≤ β(T ) ≤ bn
2
c, then ξ1(T ) ≥ 9n+ 7β− 12 and ξ2(T ) ≥ 6n+ 6β− 12 with either

equality if and only if T ∼= Tn,β.

Lemma 2.3 Let T be an n-vertex tree with n ≥ 4, and e = uv be a non-pendent edge of

T . Let T ′ be the tree obtained from T by deleting e, identifying u and v, denoted by u′,

and attaching a vertex v′ to u′. Then we have ξ1(T
′) < ξ1(T ) and ξ2(T

′) < ξ2(T ).

Proof. Let T − e = T1 ∪ T2 with u ∈ V (T1) and v ∈ V (T2). Let x be a pendent

vertex with eT1(u) = dT1(u, x) and y a pendent vertex with eT2(v) = dT2(v, y). Suppose

without loss of generality that dT1(u, x) ≥ dT2(v, y). Obviously, dT1(u, x) = dT ′(u
′, x) and

dT2(v, y) = dT ′(u
′, y) . Note that eT ′(w) ≤ eT (w) for any w ∈ V (T ) \ {v, y},

eT (v) = 1 + dT1(u, x) = 1 + dT ′(u
′, x) = eT ′(v

′)

and

eT (y) = dT2(y, v) + 1 + dT1(u, x) > dT ′(y, u
′) + dT ′(u

′, x) = eT ′(y).

Let z be the neighbor of y. Then

ξ1(T
′)− ξ1(T )

=
∑

w∈V (T )\{v,y}

[e2T ′(w)− e2T (w)] + e2T ′(v
′)− e2T (v) + e2T ′(y)− e2T (y)

≤ e2T ′(y)− e2T (y) < 0,

and ξ2(T
′)− ξ2(T ) ≤ eT ′(y)eT ′(z)− eT (y)eT (z) < 0.

Lemma 2.4 If T ∗ ∈ Tn,γ has the minimum Zagreb eccentricity index ξ1 (ξ2, respectively),

then γ(T ∗) = β(T ∗) = γ.

Proof. Suppose that γ = γ(T ∗) < β(T ∗). Let S = {w1, w2, · · · , wγ} be a dominating set

of T ∗. Then there exist γ edges w1w
′
1, w2w

′
2, · · · , wγw′γ in T ∗, where w′i ∈ V (T ∗) \ S for

i = 1, 2, · · · , γ. Since γ = γ(T ∗) < β(T ∗), there must exist another edge, say v1v2, which

is independent of each edge wiw
′
i for i = 1, 2, · · · , γ.
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Since T ∗ is a tree, v1 and v2 cannot be dominated by the same vertex in S, and thus

v1 and v2 are dominated by two different vertices in S, say vi is dominated by wi for

i = 1, 2. Note that deg(v1), deg(v2) ≥ 2 and deg(w1), deg(w2) ≥ 2. Then we can obtain

an n-vertex tree T ∗′ by applying the transformation in Lemma 2.3 on the edge v1w1 or

v2w2, and ξ1(T
∗′) < ξ1(T

∗) and ξ2(T
∗′) < ξ2(T

∗), a contradiction. Thus γ(T ∗) ≥ β(T ∗).

Now the result follows from Lemma 2.1.

Combining Lemmas 2.2 and 2.4, the following proposition is obvious.

Proposition 2.1 Let T ∈ Tn,γ, where 2 ≤ γ ≤ bn
2
c.

(i) If γ = 2, then ξ1(T ) ≥ 9n− 10 and ξ2(T ) ≥ 6n− 8 with either equality if and only

if T has diameter 3.

(ii) If 3 ≤ γ ≤ bn
2
c, then ξ1(T ) ≥ 9n + 7γ − 12 and ξ2(T ) ≥ 6n + 6γ − 12 with either

equality if and only if T ∼= Tn,γ.

The corona of two graphs G1 and G2 is a graph G = G1 ◦G2 obtained from one copy

of G1 with |V (G1)| copies G2, where the i-th vertex of G1 is adjacent to every vertex in

the i-th copy of G2. In particular, for a positive integer k, we denote by G(k) the graph

G ◦ kK1, where kK1 is the graph consisting of k isolated vertices.

Lemma 2.5 [5, 22] If n = 2γ, then a tree T belongs to Tn,γ if and only if there exists a

γ-vertex tree H such that T = H ◦K1.

The eccentric connectivity index and the average eccentricity of G are defined as

ξc(G) =
∑

u∈V (G)

deg(u) · e(u)

and

avec(G) =
1

|V (G)|
∑

u∈V (G)

e(u),

respectively [15,16].

Lemma 2.6 [17, 21, 25] Let T be an n-vertex tree. Then ξ1(Sn) ≤ ξ1(T ) ≤ ξ1(Pn),

ξ2(Sn) ≤ ξ2(T ) ≤ ξ2(Pn), ξc(Sn) ≤ ξc(T ) ≤ ξc(Pn) and avec(Sn) ≤ avec(T ) ≤ avec(Pn),

with any left equality if and only if T ∼= Sn and any right equality if and only if T ∼= Pn.
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Lemma 2.7 Let T be an n-vertex tree and T (k) = T ◦ kK1 . Then ξ1(S
(k)
n ) ≤ ξ1(T

(k)) ≤

ξ1(P
(k)
n ) and ξ2(S

(k)
n ) ≤ ξ2(T

(k)) ≤ ξ2(P
(k)
n ), with either left equality if and only if T ∼= Sn

and either right equality if and only if T ∼= Pn.

Proof. Let uv be a pendent edge of T (k) with degT (k)(v) = 1, then eT (k)(v) = eT (k)(u) + 1.

Moreover, eT (k)(x) = eT (x)+1 for any x ∈ V (T ). By the definitions of Zagreb eccentricity

indices ξ1 and ξ2, we have

ξ1(T
(k)) =

∑
x∈V (T (k))

e2T (k)(x) =
∑

x∈V (T )

e2T (k)(x) + k
∑

x∈V (T )

[eT (k)(x) + 1]2

=
∑

x∈V (T )

[eT (x) + 1]2 + k
∑

x∈V (T )

[eT (x) + 2]2

=
∑

x∈V (T )

[e2T (x) + 2eT (x) + 1] + k
∑

x∈V (T )

[e2T (x) + 4eT (x) + 4]

= (1 + k)
∑

x∈V (T )

e2T (x) + (2 + 4k)
∑

x∈V (T )

eT (x) + n+ 4nk

= (1 + k)ξ1(T ) + n(2 + 4k)avec(T ) + n+ 4nk,

ξ2(T
(k)) =

∑
xy∈E(T (k))

eT (k)(x)eT (k)(y)

=
∑

xy∈E(T )

eT (k)(x)eT (k)(y) + k
∑

x∈V (T )

eT (k)(x)[eT (k)(x) + 1]

=
∑

xy∈E(T )

[eT (x) + 1][eT (y) + 1] + k
∑

x∈V (T )

[eT (x) + 1][eT (x) + 2]

=
∑

xy∈E(T )

eT (x)eT (y) +
∑

xy∈E(T )

[eT (x) + eT (y)] + n− 1

+k
∑

x∈V (T )

e2T (x) + 3k
∑

x∈V (T )

eT (x) + 2nk

= ξ2(T ) + ξc(T ) + kξ1(T ) + 3nk · avec(T ) + n− 1 + 2nk.

By Lemma 2.6, the result follows easily.

Proposition 2.2 Let T ∈ Tn,γ. If γ = n
2
, then

ξ1(Sn
2
◦K1) ≤ ξ1(T ) ≤ ξ1(Pn

2
◦K1)

and

ξ2(Sn
2
◦K1) ≤ ξ2(T ) ≤ ξ2(Pn

2
◦K1)

with any left equality if and only if T ∼= Sn
2
◦K1, i.e., Proposition 2.1 for γ = n

2
, and any

right equality if and only if T ∼= Pn
2
◦K1.
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Proof. By Lemma 2.5, we have any tree in Tn,n
2

must be of the form H ◦K1, where H

is a n
2
-vertex tree. Taking k = 1 in Lemma 2.7 proves the result.

Proposition 2.3 Let T ∈ Tn,γ. If γ = dn
3
e, then ξ1(T ) ≤ ξ1(Pn) and ξ2(T ) ≤ ξ2(Pn)

with either equality if and only if T ∼= Pn.

Proof. Note that γ(Pn) = dn
3
e. By Lemma 2.6, the result follows.

Let Pn,s(a, b) be an n-vertex tree obtained by attaching a and b pendent vertices to

the two terminal vertices of Ps with s ≥ 2, respectively, where a, b ≥ 0 and a+ b = n− s.

Let Pn,s = {Pn,s(a, b) : a, b ≥ 0, a+ b = n− s}.

Proposition 2.4 Let T ∈ Tn,γ.

(i) If γ = 2 and n = 4, 5, 6, then ξ1(T ) ≤ ξ1(Pn) and ξ2(T ) ≤ ξ2(Pn) with either equality

if and only if T ∼= Pn.

(ii) If γ = 2 and n ≥ 7, then ξ1(T ) ≤ 25n−50 and ξ2(T ) ≤ 20n−47 with either equality

if and only if T ∈ Pn,4.

Proof. By Proposition 2.3, the cases n = 4, 5, 6 are obvious. Suppose that n ≥ 7.

Let T ∗ be a tree in Tn,2 with maximum Zagreb eccentricity index ξ1(ξ2, respectively),

and S∗ = {w1, w2} be a dominating set of T ∗. Let a and b be the numbers of pendent

neighbors of w1 and w2 in T ∗, respectively, where a ≥ b ≥ 0.

Suppose that w1w2 ∈ E(T ∗). Then T ∗ ∈ Pn,2. Since a+ b = n− 2 ≥ 5 and γ = 2, we

have a ≥ b ≥ 1. Let x be a pendent neighbor of w1, and T ∗1 = T ∗ − w1w2 + xw2. Then

T ∗1 ∈ Tn,2. By Lemma 2.3, ξ1(T
∗) < ξ1(T

∗
1 ) and ξ2(T

∗) < ξ2(T
∗
1 ), a contradiction. Thus

w1w2 6∈ E(T ), i.e., dT ∗(w1, w2) ≥ 2.

If dT ∗(w1, w2) ≥ 4, then there exists at least one vertex y on the shortest path between

w1 and w2 such that y can not be dominated by the two vertices w1 and w2, a contradiction.

Thus 2 ≤ dT ∗(w1, w2) ≤ 3. Suppose that dT ∗(w1, w2) = 2. Then T ∗ ∈ Pn,3. Since

a + b = n − 3 ≥ 4 and γ = 2, we have a > 0. Let z be a pendent neighbor of w1 in T ∗

and w be the common neighbor of w1 and w2. Let T ∗2 = T ∗−w1w+ zw. Then T ∗2 ∈ Tn,2.

By Lemma 2.3, we have ξ1(T
∗) < ξ1(T

∗
2 ) and ξ2(T

∗) < ξ2(T
∗
2 ), a contradiction. Thus

dT ∗(w1, w2) = 3.

It follows that T ∗ ∈ Pn,4, and then ξ1(T
∗) = 25n− 50 and ξ2(T

∗) = 20n− 47.
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3 Zagreb eccentricity indices and maximum degree

Denote by ∆ = ∆(T ) the maximum vertex degree of a tree T . Let T(n,∆) be the set of all

n-vertex trees with maximum degree ∆, where 2 ≤ ∆ ≤ n− 1. Note that T(n, 2) = {Pn}

and T(n, n− 1) = {Sn}. Therefore, we can suppose that 3 ≤ ∆ ≤ n− 2.

Lemma 3.1 Let T be a rooted tree with a central vertex c as root, and w be a pendent

vertex most distant from the root, adjacent to vertex v. Let u (u 6= v) be the vertex closest

to the root vertex, such that deg(u) < ∆ and e(u) ≤ e(v). Consider T ′ = T − vw + uw.

Then ξ1(T
′) ≤ ξ1(T ) and ξ2(T

′) ≤ ξ2(T ) with either equality if and only if e(u) = e(v)

and D(T ′) = D(T ).

Proof. Since T is rooted at the central vertex c, we have d(c, w) = r(T ) and d(c, v) =

r(T ) − 1. Furthermore, there exists a pendent vertex w′ in a different subtree attached

to the central vertex c, such that d(c, w′) = r(T ) or d(c, w′) = r(T ) − 1. Then e(w′) =

2r(T ) > 2r(T ) − 1 = e(v) for T with one central vertex, while e(w′) = 2r(T ) − 1 >

2r(T ) − 2 = e(v) for T with two adjacent central vertices. Combined with e(v) ≥ e(u),

we have d(c, w′) > d(c, u), i.e., w′ 6= u.

Note that eT ′(x) ≤ eT (x) for any x ∈ V (T ). Furthermore, rotating the edge vw to uw,

all the eccentricities of vertices other than w remain the same if and only if D(T ′) = D(T ).

If D(T ′) < D(T ), then

ξ1(T
′)− ξ1(T ) < e2T ′(w)− e2T (w) = [eT ′(u) + 1]2 − [eT (v) + 1]2

< [eT (u) + 1]2 − [eT (v) + 1]2 ≤ 0,

ξ2(T
′)− ξ2(T ) < eT ′(u)eT ′(w)− eT (v)eT (w)

< eT (u)[eT (u) + 1]− eT (v)[eT (v) + 1] ≤ 0,

and thus ξ1(T
′) < ξ1(T ) and ξ2(T

′) < ξ2(T ).

If D(T ′) = D(T ), then

ξ1(T
′)− ξ1(T ) = e2T ′(w)− e2T (w) = [eT ′(u) + 1]2 − [eT (v) + 1]2

= [eT (u) + 1]2 − [eT (v) + 1]2 ≤ 0,

ξ2(T
′)− ξ2(T ) = eT ′(u)eT ′(w)− eT (v)eT (w)
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= eT (u)[eT (u) + 1]− eT (v)[eT (v) + 1] ≤ 0,

and thus ξ1(T
′) ≤ ξ1(T ) and ξ2(T

′) ≤ ξ2(T ) with either equality if and only if e(u) = e(v).

For a rooted tree T with a central vertex c as root, the i-th level in T is a subset of

V (T ) such that the distance from c to any vertex in the i-th level is i, where 0 ≤ i ≤ r(T ).

The Volkmann tree VT (n,∆) is an n-vertex tree with maximum degree ∆ defined as

follows [6,7]. Start with the root having ∆ children. Every vertex different from the root,

which is not on one of the last two levels, has exactly ∆ − 1 children. On the last level,

while not all vertices need to exist, the vertices that do exist fill the level consecutively.

Thus, at most one vertex on the second last level has its degree different from 1 and

∆. Let VT(1) be the set of n-vertex trees with maximum degree ∆, obtained from the

Volkmann tree VT (n,∆) by arranging the vertices on the last level arbitrarily in at least

two subtrees attached to the root vertex. Let VT(2) be the set of n-vertex trees with

maximum degree ∆, obtained from the Volkmann tree VT (n,∆), in which not all vertices

on the last two levels need to exist, the vertices that do exist on the last two levels are

arranged arbitrarily, but all the vertices on the last level are in one subtree attached to

the root vertex and the second last level in this subtree is full. For example, T1 ∈ VT(1)

with n = 28 and ∆ = 4, and T2 ∈ VT(2) with n = 22 and ∆ = 4 are shown in Figure 1.
 

                         

1T                                                                2T  

Figure 1: The trees T1 and T2 in VT(1) and VT(2), respectively.

For a tree T ∈ T(n,∆), let k = k(n,∆) be the greatest integer such that

n ≥ 1 + ∆ + ∆(∆− 1) + ∆(∆− 1)2 + · · ·+ ∆(∆− 1)k−1,

and let

N = 1 + ∆ + ∆(∆− 1) + ∆(∆− 1)2 + · · ·+ ∆(∆− 1)k−1.
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Proposition 3.1 Among the trees in T(n,∆),

(i) for n = N , VT (n,∆) is the unique tree with minimum indices ξ1 and ξ2;

(ii) for N < n ≤ N + (∆− 1)k, the trees in VT(2) are the unique trees with minimum

indices ξ1 and ξ2;

(iii) for N + (∆ − 1)k < n < N + ∆(∆ − 1)k, the trees in VT(1) are the unique trees

with minimum indices ξ1 and ξ2.

Proof. Let T ∗ be the extremal tree in T(n,∆) with minimum Zagreb eccentricity index

ξ1 (ξ2, respectively). Suppose that T ∗ is a rooted tree with a central vertex c as root. Let

w be the pendent vertex most distant from the root, adjacent to vertex v. Then we have

a fact that

e(v) =

2r(T ∗)− 1 if T ∗ has one central vertex

2r(T ∗)− 2 if T ∗ has two adjacent central vertices.

Let u be a vertex closest to the root vertex c such that deg(u) < ∆. Then we have another

fact that if T ∗ has two adjacent central vertices, and u and v lie on the same subtree

attached to the vertex c, then e(u) = d(c, u)+r(T ∗)−1; otherwise, e(u) = d(c, u)+r(T ∗).

Let k = k(n,∆). It can be easily seen that r(T ∗) ≥ k by the definition of k. Suppose

that r(T ∗) = d(c, w) > k + 1, i.e., r(T ∗) ≥ k + 2. By the definitions of u and k, we

have d(c, u) ≤ k, and then e(u) ≤ d(c, u) + r(T ∗) ≤ k + r(T ∗), which implies that

e(v) ≥ 2r(T ∗)− 2 ≥ r(T ∗) + k ≥ e(u).

Suppose that e(v) > e(u). Let T ∗′ = T − vw + uw. By Lemma 3.1, ξ1(T
∗′) < ξ1(T

∗)

and ξ2(T
∗′) < ξ2(T

∗), a contradiction. Thus e(v) = e(u). Then e(u) = d(c, u) + r(T ∗)

and e(v) = 2r(T ∗)− 2, which, together with the above two facts, implies that T ∗ has two

adjacent central vertices, and u and v lie on different subtrees attached to the vertex c.

Furthermore, d(c, u) = k and r(T ∗) = k + 2, which implies that u, v and w belong to the

k-th, (k+ 1)-th and (k+ 2)-th levels, respectively. If there exists at least one diametrical

path in T ∗ not containing edge vw, then applying the transformation in Lemma 3.1 on

these diametrical paths do not change D(T ∗). According to the definition of k, after

finite times of the transformation, vertex w will be the only vertex at distance r(T ∗) from

the vertex c, and applying the transformation in Lemma 3.1 on vw will strictly decrease

D(T ∗), resulting smaller ξ1 and ξ2, also a contradiction. Thus k ≤ r(T ∗) ≤ k + 1.
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If r(T ∗) = k, then n = N , and the Volkmann tree VT (n,∆) is the unique tree with

the minimum ξ1 and ξ2, proving (i).

Now suppose that r(T ∗) = k + 1. If d(c, u) < k − 1, then e(v) ≥ 2r(T ∗) − 2 =

r(T ∗) + k − 1 > r(T ∗) + d(c, u) ≥ e(u), i.e., e(v) > e(u). Applying the transformation in

Lemma 3.1 can strictly decrease ξ1 and ξ2, a contradiction. Thus k− 1 ≤ d(c, u) ≤ k, i.e.,

the 1-th, 2-th, · · · , (k − 1)-th levels are full ( the i-th level contains exactly ∆(∆− 1)i−1

vertices for each i = 1, 2, · · · , k − 1), while the k-th and (k + 1)-th levels contain M =

n− [1 + ∆ + ∆(∆− 1) + ∆(∆− 1)2 + · · ·+ ∆(∆− 1)k−2] vertices.

Next we prove (iii). Suppose that M > ∆(∆−1)k−1 + (∆−1)k, where (∆−1)k is the

maximum number of vertices on the (k+1)-th level in one subtree attached to the vertex c.

Then T ∗ has only one central vertex, i.e., D(T ∗) = 2r(T ∗) and e(v) = 2r(T ∗)−1 = 2k+1.

If d(c, u) = k− 1, then e(u) = d(c, u) + r(T ∗) = k− 1 + k+ 1 = 2k < e(v). Then applying

the transformation in Lemma 3.1 can strictly decrease ξ1 and ξ2, a contradiction. Thus

d(c, u) = k, i.e., the k-th level is also full and the pendent vertices in (k + 1)-th level can

be arbitrary assigned in at least two subtrees attached to the vertex c, i.e., T ∗ ∈ VT(1),

proving (iii).

Now we prove (ii). For ∆(∆− 1)k−1 < M ≤ ∆(∆− 1)k−1 + (∆− 1)k, if T ∗ has only

one central vertex, by the same argument as above, we have d(c, u) = k, i.e., the k-th level

is also full and the (k + 1)-th level has at most (∆− 1)k pendent vertices in at least two

subtrees attached to the vertex c. After finite times of the transformation in Lemma 3.1

with unchanged ξ1 and ξ2, the vertex w will be the only vertex at distance r(T ∗) from the

vertex c in one subtree attached to the vertex c, and other vertices on the (k+ 1)-th level

are all in another subtree attached to the vertex c. Then applying the transformation

in Lemma 3.1 on vw will strictly decrease D(T ∗), resulting smaller ξ1 and ξ2, also a

contradiction. Thus T ∗ must have two adjacent central vertices, i.e., D(T ∗) = 2r(T ∗)− 1

and e(v) = 2r(T ∗)−2 = 2k. If d(c, u) = k−1, and u and v are in the same subtree attached

to the vertex c, then e(u) = d(c, u) + r(T ∗)− 1 = k − 1 + k + 1− 1 = 2k − 1 < e(v), and

applying the transformation in Lemma 3.1 can strictly decrease ξ1 and ξ2, a contradiction.

If d(c, u) = k− 1, and u and v are not in the same subtree attached to the vertex c, then

e(u) = d(c, u) + r(T ∗) = k − 1 + k + 1 = 2k = e(v), which, together with Lemma 3.1

and the definition of k, implies that applying the transformation in Lemma 3.1 to fill the

k-th level do not change D(T ∗), resulting unchanged ξ1 and ξ2. Then T ∗ ∈ VT(2). If
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d(c, u) = k, then the k-th level is also full and the pendent vertices on the (k+ 1)-th level

are in the same subtree attached to the vertex c, i.e., T ∗ ∈ VT(2). The (ii) follows.

4 Zagreb eccentricity indices and bipartition size

Let G be an n-vertex connected bipartite graph. Hence its vertex set can be uniquely

partitioned into two subsets V1 and V2 such that each edge joins a vertex in V1 with a

vertex in V2. If V1 has p vertices and V2 has q vertices, where p ≤ q and p + q = n, then

we say that (p, q) is the bipartition size of G. Let Tp,qn be the set of n-vertex trees with

bipartition size (p, q). Obviously, T1,n−1
n = {Sn}.

Lemma 4.1 Let P = · · ·uvww1 be a diametrical path of a tree T , where w has t (t ≥ 1)

pendent neighbors w1, w2, · · · , wt in T . Denote by Tv the component of T − {u,w} which

contains vertex v. Consider T ′ = T − {ww1, ww2, · · · , wwt}+ {uw1, uw2, · · · , uwt}.

(i) If D(T ) = 4 and eTv(v) = 2, then ξ1(T
′) = ξ1(T ) and ξ2(T

′) = ξ2(T ).

(ii) If D(T ) = 4 and eTv(v) = 0, 1, or D(T ) ≥ 5 then ξ1(T
′) < ξ1(T ) and ξ2(T

′) < ξ2(T ).

Proof. If D(T ) = 4 and eTv(v) = 2, it can be easily seen that eT ′(x) = eT (x) for any

x ∈ V (T ), proving (i).

Now we prove (ii). Let T0 = T −{w1, w2, · · · , wt}. It can be easily seen that eT ′(x) ≤

eT (x) for any x ∈ V (T0), eT (wi) = eT (w) + 1 and eT ′(wi) = eT ′(u) + 1 for i = 1, 2, · · · , t.

If D(T ) = 4 and eTv(v) = 0, 1, then eT (w) = 3, eT ′(u) = 2, and thus

ξ1(T
′)− ξ1(T ) =

∑
x∈V (T0)

[
e2T ′(x)− e2T (x)

]
+ t · e2T ′(w1)− t · e2T (w1)

≤ t [eT ′(u) + 1]2 − t [eT (w) + 1]2

= 9t− 16t = −7t < 0,

ξ2(T
′)− ξ2(T ) =

∑
xy∈E(T0)

[eT ′(x)eT ′(y)− eT (x)eT (y)]

+t · eT ′(u)eT ′(w1)− t · eT (w)eT (w1)

≤ t · eT ′(u)[eT ′(u) + 1]− t · eT (w)[eT (w) + 1]

= 6t− 12t = −6t < 0,
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implying that ξ1(T
′) < ξ1(T ) and ξ2(T

′) < ξ2(T ). If D(T ) ≥ 5, then eT (u) ≤ eT (v) <

eT (w), and thus

ξ1(T
′)− ξ1(T ) =

∑
x∈V (T0)

[
e2T ′(x)− e2T (x)

]
+ t · e2T ′(w1)− t · e2T (w1)

≤ t [eT ′(u) + 1]2 − t [eT (w) + 1]2

≤ t [eT (u) + 1]2 − t [eT (w) + 1]2 < 0,

ξ2(T
′)− ξ2(T ) =

∑
xy∈E(T0)

[eT ′(x)eT ′(y)− eT (x)eT (y)]

+t · eT ′(u)eT ′(w1)− t · eT (w)eT (w1)

≤ t · eT ′(u)[eT ′(u) + 1]− t · eT (w)[eT (w) + 1]

≤ t · eT (u)[eT (u) + 1]− t · eT (w)[eT (w) + 1] < 0,

implying that ξ1(T
′) < ξ1(T ) and ξ2(T

′) < ξ2(T ).

Let T p,qn be the n-vertex tree obtained by attaching p − 1 and q − 1 pendent vertices

u1, u2, · · · , up−1 and v1, v2, · · · , vq−1 to the two vertices u, v on P2, respectively, where

2 ≤ p ≤ q and p+ q = n.

Proposition 4.1 Let Tp,qn with n ≥ 4 and 2 ≤ p ≤ bn
2
c. Then T p,qn is the unique graph

with minimum indices ξ1 and ξ2, which are equal to 9n− 10 and 6n− 8, respectively.

Proof. Let T ∈ Tp,qn . Then D(T ) ≥ 3. If D(T ) = 3, then T = T p,qn . Suppose that

D(T ) ≥ 4. If D(T ) ≥ 5, then we can repeat to apply the transformation in Lemma 4.1

(ii) on diametrical paths in T to obtain a tree in Tp,qn of diameter 4 with smaller ξ1 and

ξ2. If D(T ) = 4 and the central vertex of T has more than two non-pendent neighbors,

then we can repeat to apply the transformation in Lemma 4.1 (i) on diametrical paths

in T to obtain a tree in Tp,qn whose central vertex has exactly two non-pendent neighbors

with unchanged ξ1 and ξ2. If D(T ) = 4 and the central vertex of T has exactly two

non-pendent neighbors, then we can apply the transformation in Lemma 4.1 (ii) on a

diametrical path in T to obtain the tree T p,qn of diameter 3 with smaller ξ1 and ξ2. By

direct calculation, we have ξ1(T
p,q
n ) = 9n− 10 and ξ2(T

p,q
n ) = 6n− 8.

Let T ps be the set of n-vertex tree obtained from T p,qn by deleting s (1 ≤ s ≤ p − 2)

pendent vertices u1, u2, · · · , us and attaching them to some of v1, v2, · · · , vq−1. Let Tq
t be
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the set of n-vertex tree obtained from T p,qn by deleting t (1 ≤ t ≤ q − 2) pendent vertices

v1, v2, · · · , vt and attaching them to some of u1, u2, · · · , up−1. Let Tp = ∪1≤s≤p−2T ps and

Tq = ∪1≤t≤q−2Tq
t .

Proposition 4.2 Among the graphs in Tp,qn with n ≥ 5 and 2 ≤ p ≤ bn
2
c,

(i) if p ≥ 3, then the graphs in Tp are the unique graphs with second-minimum indices

ξ1 and ξ2, which are equal to 16p+ 9q − 12 and 12p+ 6q − 12, respectively;

(ii) if p = 2, then the graphs in Tq are the unique graphs with second-minimum indices

ξ1 and ξ2, which are equal to 16q + 6 and 12q, respectively.

Proof. By the proof of Proposition 4.1, the diameter of the graphs in Tp,qn with the

second-minimum indices ξ1 and ξ2 must be 4. Thus such graphs belong to Tp or Tq if

p ≥ 3, and belong to Tq if p = 2. For any T1 ∈ Tp and T2 ∈ Tq with p ≥ 3, by direct

calculation, we have

ξ1(T1) = 16p+ 9q − 12 ≤ 16q + 9p− 12 = ξ1(T2)

and

ξ2(T1) = 12p+ 6q − 12 ≤ 12q + 6p− 12 = ξ2(T2)

with either equality if and only if p = q.
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