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Abstract

In this paper, we study a new graph invariant named Resistance-Harary index,

defined as RH(G) =
∑

{u,v}⊆V (G)

1

rG(u, v)
, where rG(u, v) is the resistance distance

between vertices u and v of a connected graph G. We establish that S3
n and P 3

n

are the graphs with the maximal and minimal Resistance-Harary index among all
unicyclic graphs on n vertices, respectively.

1 Introduction

Topological indices are numbers associated with molecular structures which serve for

quantitative relationships between chemical structures and properties. The first such

index was published by Wiener [1], but the name topological index was invented by

Hosoya [2]. Many of them are based on the graph distance [3], the vertex degree [4].

In addition, several graph invariants are based on both the vertex degree and the graph

distance [5].

All graphs considered in this paper are both connected and simple. For any v ∈ V (G),

d(v) is the degree of vertex v, the distance between vertices u and v, denoted by d(u, v),

is the length of a shortest path between them. Wiener index was introduced by American
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chemist H. Wiener in [5], defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v) (1)

Another distance-based graph invariant Harary index, has been introduced indepen-

dently by D. Plavšić et al. [6] and by O. Ivanciuc et al. [7] in 1993 for the characterization

of molecular graphs. It has been named in honor of Professor Frank Harary on the occa-

sion of his 70th birthday. The Harary index H(G) is defined as the sum of reciprocals of

distances between all pairs of vertices of the graph G, i.e.

H(G) =
∑

{u,v}⊆V (G)

1

d(u, v)
(2)

I. Gutman in [8] and K. Xu in [9] investigated the Harary index of trees, they showed

that for any n-vertex tree T , H(Pn) ≤ H(T ) ≤ H(Sn) with left equality holding if and

only if T ∼= Pn, and right equality holding if and only if T ∼= Sn. More results related to

Harary index, please refer to [10].

In 1993, Klein and Randić [11] introduced a distance function named resistance dis-

tance on the basis of electrical network theory. They viewed a graph G as an electrical

network N such that each edge of G is assumed to be a unit resistor. The resistance dis-

tance between the vertices u and v, are denoted by rG(u, v) (r(u, v) for short), is defined

to be the effective resistance between nodes u, v ∈ N , which is computed by the methods

of the theory of resistive electrical networks based on Ohm’s and Kirchhoff’s laws. The

Kirchhoff index Kf(G) of a graph G is defined as [11, 12]

Kf(G) =
∑

{u,v}⊆V (G)

r(u, v) (3)

The Kirchhoff index is an important molecular structure descriptor [11], it has been well

studied in both mathematical and chemical literatures, see recent papers [12-17] and

references therein.

The reciprocal resistance distance is also called electrical conductance, D. J. Klein and

O. Ivanciuc in [18] investigated QSAR and QSPR molecular descriptors computed from

the resistance distance and electrical conductance matrices, and they proposed the global

cyclicity index C(G) as

C(G) =
∑
u∼v

[
1

r(u, v)
− 1

d(u, v)

]
(4)

-190-



where u ∼ v means u, v are adjacent and the sum is over all edges of G. Since d(u, v) = 1

for u ∼ v, C(G) can also be rewritten as

C(G) =
∑
u∼v

1

r(u, v)
− |E(G)| (5)

In [19], Y. Yang using techniques from graph theory, electrical network theory and

real analysis, obtained some results on global cyclicity index.

Analogous to the relationship between Winer index and Harary index, we introduce

here a new graph invariant reciprocal to Kirchhoff index, named Resistance-Harary index,

as

RH(G) =
∑

{u,v}⊆V (G)

1

r(u, v)
(6)

Obviously, the Resistance-Harary index is a generalization of global cyclicity index.

A graph G is called a unicyclic graph if it contains exactly one cycle, the unique cycle

Cl = v1v2 · · · vlv1 in a unicyclic graphs, simply denoted as G = U(Cl;T1, T2, · · · , Tl), where

Ti is the components of G. E(Cl) containing vi, 1 ≤ i ≤ l, Ti is a tree rooted at vi. Let P
l
n

denote the graph obtained by identifying one end-vertex of Pn−l+1 with any vertex of Cl,

Sl
n denote the graph obtained from cycle Cl by adding n− l pendant edges to a vertex of

Cl. Obviously, P n
n = Sn

n = Cn. Let U(n; l) be the set of unicyclic graphs with n vertices

and the unique cycle Cl, U (n) be the set of unicyclic graphs with n vertices.

For a graph G with v ∈ V (G), G− v denotes the graph resulting from G by deleting

v (and its incident edges). For an edge uv of the graph G (the complement of G, respec-

tively), G − uv (G + uv, respectively) denotes the graph resulting from G by deleting

(adding, respectively) uv.

In this paper, we determine firstly that among U(n, l), Sl
n has the maximal Resistance-

Harary index. Secondly, we determine the graph with the maximum and minimum

Resistance-Harary index among all unicyclic graphs.

The paper is organized as follows, in Section 2 we state some preparatory results,

whereas in Section 3 we state our main results.
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2 Preliminary Results

Let RG(u) =
∑

v∈V (G)\{u}

1

r(u, v)
, then RH(G) =

∑
v∈V (G)

RG(v). Let Cg be the cycle on g ≥ 3

vertices, for any two vertices vi, vj ∈ V (Cg) with i < j, by Ohm’s law, one has

rCg(vi, vj) =
(j − i)(g + i− j)

g
.

For any vertex v ∈ V (Cg), it is easy to see that RCg(v) = 2
g−1∑
i=1

1

i
, and the Resistance-

Harary index of Cn is RH(Cn) =
∑

v∈V (Cn)

RCg(v) = n
n−1∑
i=1

1

i
.

Lemma 2.1([11]). Let x be a cut vertex of a connected graph and a and b be vertices

occurring in different components which arise upon deletion of x. Then

rG(a, b) = rG(a, x) + rG(x, b) . (7)

Let v be a vertex of degree p+1 in a graph G, such that vv1, vv2, · · · , vvp are pendant

edges incident with v, and u is the neighbor of v distinct from v1, v2, · · · , vp, and G′ =

σ(G, v) by removing the edges vv1, vv2, · · · , vvp and adding new edges uv1, uv2, · · · , uvp,

see Figure 1.

.....
H

u v

v1

v2

vp

✲

σ

..

..

.H
u

v

v1

v2

vp

G G′

Figure 1. The σ-transformation at v

Lemma 2.2. Let G′ = σ(G, v) be a graph transformed from the graph G, d(u) ≥ 1

described in Figure 1. Then RH(G) ≤ RH(G′), with equality holds if and only if G is a

star with v as its center.

Proof. Let V1 = {v, v1, v2, · · · , vp} in G, and V2 = {v, v1, v2, · · · , vp} in G′. By the

definition of Resistance-Harary index, one has

RH(G) =
∑

x,y∈V (H)

1

r(x, y)
+

∑
x,y∈V (G1)

1

r(x, y)
+

∑
x∈V (H),y∈V (G1)

1

r(x, y)

= RH(H) + p+
1

2

(
p

2

)
+

∑
x∈V (H)

1

r(x, u) + 1
+ p

∑
x∈V (H)

1

r(x, u) + 2
,

RH(G′) = RH(H) +
1

2

(
p+ 1

2

)
+ (p+ 1)

∑
x∈V (H)

1

r(x, u) + 1
.
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Thus,

RH(G)−RH(G′) =
p

2
+ p

( ∑
x∈V (H)

1

r(x, u) + 2
−

∑
x∈V (H)

1

r(x, u) + 1

)
= p

∑
x∈V (H)−u

( 1

r(x, u) + 2
− 1

r(x, u) + 1

)
< 0 .

The proof is completed.

Let u, v be two vertices in a graph G, such that u1, u2, · · · , us are pendants incident

with u, v1, v2, · · · , vt are pendants incident with v in G0 ⊆ G, respectively. G′ and

G′′ are two graphs β-transformed from G, such that G′ = G − {vv1, vv2, · · · , vvt} +

{uv1, uv2, · · · , uvt}, G′′ = G− {uu1, uu2, · · · , uus}+ {vu1, vu2, · · · , vus}, see Figure 2.

.....

.....

✶

❥

.....

....

{

}

G0

G0

G0

u1

us

v1

vt

β

β

u v

u
v

u
v

s + t

s + t
G

G′

G′′

Figure 2.The transformation β

Lemma 2.3. Let G′, G′′ be the graphs transformed from the graph G, d(u) ≥ 1

described in Figure 2. Then RH(G) < RH(G′) or RH(G) < RH(G′′).

Proof. For the convenience, one let V1 = {u1, u2, · · · , us}, V2 = {v1, v2, · · · , vt} in

G, and V3 = {u1, u2, · · · , us, v1, v2, · · · , vt} in G′. By the definition of Resistance-Harary

index, one has

RH(G) =
∑

x,y∈V (G0)

1

r(x, y)
+

∑
x,y∈V (G1)

1

r(x, y)
+

∑
x,y∈V (G2)

1

r(x, y)
+

∑
x∈V (G0),y∈V (G1)

1

r(x, y)

+
∑

x∈V (G0),y∈V (G2)

1

r(x, y)
+

∑
x∈V (G1),y∈V (G2)

1

r(x, y)
= RH(G0) +

1

2

(
s

2

)
+

1

2

(
t

2

)
+ s

∑
x∈V (G0)

1

r(x, u) + 1
+ t

∑
x∈V (G0)

1

r(x, v) + 1
+

st

r(u, v) + 2
,

and

RH(G′) = RH(G0) +
1

2

(
s+ t

2

)
+ (s+ t)

∑
x∈V (G0)

1

r(x, u) + 1
,

RH(G′′) = RH(G0) +
1

2

(
s+ t

2

)
+ (s+ t)

∑
x∈V (G0)

1

r(x, v) + 1
.
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Thus,

∆1 = RH(G)−RH(G′)

= t

 ∑
x∈V (G0)

1

r(x, v) + 1
−

∑
x∈V (G0)

1

r(x, u) + 1

+ st

(
1

l + 2
− 1

2

)
.

and

∆2 = RH(G)−RH(G′′)

= s

 ∑
x∈V (G0)

1

r(x, u) + 1
−

∑
x∈V (G0)

1

r(x, v) + 1

+ st

(
1

l + 2
− 1

2

)
.

If ∆1 > 0, then
∑

x∈V (G0)

1

r(x, u) + 1
<

∑
x∈V (G0)

1

r(x, v) + 1
+ s

(
1

l + 2
− 1

2

)
,

thus

∆2 < s

 ∑
x∈V (G0)

1

r(x, v) + 1
+

s

l + 2
− s

2

− s
∑

x∈V (G0)

1

r(x, v) + 1
+ st

(
1

l + 2
− 1

2

)

= s(s+ t)

(
1

l + 2
− 1

2

)
< 0.

The proof is completed.

3 Main Results

When we study some property of graphs, a tree is generally regarded as the simplest

graph to be firstly considered. In this section, we firstly give the lower and upper bound

on trees with respect to Resistance-Harary index.

From Ref. [8, 9], it is easy to see that,

Theorem 3.1. Let T be a tree of order n. Then we have

RH(Pn) ≤ RH(T ) ≤ RH(Sn)

with left equality holding if and only if T ∼= Pn, and right equality holding if and only if

T ∼= Sn.

Secondly, we’ll investigate the Resistance-Harary index of U (n).

By Lemma 2.2 and Lemma 2.3, we arrive at,

Theorem 3.2. Let G ∈ U(n; g), then RH(G) ≤ RH(Sg
n).

Nextly, we’ll determine the graph in U (n) with the maximum Resistance-Harary

index.
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Theorem 3.3. Let G ∈ U (n), then we have RH(G) ≤ 1

20
(n2+9n+18) with equality

holding if and only if G ∼= S3
n for n ≥ 9 and G ∼= Cn for n ≤ 8.

Proof. Let H = G− Cg, by the definition of Resistance-Harary index, one has,

RH(Sg
n) =

∑
{u,v}⊆V (G)

1

r(u, v)

=
∑

{u,v}⊆V (Cg)

1

r(u, v)
+

∑
{u,v}⊆V (H)

1

r(u, v)
+

∑
u∈V (Cg),v∈V (H)

1

r(u, v)

= g

(
1 +

1

2
+

1

3
+ · · ·+ 1

g − 1

)
+

1

4
(n− g)(n+ 3− g)

+ g(n− g)

(
1

2g − 1
+

1

3g − 4
+ · · ·+ 1

g · g − (g − 1)2

)
Similarly,

RH(Sg−1
n ) = (g − 1)

(
1 +

1

2
+

1

3
+ · · ·+ 1

g − 2

)
+

1

4
(n+ 1− g)(n+ 4− g) + (g − 1)

(n+ 1− g)

(
1

2g − 3
+

1

3s− 7
+ · · ·+ 1

(g − 1) · (g − 1)− (g − 2)2

)
Further, by the symmetry of Cg, one has

∆ = RH(Sg−1
n )−RH(Sg

n)

= (g − 1)(n+ 1− g)

(
1

2g − 3
+

1

3g − 7
+ · · ·+ 1

(g − 1) · (g − 1)− (g − 2)2

)
+

1

2
(n− g)− g(n− g)

(
1

2g − 1
+

1

3g − 4
+ · · ·+ 1

g · g − (g − 1)2

)
−

(
1 +

1

2
+

1

3
+ · · ·+ 1

g − 1

)

= (n− g)



(

g − 1

2g − 3
+

g − 1

3g − 7
+ · · ·+ g − 1

2g − 3

)
︸ ︷︷ ︸

g−2

+
1

2



−

 g

2g − 1
+

g

3g − 4
+ · · ·+ g

2g − 1︸ ︷︷ ︸
g−1


+ (g − 1)

(
1

2g − 3
+

1

3g − 7
+ · · ·

+
1

(g − 1)2 − (g − 2)2

)
−

(
1 +

1

2
+

1

3
+ · · ·+ 1

g − 1

)
Let

Θ =

[(
g − 1

2g − 3
+

g − 1

3g − 7
+ · · ·+ g − 1

2g − 3

)
+

1

2

]
−

(
g

2g − 1
+

g

3g − 4
+ · · ·+ g

2g − 1

)
,
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then

Θ =

(
g − 1

2g − 3
− g

2g − 1

)
+

(
g − 1

3g − 7
− g

3g − 4

)
+ · · ·+

(
g − 1

2g − 3
− g

2g − 1

)
+
1

2
− 4

g + 4
, If g ≥ 4 and g is even,(

g − 1

2g − 3
− g

2g − 1

)
+

(
g − 1

3g − 7
− g

3g − 4

)
+ · · ·+

(
g − 1

2g − 3
− g

2g − 1

)
+
1

2
− 4g

(g + 2)2 − 5
, If g ≥ 5 and g is odd,

> 0 .

If n ≥ 9, by gradually reducing the girth number, we have the desired result.

If n ≤ 8, We can easily check that RH(Cn) > RH(S3
n).

Lastly, we’ll determine the graph in U (n) with the minimum Resistance-Harary index.

Lemma 3.4([20]). Let G be a unicyclic graph of order n ≥ 5. Then we have

H(P 3
n) ≤ H(G) ≤ H(S3

n)

where the left equality holds if and only if G ∼= P 3
n , and the right equality holds if and

only if G ∼= S3
n for n ≥ 6 and G ∼= S3

n or G ∼= C5 for n = 5.

Theorem 3.4. Let G be a unicyclic graph of order n ≥ 5. Then we have

RH(G) ≥ RH(P 3
n),

with equality holding if and only if G ∼= P 3
n .

Proof. Let G ∈ U (n), u, v ∈ V (G), one has r(u, v) ≤ d(u, v), then

RH(G) =
∑

{u,v}⊆V (G)

1

r(u, v)
≥

∑
{u,v}⊆V (G)

1

d(u, v)
= H(G).

By combining Lemma 3.3, we have the desired result.
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