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Abstract

It is known that there are many classes of graphs whose Balaban index converges to a
real number. Here we show that for an arbitrary positive number r there exists a sequence
of graphs whose Balaban index converges to r. Moreover, we construct the corresponding
sequence of graphs.

1 Introduction and results

Let G be a graph. By V (G) and E(G) we denote its vertex and edge sets, respectively.

Further, n = |V (G)| and m = |E(G)|. Let u ∈ V (G). By w(u) we denote the the sum of

distances from u to all the vertices of G. That is, w(u) =
∑

v∈V (G) d(u, v). Balaban index

of G, J(G), is defined as

J(G) =
m

m− n+ 2

∑
uv∈E(G)

1√
w(u) · w(v)

where the sum is taken over all edges of G. This index was introduced by Balaban in [1,2]

and it was used successfully in QSAR/QSPR modeling [5,14], see also [4,9]. Recent papers

on mathematical properties of this index include [7, 8, 11] and the survey paper [13].
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As regards the bounds for Balaban index, for the maximum value we have J(G) ≤ c ·n

for c
.
= 1/

√
2, and the extremal graph is the complete graph on n vertices Kn if n ≤ 7,

and a star on n vertices if n ≥ 8, see [6, 12]. For the minimum value we have J(G) ≥

8/n+o(n−1) and there are graphs for which J(G) ∼ c/n where c
.
= 10.15, see [10]. Hence,

there are classes of graphs Gn and Hn such that limn→∞ J(Gn) = ∞ (take the star on n

vertices for Gn) and limn→∞ J(Hn) = 0 (take special dumbbell graphs for Hn, see [10]).

Let Pn be a path on n vertices. Already in [3] it was shown that limn→∞ J(Pn) = π,

which is a result that attracts an attention. In fact, in [3] the accumulation points for

many classes of graphs were determined, and there appeared a problem to determine

which real numbers can be accumulation points for Balaban index of a class of graphs.

More precisely, several mathematicians asked the following (personal communication):

Problem 1 Is it true that for every positive real number r there exists a sequence of

graphs {Gr
ni
}∞i=1, where |V (Gr

ni
)| = ni and {ni}∞i=1 is increasing, such that

lim
ni→∞

J(Gr
ni
) = r ?

In this paper we answer Problem 1 affirmatively. In fact, we do more. We construct

the sequence of corresponding graphs {Gr
ni
}∞i=1.

LetQa,b be a graph obtained from a cliqueKa and a path Pb+1 by identifying one vertex

of the clique with an endvertex of the path (see Figure 1 for Q6,3). Then |V (Qa,b)| = a+b.

Figure 1. The graph Q6,3.

We will prove the following statement:

Theorem 2 Let r ∈ R, r > 0, and let {ba}∞a=1 be a sequence of integers such that

lima→∞ ba/a = 1/
√
r. Then

lim
a→∞

J(Qa,ba) = r .
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To fulfill the assumptions in Theorem 2 it suffices to choose ba =
⌊
a/

√
r
⌋
for every

a ∈ N. Consequently, every positive number is an accumulation point for Balaban index

of a class of graphs. However, the problem stil remains open for specific classes of graphs,

such as the chemical ones:

Problem 3 Is it true that for every positive real number r there exists a sequence of

graphs {Gr
ni
}∞i=1, where |V (Gr

ni
)| = ni, {ni}∞i=1 is increasing and Gr

n has maximum degree

at most 4, such that

lim
ni→∞

J(Gr
ni
) = r ?

2 Proof of the main result

Observe that the function f(x) = 2
x2+(1−x)2

has a Riemann integral on [0, 1], which implies

that ∫ 1

0

2 · dx
x2 + (1− x)2

= lim
b→∞

b∑
i=0

1

b
· 2

( i
b
)2 + ( b−i

b
)2

or in other notation

b∑
i=0

1

b
· 2

( i
b
)2 + ( b−i

b
)2

∼
∫ 1

0

2 · dx
x2 + (1− x)2

= π.

Now multiplying both sides by 1
b
we get

b∑
i=0

2

i2 + (b− i)2
∼ π

b
. (1)

We use (1) in the proof of Theorem 2.

Proof of Theorem 2. For the sake of simplicity, let b = ba. We denote by v0, v1, . . . , vb

the vertices of path Pb+1, where v0 was identified with a vertex of Ka to obtain Qa,b.

First we determine the sums of distances w(x) for vertices of Qa,b. Let u ∈ V (Qa,b) \

{v0, v1, . . . , vb}. Then

w(u) = (a−2) + 1 + 2 + · · ·+ (b+1) = a− 1 +
b2 + 3b

2
. (2)

On the other hand, for vi, 0 ≤ i ≤ b, we have

w(vi) = (i+1)(a−1)+(1+2+· · ·+i)+(1+2+· · ·+(b−i)) = ai+a−i−1+
i2+i

2
+
(b−i)2 + (b−i)

2
.

(3)
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By the assumption we have lima→∞ ba/a = 1/
√
r, which implies ba ∈ Θ(a), and since

a+ b = n, we get a, b ∈ Θ(n). Consequently, from (2) and (3) we have

w(u) ∼ b2

2
and w(vi) ∼ ai+

i2

2
+

(b− i)2

2
≥ i2

2
+

(b− i)2

2
, (4)

where u ∈ V (Qa,b) \ {v0, v1, . . . , vb}.

There are
(
a
2

)
∼ a2

2
edges in the complete graph in Qa,b, and they contribute to the

sum
∑

xy∈E(Qa,b)
1√

w(u)·w(v)
asymptotically by a2

2
· 2
b2

= a2

b2
(observe that w(v0) ∼ w(u)).

Now we determine the contribution of edges of Pb+1. Denote w∗(vi) =
i2

2
+ (b−i)2

2
. By

(4), for a (and b = ba) big enough we have

b−1∑
i=0

1√
w(vi) · w(vi+1)

≤
b−1∑
i=0

1√
w∗(vi) · w∗(vi+1)

. (5)

Claim 1. The following holds

b−1∑
i=0

1√
w∗(vi) · w∗(vi+1)

∼ π

b
. (6)

Let vivi+1 be an edge of Pb. Denote w
+
i = max{w∗(vi), w

∗(vi+1)} and w−
i = min{w∗(vi), w

∗(vi+1)}.

Then 1
w+

i

≤ 1√
w∗(vi)·w∗(vi+1)

≤ 1
w−

i

. Therefore

b−1∑
i=0

1

w+
i

≤
b−1∑
i=0

1√
w∗(vi) · w∗(vi+1)

≤
b−1∑
i=0

1

w−
i

. (7)

Since g(x) = x2

2
+ (b−x)2

2
is decreasing on [0, b

2
] and increasing on [ b

2
, b], we have

b−1∑
i=0

1

w+
i

=
1

w∗(v0)
+

1

w∗(v1)
+ · · ·+ 1

w∗(vb b
2
c−1)

+
1

w∗(vb b
2
c+1)

+
1

w∗(vb b
2
c+2)

+ · · ·+ 1

w∗(vb)

∼
b∑

i=0

2

i2 + (b− i)2
− 2

b b
2
c2 + (b− b b

2
c)2

and analogously we get

b−1∑
i=0

1

w−
i

∼
b∑

i=0

2

i2 + (b− i)2
− 2

02 + b2
+

2

b b
2
c2 + (b− b b

2
c)2

− 2

b2 + 02
.

Notice that the four isolated terms in the above expressions are of order O(b−2), and thus

by (1), both sums
∑b−1

i=0
1

w+
i

and
∑b−1

i=0
1

w−
i

converge to π
b
. Now, the claim follows by (7).

By Claim 1,
∑

xy∈E(Qa,b)
1√

w(x)·w(y)
has asymptotical lower and upper bounds a2/b2 and

a2/b2 + π/b, respectively. Since ba ∈ Θ(a) and a, b ∈ Θ(n), we have a2/b2 ∈ Θ(1) and
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π/b ∈ Θ(n−1) which means that∑
xy∈E(Qa,b)

1√
w(x) · w(y)

∼ a2

b2
.

Further, n = a+b and m =
(
a
2

)
+b = a2−a

2
+b ∼ a2/2. Consequently, m−n+2 ∼ a2/2

as well. This implies that

J(Qa,b) =
m

m− n+ 2

∑
xy∈E(Qa,b)

1√
w(x) · w(y)

∼ a2/2

a2/2
· a

2

b2
=

a2

b2
.

Since lima→∞ ba/a = 1/
√
r, we have

lim
a→∞

J(Qa,b) = r

as required.
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[12] M. Knor, R. Škrekovski, A. Tepeh, Some results on Balaban and sum-Balaban index,

manuscript, 2016.
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