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Abstract

We prove the relationship between the Hosoya polynomial and the edge-Hosoya
polynomial of trees. The connection between the edge-hyper-Wiener index and the
edge-Hosoya polynomial is established. With these results we also prove formulas
for the computation of the edge-Wiener index and the edge-hyper-Wiener index of
trees using the Wiener index and the hyper-Wiener index. Moreover, the closed
formulas are derived for a family of chemical trees called regular dendrimers.

1 Introduction

The first distance-based topological index was the Wiener index introduced in 1947 by
H. Wiener [11]. Later, in 1988 H. Hosoya [6] introduced some counting polynomials
in chemistry, among them the Wiener polynomial, which is strongly connected to the
Wiener index. Nowadays, it is known as the Hosoya polynomial. Another distance-based
topological index, the hyper-Wiener index, was introduced in 1993 by M. Randié¢ [9].
All these concepts found many applications in different fields, such as chemistry, biology,
networks.

The Hosoya polynomial, the Wiener index, and the hyper-Wiener index are based
on the distances between pairs of vertices in a graph, and similar concepts have been
introduced for distances between pairs of edges under the names the edge-Hosoya polyno-

mial (1], the edge-Wiener index [7], and the edge-hyper-Wiener index [8]. In this paper we
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study the relationships between the vertex-versions and the edge-versions of the Hosoya

polynomial, the Wiener index, and the hyper-Wiener index of trees.

2 Preliminaries

Unless stated otherwise, the graphs considered in this paper are connected. We define
d(z,y) to be the usual shortest-path distance between vertices 2,y € V(G). The distance
d(e, f) between edges e and f of graph G is defined as the distance between vertices e

and f in the line graph L(G).

If G is a connected graph with n vertices, and if d(G,k) is the number of (unordered)

pairs of its vertices that are at distance k, then the Hosoya polynomial of G is defined as

H(G,x) =Y d(G,k)a*.

k>0
Note that d(G,0) = n. Similarly, if d.(G, k) is the number of (unordered) pairs of edges
that are at distance k, then the edge-Hosoya polynomial of G is defined as
Ho(G,z) =) de(G k) z".
£>0

Obviously, for any connected graph G it holds H.(G,z) = H(L(G), x).

The Wiener index and the edge- Wiener index of a connected graph G are defined in the
following way:
W@ = Y duwv). W(G)= Y delf).
{uv}CV(G) {e.fYCE(G)
It is easy to see that W, (G) = W(L(G)). The main property of the Hosoya polynomial and
the edge-Hososya polynomial, that makes them interesting in chemistry, follows directly
from the definitions:

W(G) = H'(G.1),  We(G) = H/(G,1). (1)

The hyper-Wiener index and the edge-hyper- Wiener index of a connected graph G are
defined as:

1 1 )
WW(G) = 3 Z d(u,v) + 3 Z d*(u,v),
{u0}CV(G) {uv}CV(G)
1 1 )
WW.(G) = 5 > dle.f)+ 5 > def)

{e.f}CE(G) {e.f}CE(G)
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Again, it holds WW,(G) = WW (L(G)). Moreover, the following relationship was proved
in [3] for any connected graph G:

WW(G) = H'(G,1) + %H”(G, 1). (2)

3 The edge-Hosoya polynomial of trees

In this section we first show how the edge-hyper-Wiener index of an arbitrary connected

graph can be calculated from the edge-Hosoya polynomial.
Theorem 3.1 Let G be a connected graph. Then
1
WW&(G) = HQ(G7 1) + §HZ(Gv 1)

Proof. Using Equation 2 we obtain

WW.(G) = WIW(L(G)) = H'(L(G),1) + %H”(L(GL 1) = H(G, 1)+ %H;/(G, 1)

and the proof is complete. |

The following theorem is the main result of this paper.

Theorem 3.2 Let T be a tree. Then

jieal]

1
He(T7 'L) = 7H(T7 f) -
T T

Proof. It suffices to prove that
H(T,z) =xzH.(T,z)+ |V(T)].

Let Vi be the set of all (unordered) pairs of vertices of T that are at distance k and let
E} be the set of all (unordered) pairs of edges of T' that are at distance &, where k& > 0.

That means

Vi = {{Iv y} | T,y € V(T)7 d(l‘, y) = k}
E.={{e,f} e fe€ET), de,f) =k}

We first show that for any & > 1 there exists a bijective function F' : V}, — Ej_4. To
define F', let k > 1 and let @,y € V(T) such that d(z,y) = k. Furthermore, let P be the



-184-

unique path in T connecting  and y. Obviously, d(z,y) = |E(P)| = k. We define e, to
be the edge of P which has z for one end-vertex. Similarly, e, is the edge of P which has
y for one end-vertex. It is easy to see that d(e,,e,) = k — 1. With this notation we can
define

F({z,y}) = {ex, ey}
for every {z,y} € Vi. Obviously, F' is a well-defined function.

To show that F' is injective, let {z,y},{a,b} € Vi, k > 1, and suppose F({z,y}) =
F({a,b}). Tt follows that {e,,e,} = {eq, e} and without loss of generality we can assume
e; = €, and e, = ep. If ¥ = a, we also get y = b, since otherwise e, # e;. Therefore,
{z,y} = {a,b}. If © # a, it follows that © = b and y = a. Again, {z,y} = {a,b} and we
are done.

To show that F is surjective, we take {e, f} € Ej_1. Let  be the end-vertex of e and
y the end-vertex of f such that d(z,y) = d(e, f) +1 = k. Obviously, z and y are uniquely
defined. It is easy to see that F({z,y}) = {e, f}.

We have shown that for every k > 1 it holds d(T, k) = |Vi| = |Ex—1| = de(T, k—1). Tt
is also obvious that d(7,0) = [V(T')|. Hence, polynomials H (T, z) and 2 H (T, z)+ |V (T)|

have the same coefficients. Therefore, Equation 3 it true and the proof is complete. W

As a corollary we can now express the edge-Wiener index and the edge-hyper-Wiener
index of trees with the Wiener index and the hyper-Wiener index. Note that Equation 4

was first proved in [2].

Corollary 3.3 Let T be a tree. Then
w.m) = wir) - (") Q

and
WW(T) =WW(T) —W(T).
Proof. First we notice that if G is a graph, then
e = ac.n = (V) e )
k>0
After differentiating Equation 3 we obtain

H(T, )z — H(T.z) +|V(T)| ©)

H (T, z) =
() :
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and

H(T, ) = H"(T,z)a® — 2H'(T, z)2® + 2H (T, z)x — 2x|V(T)|A )

4

Using Equation 6 and Equation 5 it follows,

W.(T) = H/(T,1) = H'(T,1) — H(T,1) + |V(T)] = W(T) — ('V(QT”).

Finally, Theorem 3.1, Equation 6, Equation 7, and Equation 2 imply

WW.T) = H/(T,1)+ %Hgm 1) = H(T,1) — H(T,1) + |V(T)|

+ %H”(ﬂ 1) — H'(T, 1) + H(T,1) — [V(T)| = WW(T) — W(T).

4 The edge-Hosoya polynomial of dendrimers

Dendrimers are highly regular trees, which are of interest to chemists, since they represent
repetitively branched molecules. In this section we compute the edge-Hosoya polynomial,
the edge-Wiener index and the edge-hyper-Wiener index of regular dendrimers.

In particular, T} 4 stands for the k-th regular dendrimer of degree d. For any d > 3,
To,q is the one-vertex graph and 77 4 is the star with d+1 vertices. Then for any £ > 2 and
d > 3, the tree T}, 4 is obtained by attaching d—1 new vertices of degree one to the vertices
of degree one of Tj_1 4. For an example see Figure 1. The parameter £ corresponds to

what in dendrimer chemistry is called “number of generations” [5].

Figure 1. Regular dendrimer T3 3.

In [10] the Wiener polynomial W (G, z) of a graph G was considered and the definition
of this polynomial is slightly different from the definition of the Hosoya polynomial, such
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that H(G,z) = W(G,z) + |[V(G)|. Hence, from Equation 3 it follows
1
H.(G,z) = EVV(G’ x).

Therefore, to compute the edge-Hosoya polynomial we can use this formula and the result
regarding the Wiener polynomial of a regular dendrimer in [10]. After changing some

labels we obtain

k-1 ;
_ Z e (d=DFT T,
HE(Tk,d,I) = - (d 1) d d—2 x
k-1 ;
_yefd (d—1)1-1 2i+1
+ i:O(d 1) (2) (d ) +1 )z

It follows from Equation 1 and Theorem 3.1 that the edge-Wiener index and the
edge-hyper-Wiener index can be easily computed from the derivatives of the edge-Hosoya
polynomial. Therefore, we obtain
d(2 =20+ (d = DM +4d — 4) + (d = 1)*(2 — d(d + 2) +2(d — 2)dk) )

2(d - 2)3

We(Tka) =

and
2d— 1)+ (d — 1)* (4 — 52
2(d—2)t
(d— 1)%( — 92— 8k +d(—2+5d+ 16k — d(d + 4)k + 2(d — 2)2k2)>
2(d — 2)* '

WWe(Tya) = d

+ d

Since the Wiener index and the hyper-Wiener index of regular dendrimers are already
known (see [4,5,10]), the edge-Wiener index and the edge-hyper-Wiener index could also

be computed in terms of Corollary 3.3.
Acknowledgment: Supported in part by the Ministry of Science of Slovenia under grant
P1—0297.
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