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Abstract

In this paper, we prove tight sufficient conditions for traceability and Hamil-
tonicity of connected graphs with given minimum degree, in terms of Wiener index
and Harary index. We also prove some result on Hamiltonicity of balanced bipar-
tite graphs in the similar fashion. In two recent papers [9,10], Liu et al. corrected
some previous work on traceability of connected graphs in terms of Wiener index
and Harary index, respectively, such as [5,18]. We generalize these results and give
short and unified proofs. All results in this paper are best possible.

1 Introduction

Let G be a graph. For two vertices u, v of G, the distance between v and v in G, denoted
by dg(u,v), is the length of a shortest path from u to v in G. We denote by diam(G)
the diameter of G, and denote by (@) the minimum degree of G. For two graphs G and
H, we denote the union of G and H by G + H, and the join of G and H by GV H. A
graph is called Hamiltonian (traceable) if there is a cycle (path) including all vertices in
it. A bipartite graph is called balanced if its each partition set has the same number of
vertices. For terminology and notation not defined here, we refer the reader to West [16].

Our main purpose of this paper is to give tight sufficient conditions for Hamiltonicity

and traceability of connected graphs and of connected balanced bipartite graphs with given
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minimum degree, in terms of Wiener index and Harary index, respectively. Furthermore,
our work not only gives short and unified proofs of previous work due to Hua and Wang [5],
and Yang [18], but also generalizes all these theorems. Our main tools come from Ning
and Ge [13], and Li and Ning [7], respectively.

Recall that the Wiener index of a connected graph G, denote by W(G), is defined to
be the sum of distances between every pair of vertices in G. That is,

WG = > do(u,v).
{uv}CV(G)
The Harary index is also a useful topological index in chemical graph theory and has
received much attention during the past decades. This index has been introduced in 1993
by Plavsié¢ et al. [15] and by Ivanciue et al. [6], independently. For a connected graph G,
the Harary indezx of G, denoted by H(G), is defined as
1

d(;(u, U) '

H(G) =
{u}CV(G)

These two indices have found many applications in chemistry and there are lots of papers
dealing with these two indices, see surveys [11,17].

In this paper, we mainly consider the following two problems related to Wiener index,
Harary index and Hamiltonian properties of graphs, which are motivated by the main
problems studied in [7]. The main results in this paper are solutions to the following two

problems.

Problem 1. Among all non-Hamiltonian graphs (non-traceable graphs) G of order n

with 6(G) > k, determine the values of min W(G) and max H(G), respectively.

Problem 2. Among all non-Hamiltonian balanced bipartite graphs G of order 2n with
d(G) > k, determine the values of min W (G) and max H(G), respectively.

We organize this paper as follows. In Section 2, we give some notes on an old theorem
about Hamilton cycles due to Erdds and its generalizations. As shown by Liu et al. [9,10],
there are some errors in proofs of some previous work on traceability of connected graphs,
in terms of Wiener index and Harary index. We remark that these theorems can be unified
in a short proof (by using the generalizations of Erdés’ theorem). In Section 3, we prove
the correct form and also prove a similar result on Hamilton cycles in connected graphs.

In Sections 4 and 5, by imposing the minimum degree of graphs, we generalize the above
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results to connected graphs and to connected balanced bipartite graphs, respectively. In
the last section, we give some ideas on traceability of connected balanced and nearly-

balanced bipartite graphs with given minimum degree, still in terms of these two indices.

2 Erdoés’ theorem on Hamilton cycles, its refinements
and some notes

To find tight edge conditions for Hamilton cycles in graphs is a standard topic in graph
theory. In 1962, Erdés [4] proved the following theorem, which generalized Ore’s theorem

[14] by introducing the minimum degree of a graph as a new parameter.

Theorem 2.1 (Main Theorem in [4]). Let G be a graph of order n. If §(G) > k, where
1<k<(n—-1)/2, and

e(G)>maX{(n;k>+k2’([(n+21)/21>+V;lr},

then G is Hamiltonian.
The original Erdés’ theorem has the following concise form, which is listed as an

exercise in West [16].

Theorem 2.2 (Exercise 7.2.28 in [16]). Let G be a graph of order n > 6k with 6(G) >
kE>1.1If
-k
(@) > (”2 )+k2
then G is Hamiltonian.
When k = 1, a refinement of Erdés’ theorem can date back to Ore [14], and was also

given by Bondy [2]. (See also Exercise 28 on Page 126 of Bollobds’ book [1]). When k = 2,
Ning and Ge [13] further proved the following refined theorem.

Lemma 2.1 (Lemma 2 in [13]). Let G be a graph on n > 5 vertices and m edges with
0>2. Ifm> (”;2)+4, then G is Hamiltonian unless G € Gy = {KaV (Kp—4+2K,), K3V
ARy, KoV (K s+ ), KV Koa, KV (Ko +3K1), KiVSK, KV (Kyat+ K1), KoV Ko, K5V
6K}

As a corollary, Ning and Ge [13] also proved the following theorem on traceability of

connected graphs.
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Lemma 2.2 (Lemma 4 in [13]). Let G be a graph on n > 4 vertices and m edges with
0>1. Ifm> (”;2) + 2, then G is traceable unless G € Go = {K1 V (K,—3 + 2K,), K3 V
4K, K1 V(K 3+ K1), Kou, KoV (3K 1+ K3), K3VH Ky, KoV (K 4+ K1), K1VEKy 5, K4V6K, }.

Here, we would like to comment on some previous work on Wiener index, Harary
index and traceability of connected graphs. Hua and Wang [5] gave a sufficient condition
for traceability of connected graphs in terms of Harary index. While in [18], Yang gave
a similar sufficient condition for traceability of connected graphs in terms of Wiener
index. However, as shown by Liu et al., there are some errors in all the proofs. In two
papers [9, 10], Liu et al. have corrected the proof of Hua and Wang’s result and Yang’s
result, respectively. We point out that the proofs of Hua-Wang’s result and Yang’s result
can be unified by using Lemma 2.2 (together with some facts). Furthermore, we will give
a short and unified proof in the next section. All results in this paper are given in the

similar fashion.

3 Corrected and unified forms of Hua—Wang’s
theorem and Yang’s theorem

In this section, we first prove a result on Hamiltonicity of connected graphs with 6(G) > 2,
in terms of Wiener index and Harary index.

In order to state our results, we introduce some notation in [7]. We define: for 1 < k <
(n—1)/2, Lk = Ky, V (K + K1) and N¥ = K}, V (K, _o; + kK;). Note that L., = N1.
We denote by LF and N the graphs obtained from Lﬁﬂ and N,’fii respectively, by
deleting one vertex of degree n, i.e., for 0 < k <n/2—1,

IF = Ky + Kpoq and N¥ = KV (Ko 1 + (k + 1K),

The next fact is useful. Since its proof is simple, we omit the proof.

Fact 1. Let G be a connected graph on n vertices. Then there holds:
(i) W(G) +¢e(G) > n(n — 1), where the equality holds if and only if diam(G) < 2;
(i1) e(G) > 2H(G) — (3}), where the equality holds if and only if diam(G) < 2.

Theorem 3.1. Let G be a connected graph of order n > 5, where §(G) > 2. If W(G) <
W(N?2) or H(G) > H(N?), then G is Hamiltonian unless G € G;.
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Proof. Since diam(N?) = 2, by Fact 1, we obtain that W (N2) = n(n — 1) — e¢(N2) and
H(NZ) = 1(e(N2) + ().

If W(G) < W(N2), then by Fact 1(i), we have e(G) > n(n — 1) — W(G) > ¢(N?) =
("37) + 4. If H(G) > H(N?), then by Fact 1(ii), we have e¢(G) > 2H(G) — (3) >
2H(NZ) ~ (3) = (V) = ('3) +4.

By Lemma 2.1, G is Hamiltonian unless G' € G;. Furthermore, for every graph G’ € G,
since diam(G') = 2, by Fact 1, we have W(G') =n(n — 1) —e(G') =n(n —1) — e(N2) =
W(N2) and H(G') = 3(e(G") + (3)) = 2(e(N2) + (5)) = H(N?), where n = |G'|. This
completes the proof. |

The second purpose of this section is to show that, some previous work [5, 18] on
Wiener index, Harary index, and the traceability of connected graphs can be deduced
directly from some structural lemma due to the second author and Ge [13]. And these
results can be proved by a unified and short proof.

We firstly list some theorems due to Hua and Wang [5], and due to Yang [18], respec-

tively.

Theorem 3.2 (Theorem 2.2 in [5]). Let G be a connected graph of ordern > 4. If H(G) >

%nQ—%n-i-g, then G is traceable, unless G € { K1V (K,—3+2K1), KoV(3K 1+ K>), K4V6 K, }.

Theorem 3.3 (Theorem 2.2 in [18]). Let G be a connected graph of order n > 4. If
W(G) < W, then G is traceable, unless G € {Ky V (I3 + 2K1), K> V (3K1 +
Ks), K4V 6K }.

Notice that N} = KV (K,_3+2K1), H(NL) = 1n? —3n+3 and W(N}) = 20n=2),
In fact, the corrected forms of Theorems 3.2 and 3.3 include six more extremal graphs,
as shown by Liu et al. [9,10]. In the following, we write the clear form of Liu et al.’s

theorems, and give a unified and short proof, similar as the proof of Theorem 3.1.

Theorem 3.4 (Theorem 2.2 in [9] and Theorem 2.3 in [10]). Let G be a connected graph
of ordern > 4. If W(G) < W(NL) or H(G) > H(N.), then G is traceable unless G € Gs.
Proof. Since diam(N!) = 2, by Fact 1, we obtain W(N}) = n(n — 1) — e(N}) and
H(N,) = 5(e(N,) + (5)).

If W(G) < W(NL), then by Fact 1 (i), we have e(G) > n(n — 1) — W(G) > n(n —
1) — W) = eN,) = (";°) +2. If H(G) > H(N}), then by Fact 1 (i), we have



e(G) > 2H(G) — (3) = 2H(N}) — (3) = e(N}) = (";°) +2. By Lemma 22, G is
traceable unless G € Gy.

Furthermore, for every graph G’ € G, since diam(G’) = 2, by Fact 1, we have
W(G') = nln—1) — (@) = n(n — 1) — e(N2) = W(NL) and H(G") = 3(e(@) + (2)) =

i(e(N}) + (2)) = H(N}), where n = |G'|. This completes the proof. |

4 Wiener index, Harary index and Hamiltonicity of
connected graphs

In this section, we will prove sharp results on traceability and Hamiltonicity of connected
graphs with given minimum degree, in terms of Wiener index and Harary index. Our
proofs depend on a structural result due to Li and Ning [7], which refines a theorem of
Erdés [4].

To prove spectral analogs of Erdés’ theorem, Li and Ning [7] proved the following

refined form of the concise Erdés’ theorem.

Lemma 4.1 (Lemma 2 in [7]). Let G be a graph of order n > 6k + 5, where k > 1. If
(G) >k and

e(G) > (”_f;_l) +(k+1)2,
then G is Hamiltonian unless G C LF or NF.
Lemma 4.2 (Lemma 3 in [7]). Let G be a graph of order n > 6k + 10, where k > 0. If
d(G) >k and

¢(G) > (n_§_2)+(k+1)(k+2),

then G is traceable unless G C L or NE.

Next, we give solutions to Problem 1 (when n is sufficiently large), whose proofs depend
on the above structural lemmas.
Theorem 4.1. Let G be a connected graph of order n > 6k + 5, where §(G) >k > 1. If
W(G) < W(NF) or H(G) > H(NF), then G is Hamiltonian unless G = NF.
Proof. Since diam(N¥) = diam(LE) = 2, by Fact 1, we obtain that W(G') = n(n — 1) —
e(G') and H(G") = 3(e(G") + (3)), if G’ € {NE, Lk},

If W(G) < W(NF), then by Fact 1 (i), we have e(G) > n(n — 1) — W(NF) > n(n —
1) — (n(n — 1) — e(NF)) = e(NF) = ("}F) + k* > (" 57") + (k + 1) when n > 3k + 2.



-159-

If H(G) > H(NF), then by Fact 1 (ii), we also have e(G) > 2H(NF) — (1) = e(NF) =
(";F)+ k> ("5 +(k+1) when n > 3k +2. By Lemma 4.1, G is Hamiltonian unless
G C LF or NF.
If G S NF, then W(G) > W(NF) and H(G) < H(N}), a contradiction. Recall that
(NF) = (";k) + k* and e(LF) = (";k) + @ Thus e(NF) > e(LF) when k& > 2 and
e(NF) = e(LF) when k = 1. Hence W(LF) > W(NF) when k > 2 and W(LL) = W(N});
H(LE) < H(NF) when k > 2 and H(L.) = H(N}). So, if G C L% and k > 2, then
W(G) > W(LE) > W(N*) and H(G) < H(LF) < H(NF), a contradiction. It follows
G = NF when k > 2 or k =1 (in this case, G = L} = N}). This completes the proof. M

e

)
)

Theorem 4.2. Let G be a connected graph of order n > 6k + 10, where 6(G) > k > 1. If
W(G) < W(NF) or H(G) > H(N¥), then G is traceable unless G = N*.

Proof. Since diam(N¥) = 2, by Fact 1, we obtain that W (G’) = n(n — 1) — ¢(G") and
H(G") = L(e(G) + (3)), if G = NE.

If W(G) < W(NF), by Fact 1 (i), we have e(G) > n(n — 1) = W(N¥) = n(n - 1) —
(n(n — 1) —e(NE) = e(NF) = ("5 + k(k + 1) > (") + (k + 1)(k + 2) when
n > 3k+4. If H(G) > H(N¥), by Fact 1 (ii), we also have e(G) > 2H(N*) — () =
e(NE) = ("5 N +k(k+1) > ("5 + (k+ 1)(k +2) when n > 3k +4. By Lemma 4.2,
G is traceable unless G C L,’,‘; or V! )ﬁ Since G is connected, we have G C N fi

If G ¢ N¥ then W(G) > W(N*) and H(G) < H(N¥), a contradiction. Thus,

G = NEF. This completes the proof. |

5 Wiener index, Harary index and Hamiltonicty of
connected balanced bipartite graphs

In this section, we will prove sharp results on Hamiltonicity of connected balanced bi-
partite graphs with given minimum degree, in terms of Wiener index and Harary index.
Our proofs depend on the following structural result due to Li and Ning, which refines a

theorem of Moon and Moser [12].

Lemma 5.1 (Lemma 5 in [7]). Let G be a balanced bipartite graph of order 2n. If
0(G)>k>1,n>2k+1 and
e(G) >n(n—k—1)+ (k+1)%
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then G is Hamiltonian unless G C B,’j.

In the above theorem, we define B¥ (1 < k < n/2) as the graph obtained from K,
by deleting all edges in its one subgraph K, ;. Note that e(B¥) = n(n — k) + k* and
BF is not Hamiltonian.

The following useful fact is simple, and we omit the proof.

Fact 2. Let G be a connected balanced bipartite graph of order 2n. Then there holds:
(i) e(G)+3(n*—e(G)) +4(5) < W(G), where the equality holds if and only if for any
two vertices x,y, if x,y are in different partition sets then d(x,y) < 3, and if z,y
are in the same partition set then d(z,y) = 2;
(i) e(G) + 1(n* —e(@)) + (3) > H(G), where the equality holds if and only if for any
two vertices x,y, if x,y are in different partition sets then d(x,y) < 3, and if z,y

are in the same partition set then d(z,y) = 2.
The following theorem gives a solution to Problem 2.

Theorem 5.1. Let G be a connected balanced bipartite graph of order 2n, where n > 2k+2
and §(G) > k> 1. If W(G) < W(B¥) or H(G) > H(BF), then G is Hamiltonian unless
G =B

Proof. By Fact 2, we have W (B¥) = 5n% — 2n — 2e(B¥) and H(BF) = e(B¥) + 3(n? —
e(BE) + (3). If W(G) < W(BE), then e(G) > 3(5n% — 2n — W(G)) > 1(5n% — 2n —
W(BK) = e(BY). It H(G) > H(BY), then e(G) > e(BY). When n > 2k + 2, e(B) =
n(n—k)+k*>n(n—k—1)+(k+1)2 By Lemma 5.1, G is Hamiltonian unless G C B~.

If G ¢ B¥, then W(G) > W(B?F), a contradiction. This completes the proof. |

Since the bound in Theorem 5.1 is tight, some previous work (see Theorem 2.2 in [19])

in this direction is a direct corollary.

6 Concluding remarks

One may ask to study the traceability of connected bipartite graphs with given minimum
degree. We know such a graph should be balanced or nearly-balanced. Recently, Li
and Ning [8] studied spectral conditions for traceability of bipartite graphs with given

minimum degree. The study of traceability of bipartite graphs in terms of Wiener index
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and Harary index is very similar to the ones in [8]. Some structural theorems developed
in [8] about traceability of connected balanced and nearly-balanced bipartite graphs will
play the central roles in proofs of these results. We omit the details and refer them to the

interested reader.
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