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Abstract

Klein et al. found in [Molecular topological index: a relation with the Wiener
index, J. Chem. Inf. Comput. Sci. 32 (1992) 304–305] a relation between degree
distance and Wiener index for trees, and Gutman found in [Selected properties of
the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994)
1087–1089] a relation between Gutman index andWiener index for trees. We extend
these relations to uniform hypergraphs.

1 Introduction

A hypergraph G consists of a vertex set V and an edge set E, where each edge e ∈ E is

a subset of V with at least two elements. For an integer k ≥ 2, if every edge has size k,

then G is called a k-uniform hypergraph. In particular, a (simple) graph is a 2-uniform

hypergraph. Hypergraph theory found applications in chemistry, see, e.g. [12, 19–21].

For distinct vertices u and v in a hypergraph G, if there is an edge containing both

of them, then we say that they are adjacent, written u ∼ v. The degree of a vertex u in

G, denoted by du, is the number of edges of G which contain u.

For u, v ∈ V , a path from u to v of length p in G is defined to be a sequence of

vertices and edges (v0, e1, v1, . . . , vp−1, ep, vp) with all vi distinct and all ei distinct such

that edge ei contains vertices vi−1, vi for i = 1, . . . , p, where v0 = u and vp = v. A cycle of

length p in G is defined to be a sequence of vertices and edges (v0, e1, v1, . . . , vp−1, ep, vp)
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with p ≥ 2, all vi distinct except v0 = vp and all ei distinct such that edge ei contains

vertices vi−1, vi for i = 1, . . . , p. If there is a path from u to v for any u, v ∈ V , then G is

connected.

A hypertree is a connected hypergraph with no cycle. A k-uniform hypertree with m

edges always has 1 + (k − 1)m vertices.

The distance between vertices u and v in a connected hypergraph G is the length of

a shortest path from u to v in G, denoted by Duv.

The Wiener index W (G) of a connected hypergraph G is defined as the summation

of distances between all unordered pairs of distinct vertices in G, i.e.,

W (G) =
∑

{u,v}⊆V

Duv .

Obviously, W (G) = 1
2

∑
u∈V

∑
v∈V

Duv. The Wiener index of a connected graph has a long his-

tory [7, 13, 14, 25, 27, 28, 33]. Very recently, among others we determine in [10] the unique

k-uniform hypertrees with maximum, second maximum and third maximum Wiener in-

dices, as well as the unique k-uniform hypertrees with minimum, second minimum and

third minimum Wiener indices, respectively.

The degree distance of a connected hypergraph G is defined as

DD(G) =
∑

{u,v}⊆V

(du + dv)Duv .

Obviously, DD(G) = 1
2

∑
u∈V

∑
v∈V

(du + dv)Duv =
∑
u∈V

du
∑
v∈V

Duv. For a connected graph, it

was introduced by Dobrynin and Kochetova [6] and has attracted much attention, see,

e.g., [1, 2, 4, 8, 11, 15, 17, 24, 32, 35]. Note that, for a graph G, the degree distanceDD(G)

is the essential part of the molecular topological index MTI(G) introduced by Schultz

[29], which is defined as MTI(G) =
∑

u∈V d2u +DD(G), see also [5, 11, 16, 17, 29, 34].

The Gutman index of a connected hypergraph G is defined as

Gut(G) =
∑

{u,v}⊆V

dudvDuv .

Obviously, Gut(G) = 1
2

∑
u∈V

∑
v∈V

dudvDuv. For a connected graph, it was introduced in [11]

(see also [30, 31]) and has been studied extensively, see, e.g. [1, 3, 9, 18, 22, 23, 26].

For a tree G on n vertices, Klein et al. [17] (and Gutman [11]) showed that

DD(G) = 4W (G)− n(n− 1) ,
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and Gutman [11] showed that

Gut(G) = 4W (G)− (n− 1)(2n− 1) .

In this paper, we extend these two relations to hypergraphs.

2 Results

In a k-uniform hypertree G, any two edges share at most one vertex in common. This

fact will be used in our proof.

Theorem 1. Let G be a k-uniform hypertree with n vertices, where 2 ≤ k ≤ n. Then

(k − 1)DD(G) = 2kW (G)− n(n− 1).

Proof. Let m = |E|. Then m = n−1
k−1

and
∑
u∈V

du = km. Note that

2
∑

{u,v}⊆V
Duv=1

Duv = 2
∑

{u,v}⊆V
Duv=1

1 = 2

(
k

2

)
m = k(n− 1)

and

2
∑

{u,v}⊆V
Duv≥2

Duv =
∑
u∈V

∑
v∈V

Duv≥2

Duv

=
∑

u,w∈V
w∼u

∑
v∈V

Duv=1+Dwv

(1 +Dwv)

=
∑
w∈V

∑
v∈V
v 6=w

(dw − 1)(k − 1)(1 +Dwv)

= (k − 1)
∑
u∈V

∑
v∈V

(du − 1)(1 +Duv)− (k − 1)
∑
u∈V

(du − 1)

= (k − 1)
∑
u∈V

∑
v∈V

du − (k − 1)
∑
u∈V

∑
v∈V

1 + (k − 1)
∑
u∈V

∑
v∈V

duDuv

−(k − 1)
∑
u∈V

∑
v∈V

Duv − (k − 1)
∑
u∈V

du + (k − 1)n

= (k − 1)kmn− (k − 1)n2 + (k − 1)DD(G)− 2(k − 1)W (G)

−(k − 1)km+ (k − 1)n

= (k − 1)DD(G)− 2(k − 1)W (G) + n2 − n− k(n− 1).
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Thus

2W (G) = 2
∑

{u,v}⊆V
Duv=1

Duv + 2
∑

{u,v}⊆V
Duv≥2

Duv

= (k − 1)DD(G)− 2(k − 1)W (G) + n2 − n,

from which we have the desired result.

Theorem 2. Let G be a k-uniform hypertree with n vertices, where 2 ≤ k ≤ n. Then

2(k − 1)2Gut(G) = 2k2W (G)− k(n− 1)(2n− 1).

Proof. Note that

2
∑

{u,v}∈V
Duv=1,2

Duv =
∑
u∈V

∑
v∈V

Duv=1

1 + 2
∑
u∈V

∑
v∈V

Duv=2

1

=
∑
u∈V

du(k − 1) + 4
∑
w∈V

∑
{u,v}⊆V

Duw=Dvw=1

1

=
∑
u∈V

du(k − 1) + 4
∑
w∈V

(
dw
2

)
(k − 1)2

=
∑
u∈V

du(k − 1) + 2
∑
w∈V

dw(dw − 1)(k − 1)2

= (k − 1)
∑
u∈V

du + 2(k − 1)2
∑
u∈V

du(du − 1)

and

2
∑

{u,v}∈V
Duv≥3

Duv =
∑
u∈V

∑
v∈V

Duv≥3

Duv

=
∑
u∈V
w∼u

∑
v∈V
z∼v

Duz=Dwv=Dwz+1

(Dwz + 2)

=
∑
w∈V

∑
z 6=w

(dw − 1)(dz − 1)(k − 1)2(Dwz + 2)

= (k − 1)2
∑
u∈V

∑
v 6=u

(du − 1)(dv − 1)(Duv + 2).

Since
∑
u∈V

du = k(n−1)
k−1

, we have

2W (G) = 2
∑

{u,v}∈V
Duv=1,2

Duv + 2
∑

{u,v}∈V
Duv≥3

Duv
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= (k − 1)
∑
u∈V

du + 2(k − 1)2
∑
u∈V

du(du − 1)− (k − 1)2
∑
u∈V

2(du − 1)2

+(k − 1)2
∑
u∈V

∑
v∈V

(du − 1)(dv − 1)(Duv + 2)

= (k − 1)
∑
u∈V

du + 2(k − 1)2
∑
u∈V

(du − 1)

+(k − 1)2
∑
u∈V

∑
v∈V

dudvDuv − (k − 1)2
∑
u∈V

∑
v∈V

(du + dv)Duv

+(k − 1)2
∑
u∈V

∑
v∈V

Duv + (k − 1)2
∑
u∈V

∑
v∈V

2dudv − (k − 1)2
∑
u∈V

∑
v∈V

2(du + dv)

+(k − 1)2
∑
u∈V

∑
v∈V

2 = (k − 1)
∑
u∈V

du + 2(k − 1)2
∑
u∈V

du − 2(k − 1)2
∑
u∈V

1

+2(k − 1)2Gut(G)− 2(k − 1)2DD(G) + 2(k − 1)2W (G)

+2(k − 1)2
∑
u∈V

du
∑
v∈V

dv − 4(k − 1)2
∑
u∈V

du
∑
v∈V

1 + 2(k − 1)2
∑
u∈V

∑
v∈V

1

= 2(k − 1)2Gut(G)− 2(k − 1)2DD(G) + 2(k − 1)2W (G)

+k(n− 1) + 2(k − 1)k(n− 1)− 2(k − 1)2n

+2k2(n− 1)2 − 4(k − 1)kn(n− 1) + 2(k − 1)2n2

= 2(k − 1)2Gut(G)− 2(k − 1)2DD(G) + 2(k − 1)2W (G)

+2n2 − (k + 2)n+ k,

implying that

2(k − 1)2Gut(G) = 2(k − 1)2DD(G)− 2(k − 1)2W (G) + 2W (G)

−2n2 + (k + 2)n− k.

From this formula and Theorem 1, we have

2(k − 1)2Gut(G) = 2(k − 1)(2kW (G)− n(n− 1))

−2(k − 1)2W (G) + 2W (G)− 2n2 + (k + 2)n− k

= 2k2W (G)− k(n− 1)(2n− 1),

as desired.
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with the Wiener index, J. Chem. Inf. Comput. Sci. 32 (1992) 304–305.
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[35] B. Zhou, N. Trinajstić, On reverse degree distance, J. Math. Chem. 47 (2010)

268–275.

-220-


