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Abstract

The Wiener index of a connected hypergraph is defined as the summation of dis-
tances between all pairs of vertices. We determine the unique k-uniform hypertrees with
maximum, second maximum and third maximum Wiener indices, as well as the unique
k-uniform hypertrees with minimum, second minimum and third minimum Wiener in-
dices, respectively. We also determine the unique hypertree with maximum Wiener index
among k-uniform hypertrees with given maximum degree and study two types of graft
transformations that increase the Wiener index.

1 Introduction

A hypergraph G consists of a vertex set V(G) and an edge E(G), where V(G) is nonempty,
and each edge e € E(G) is a nonempty subset of V(G). For an integer k > 2, we say
that a hypergraph G is k-uniform if every edge contains exactly k vertices. A (simple)
graph is a 2-uniform hypergraph. The degree of a vertex v in G, denoted by dg(v), is the
number of edges of G which contain v.

Hypergraph theory found applications in chemistry [4, 7, 8]. The study in [7] indicated
that the hypergraph model gives a higher accuracy of molecular structure description: the
higher the accuracy of the model, the greater the diversity of the behavior of its invariants.

For u,v € V(G), a path from u to v in G is defined to be a sequence of vertices and

edges (vo, €1, V1, - - -, Vp_1, €p, V) With all v; distinct and all e; distinct such that v;_1,v; € €;
fori = 1,...,p, where vy = u and v, = v. A cycle in G is defined to be a sequence of
vertices and edges (vo, €1,v1, ..., Up_1, €p, Up) With p > 2, all v; distinct except vy = v, and
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all e; distinct such that v;_1,v; € e; for i = 1,...,p. The value p is the length of this
path or cycle. If there is a path from u to v for any u,v € V(G), then we say that G is
connected.

Let G be a k-uniform hypergraph with V(G) = {v1,...,v,}. For u,v € V(G),
the distance between u and v is the length of a shortest path from w and v in G, de-
noted by dg(u,v). In particular, dg(u,u) = 0. The diameter of G is the maximum
distance between all vertex pairs of G. The Wiener index W(G) of G is defined as
the summation of distances between all unordered pairs of distinct vertices in G, i.e.,
W(@G)= ¥ da(u,v). Let Wg(u) = ¥ da(u,v). Then W(G) =1 ¥ We(u).

{uv}CV(G) veV(G) uweV(G)

The Wiener index of an ordinary (connected) graph has a long history [2, 5, 11, 13, 14]
since 1947 when Wiener introduced this parameter as the path number [16]. The empirical
Wiener’s definition has been formalized via the distance matrix by Hosoya [6]. The study
of transmission [12], average distance [1], and mean distance [3] of a connected graph is
essentially the study of Wiener index. The Wiener index of a (connected) hypergraph
was discussed in [9]. In a very recent paper, Sun et al. [15] computed the Wiener indices
of some special k-uniform hypergraphs, and provided a lower bound for Wiener index of
a k-uniform hypergraph with given circumference.

A hypertree is a connected hypergraph with no cycle. A k-uniform hypertree with m
edges always has 1+ (k — 1)m vertices.

In this paper, we determine the unique k-uniform hypertrees with maximum, second
maximum and third maximum Wiener indices, as well as the unique k-uniform hypertrees
with minimum, second minimum and third minimum Wiener indices, respectively and
we also determine the unique hypertree with maximum Wiener index among k-uniform

hypertrees with given maximum degree, and study two types of graft transformations that

increase the Wiener index.

2 Preliminaries

Let G be a connected hypergraph. For A C V(G), let Wg(4) = > dg(u,v). For
{u,w}CA
A,BCV(G)with ANB=0,1let Wg(A,B)= 5. dg(a,b).
a€AbeB
For u € V(G), let G — u be the sub-hypergraph of G obtained by deleting u and all

edges containing u. We remark that in the literature this is sometimes denoted by strongly
deleting the vertex u. For e € E(G), let G — e be the sub-hypergraph of G obtained by
deleting e. For X C V(G) with X # &, let G[X] be the sub-hypergraph induced by X,
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i.e., G[X] has vertex set X and edge set {e C X : e € E(G)}.

A path (vg,e1,v1,...,0s-1,€5,0s) in a k-uniform hypergraph G is called a pendant
path at vp, if dg(ve) > 2, dg(v;) =2 for 1 <i < s—1,dg(v) =1for v € e\ {vi—1,vi}
with 1 <4 < s, and dg(vs) = 1. An edge e = {wy,...,wy} in G is called a pendant edge
at wy if dg(wy) > 2, dg(w;) = 1 for 2 < i < k. A vertex of degree one is known as a
pendant vertex.

If P is a pendant path of length s at u in a hypergraph G, we say G is obtained from
H by attaching a pendant path of length s at u with H = G[V(G) \ (V(P) \ {u})]. If P
is a pendant path of length 1 at u in G, then we also say that G is obtained from H by
attaching a pendant edge at .

Let G be a k-uniform hypergraph with u,v € V(G) and ey,...,e, € E(G) such that
u€e,vée ande ¢ E(G)for 1 <i<r, where ¢ = (¢; \ {u}) U {v}. Let G’ be the
hypergraph with V(G') = V(G) and E(G') = (E(G) \ {e1,...,e-}) U{el,...,e.}. Then

we say that G’ is obtained from G by moving edges ey, ..., e, from u to v.

3 Hypergraph transformations increasing Wiener in-
dex

In the following, we propose two types of graft transformations that increase the Wiener
index.

Let G be a connected k-uniform hypergraph with u,v € e € E(G). For nonnegative

integers p and ¢, let Gy,,(p, ¢) be the k-uniform hypergraph obtained from G by attaching
a pendant path of length p at u and a pendant path of length ¢ at v.
Proposition 3.1. Let G be a connected k-uniform hypergraph with |E(G)| > 2, u,v €
e € E(G) and dg(u) = 1. For integers p > q > 1, W(Guw(p,q)) < W(Guo(p+1,q —1)).
Proof. Let H = Gu,(p,q). Let P = (u,e1,u,...,up1,6€p,up) and Q = (v,ef,vy,...,
V-1, €,,v,) be the pendant paths of H at « and v of lengths p and ¢, respectively.

Let H* be the hypergraph obtained from H by moving edge e; from v, 1 to u,. It is
easily seen that H* = G, ,(p+1,¢—1). Let Vi = e UV (P)U(V(Q)\ (e, \ {v4-1})). Note
that

Wa(VH)\ (eg \ {vg-1})) = Wi (V(H)\ (¢ \ {vg-1})),
Wi(eg\{vg-1}) = Wr(eg\ {vg-1}),
Wi (e \ {vg-1}, V1) Wi (e \ {vg-1}, V),
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and

Wi (eq \ {vg—1}, V(H) \ Vi) < W (e)\ {vg1}, V(H) \ V1).
The only inequality holds because as we pass from H to H*, the distance between a vertex
of e \ {vg_1} and a vertex of V/(H) \ Vi is increased by at least 1, which follows from the
fact that dg(u) = 1. Since

W(H) = WalV(H)\ (€ {oa}) + War(e, \ {op})
FWa (e, \ o1}, Va) + W€, \ {oga}, V) \ VA)

and
W(H") = Wy-(V(H)\ (€5 \ {vg-1})) + Wa= (e \ {vg-1})
FWa (€5 \ {vg-1}, Vi) + Wi (e \ {vg—1}, V(H) \ V1),

we have
W(H) = W(H") = Wg(eg \ {vg-1}, V(H) \ Vi) = Wi (eg \ {vg-1}, V(H) \ V1) <0
ie., W(H) < W(H*). [ |

For positive integers p, ¢, and a k-uniform hypergraph G, let G, (p, ¢) be the k-uniform
hypergraph obtained from G by attaching two pendant paths of lengths p and ¢ at u,
respectively, and G, (p,0) be the k-uniform hypergraph obtained from G by attaching a
pendant path of length p at w.

Proposition 3.2. Let G be a connected k-uniform hypergraph with |E(G)| > 1 and
u € V(G). Forintegersp > q > 1, W(Gu(p,q)) < W(Gu(p+1,q —1)).
Proof. Let H = Gyu(p,q). Let P = (u,eq,u1,...,Up_1,€p,up) and Q = (u, e}, v1,...,
V-1, €, Vg) be the pendant paths of H at u of lengths p and g, respectively.

Let H* be the hypergraph obtained from H by moving edge e; from v, ; to u,. It is
easily seen that H* = G,(p+1,¢—1). Let Vi = V(P)U(V(Q)\ (¢, \ {vg_1})). Note that

Wy (V(H)\ (e, \ {vg1})) = Wa(V(H)\ (¢ \ {vg1})),

Wi (eg \ {vg-1}) Wi (e \ {vg-1}),
Whr(eg \ {vg-1} Vi) = Wha(eg \ {vg-1} V1),

and

Wi (eq \ {vg-1}, V(H) \ Vi) < W= (ef \ {vg1}, V(H) \ V1)
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The only inequality holds because as we pass from H to H*, the distance between a vertex

of e, \ {vg_1} and a vertex of V/(H) \ Vi is increased by at least 1. Since

W(H) = Wu(V(H)\ (g \ {vg1})) + Waleg \ {vg1})
AW (eg \ {vg-1} Vi) + W (eg \ {vg-1}, V(H) \ V2)

and

W(H") = Wy (V(H)\ (€, \ {vg1})) + W (€ \ {vg1})
AW (e \ {vg-1}, Vi) + W= (€ \ {vg 1}, V(H) \ V1),

we have
W(H) = W(H") = Wy(eg \ {vg-1}, V(H) \ Vi) = Wy (eg \ {vg—1}, V(H) \ V1) <0
ie., W(H) < W(H*). |

For a k-uniform hypertree G with V(G) = {v1,...,v,}, if E(G) = {e1,..., ey}, where
€ = {VG-1)(k-1)415 - - - » V(i—1)(k—1)4k ) for ¢ = 1,...,m, then we call G a k-uniform loose
path, denoted by P, ;.

For a k-uniform hypertree G of order n, if there is a disjoint partition of the vertex set
V(G) ={u}UViU--- UV, such that |V}| =---=|V;,| =k — 1, and E(G) = {{u}UV;:
1 < i < m}, then we call G is a k-uniform hyperstar (with center ), denoted by S, 4.
In particular, Sy is a hypergraph with a single vertex and Sy is a hypergraph with a

single edge.

n—1
k—17

For positive integers A;n with 1 < A < let Bﬁk be the k-uniform hyper-
tree obtained from vertex-disjoint hyperstar Sia—_1yx—1)+1,x With center u and loose path
P, (a-1)(k-1),x With an end vertex v by identifying u and v. In particular, Bnk = P,y if
A=1,2

In the proof of the following theorem, we follow the proof given in [10].

Theorem 3.1. Let T be a k-uniform hypertree on n vertices with mazimum degree A,

where 1 < A < 2=L. Then W(T) < W(Bﬁk) with equality if and only if T = Bn,C

Proof. 1t is trivial if A = 1. Suppose that A > 2. Let T be a k-uniform hypertree on n
vertices with maximum degree A having maximum Wiener index.

Let u be a vertex of T' with degree A.
Case 1. A > 3.
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Suppose that there are at least two vertices of degree at least 3 in 7. Choose a vertex
v of degree at least 3 such that dp(u,v) is as large as possible. Let Ti,... Ty, be
the vertex disjoint sub-hypergraphs of 7" — v with Ug{“)\/(Ti) = V(T) \ {v} such that
T[V(T;) U {v}] is a k-uniform hypertree for 1 < i < dr(v). Suppose without loss of
generality that u € V(Ty). If kK = 2, then T[V(T;) U {v}] is a pendant path at v for
2 < i < dp(v). Suppose that k& > 3 and T[V(T;) U {v}] is not a pendant path at v for
2 < i < dr(v). Then there is at least one edge in T[V(T;) U {v}] with at least three
vertices of degree 2. We choose such an edge e = {wy, ..., wy} by requiring that dr(v,w;)
is as large as possible, where dr(v,w;) = dr(v,w;) — 1 for 2 < j < k. Then there are two
pendant paths at different vertices of e, say P at ws; and @ at wy, where 2 < s <t < k.
Let p and ¢ with p,q > 1 be the length of P and @, respectively. Then T = H,,_ ., (p, q)
with H = T[V/(T) \ (V(PUQ) \ {ws,w})]. Note that dg(ws) = dg(w;) = 1. Suppose
without loss of generality that p > q. Obviously, T" = Hy, w,(p + 1,q — 1) is a k-uniform
hypertree with maximum degree A. By Proposition 3.1, we have W(T") > W(T), a
contradiction. Thus T[V(T;) U {v}] is a pendant path at v for 2 <4 < dp(v) when k > 2.
Let I; be the lengths of the pendant path T[V(T;) U {v}] at v, where 2 < i < dr(v)
and [; > 1. Suppose without loss of generality that iy > l35. Then T' = G,(ls,l3), where
G =T[V(T)\ (V(T2) UV(T3))]. Note that T” = G, (ls+1,13—1) is a k-uniform hypertree
with maximum degree A. By Proposition 3.2, W(T") > W(T), a contradiction. Thus u
is the unique vertex of degree at least 3 in 7.

Let Gi,...,Ga be the vertex disjoint sub-hypergraphs of T — u with U2,V (G;) =
V(T)\ {u} such that T[V(G;) U{u}] is a connected k-uniform hypergraph for 1 <1 < A.
By similar argument as above, T[V(G;) U {u}] is a pendant path at u for 1 < i <
A. Suppose that there are at least two pendant paths of length at least 2 at u, say
T[V(G;) U{u}] and T[V(G,) U{u}] are such two paths with lengths p and ¢ respectively,
where 1 <i < j <A. Then T = H,(p,q) with H =T[V(T)\ (V(G;) UV(G}))]. Suppose
without loss of generality that p > ¢. Then 7" = H,(p+1,¢—1) is a k-uniform hypertree
with maximum degree A. By Proposition 3.2, we have W (T") > W(T), a contradiction.
Thus there is at most one pendant path of length at least 1, implying that 7' = Bﬁk.
Case 2. A =2.

It is trivial if & = 2. Suppose that & > 3 and T % B ,. Then there is an edge in
T with at least three vertices of degree 2. We choose such an edge e = {wy,...,w} in

T by requiring that dr(u,w,) is as large as possible, where dy(u,w) = dp(u,w;) — 1 for
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2 < j < k. Then there are two pendant paths at different vertices of e, say P at w; and
Q@ at wy, where 2 < j <[ < k. Let p and ¢ with p,q > 1 be the lengths of P and @,
respectively. Then T' = H,, ., (p, q) with H = T[V(T)\ (V(PUQ)\ {w;,w;})]. Note that
du(w;) = dg(w;) = 1. Suppose without loss of generality that p > ¢. Obviously, 7" =
Hy,w,(p+1,q—1) is a k-uniform hypertree with maximum degree 2. By Proposition 3.1,
we have W(T") > W(T), a contradiction. Thus there are at most two vertices of degree
2 in each edge, implying that 7" = be’k.

Combining Cases 1 and 2, we complete the proof. |

4 Hypertrees with large Wiener indices

In this section, we determine the unique k-uniform hypertrees with maximum, second

maximum and third maximum Wiener indices, respectively.

Theorem 4.1. For Z—j > 1, let T be a k-uniform hypertree on n vertices. Then W (T) <
W (P, ;) with equality if and only if T = P, .

n—1

=7 = 3. Let T be a k-uniform hypertree

Proof. 1t is trivial if ;::} = 1,2. Suppose that

on n vertices with maximum Wiener index. Let A be the maximum degree of T'. Then
by Theorem 3.1, T' = Bﬁk. Suppose that A > 3. Then by Proposition 3.2, we have

W(B2,) < W(B2;"), a contradiction. Then A =2, and thus T2 B2, = P, ;. |

For k > 3, zj > 3 and a loose path P,_j11 = (uo, €1, ULy ..., e%,u%>, let F,, \ be

the k-uniform hypertree obtained from P, _j;1, by attaching a pendant edge at a vertex

ineg \ {ug,us}. If Z—:} =3, then F,,; = P, ;. Let F,o = ng.

Lemma 4.1. Suppose that k >3 and 2=+ > 3. Then W(B3 ) < W(Fn).

Proof. 1f Zf’i = 3, then the result follows from Theorem 4.1. Suppose that Z—j > 4. Let
T = F,j. Let v € ez \ {u1,uz} with dp(v) = 2, and let e be the pendant edge at v in
T. Let T" be the hypergraph obtained from T by moving e from v to u;. Obviously,
T'= B3, Let Vi = V(T)\ (e \ {v}). Note that

Wr(Vi) = Wp(Vh),
Wr(e\{v}) = Wr(e\{v}),
Wr(e\ {v}, i\ (ex \{w1})) Wr(e\ {v}, i\ (ex \ {uw1})),

and

Wr(e\ {v},er \ {ur}) > Wrr(e\ {v},ex \ {ur}).
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The only inequality holds because as we pass from T to T”, the distance between a vertex
of e\ {v} and a vertex of e; \ {u;} is decreased by 1. Since
W(T) = Wr(Vi) + Wr(e\ {v}) + Wr(e\ {v}, Vi \ (e1 \ {w1}))
+Wr(e\ {v} e\ {wi})

and
W(T") = Wp (Vi) +Wr(e\{v}) + Wr(e\ {v},Vi\ (e \{wm}))
+WT’(€ \ {?}}, €1 \ {“1})7
we have
W(T) = W(T") = Wr(e\ {v} er \ {w}) = Wree\ {v} er \ {w}) > 0,
e, W(T") < W(T). |

Theorem 4.2. For % >4, let T be a k-uniform hypertree with n vertices. Suppose that

T % P,i. Then W(T) < W(F,) with equality if and only if T = F, .

Proof. Let T be a k-uniform hypertree on n vertices nonisomorphic to P, ; with maximum
Wiener index.

Let A be the maximum degree of 7. Then A >3 if k=2 and A > 2if k > 3.

If A > 3, then by Theorem 3.1, T' & Bﬁk. Suppose that A > 4. Note that Bﬁ,:l >3
P, i. By Proposition 3.2, we have W(T) = W(Bfk) < W/(Bf:f), a contradiction. Thus
A=2or3 andif A =3, then T = B3 .

Suppose that A = 2. Then k& > 3. Since T' 2 P, , there is at least one edge with at
least three vertices of degree 2. Suppose that there are at least two such edges. Let u be a
vertex of degree 1 in 7. Choose an edge e = {wy, ..., wg} in T with at least three vertices
of degree 2 such that dr(u,w:) is as large as possible, where dr(u,w;) = dr(u,w;) — 1
for 2 < ¢ < k. Then there are two pendant paths at different vertices of e, say P at w;
and @ at wj, where 1 <i < j < k. Let p and ¢ with p,q > 1 be the lengths of P and
Q, respectively. Then T' = H,, ., (p, q) with H = T[V(T)\ (V(PU Q) \ {w;, w;})]. Note
that dy(w;) = du(w;) = 1. Suppose without loss of generality that p > ¢. Obviously,
T = Hep, (p+ 1,9 — 1) is a k-uniform hypertree that is not isomorphic to P,j. By
Proposition 3.1, we have W (T') < W(T"), a contradiction. Thus e is the unique edge with

at least three vertices of degree 2.
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Suppose that there are four vertices, say wy, wy, w3 and wy of degree 2 in e. Let Q; be
the pendant path of length I; at w;, where [; > 1 for i = 1,2,3,4. Suppose without loss of
generality that iy > ly. Let G = T[V(T)\(V(Q1UQ2)\{w1, w2})]. Then T = Gy, 4, (11, l2)-
Note that dg(wi) =1 and T” = Gy, uw, (l1 + 1,12 — 1) is a k-uniform hypertree that is not
isomorphic to P, . By Proposition 3.1, W(T') < W(T"), a contradiction. Thus there are
exactly three vertices of degree 2 in e, say wy, ws, and ws.

Let @; be the pendant path at w; with length /;, where ¢ = 1,2,3 and [; > 1. Suppose
without loss of generality that [y > [y > [3. Suppose that Iy > Iy > 2. Let G =
TIV(T)\ (V(Q1UQ2) \ {w1,w2})]. Then T = Gy, w,(l, l2). Note that dg(wq) = 1 and
T* = Guyw,(lh + 1,15 — 1) is a k-uniform hypertree that is not isomorphic to P, ;. By
Proposition 3.1, W(T) < W(T*), a contradiction. Thus there are at least two of Q1, Q2
and Q3 with length 1. It follows that T'= F), .

By Lemma 4.1, W(B3 ) < W(Foy). Thus T = F . |

For k > 3, Z%} > 5 and a loose path P,_ji1 % = (uo,el,uh e ,e%.,u%), let E,
be the k-uniform hypertree obtained from P, _ji1, by attaching a pendant edge at a

vertex in ez \ {uz, U‘i}

Lemma 4.2. Suppose that k > 3 and =% > 6. Then W(B3,) > W(En) with equality
if and only if Z:i =06.

Proof. Let T = E, ;. Let v € ez \ {ug,us} with dr(v) = 2, and let e be the pendant
edge at v in T. Let T” be the hypergraph obtained from 7' by moving e from v to u;.
Obviously, 7" = B3 . Let Vi = V(T) \ (¢ \ {v}). Note that

Wr(Vi) = Wi(Va),

Wr(e\ {v}) Wri(e\ {v}),

and
Wr(e\ {v},eaUes) = Wr(e\ {v}, ea Ues).

As we pass from T to T”, the distance between a vertex of e\ {v} and a vertex of 1\ {u; } is
decreased by 2, and the distance between a vertex of e\ {v} and a vertex of V}\ (e;UeaUez)

is increased by 1. Note also that [V} \ (e; Uez Ues)| = (7= — 4) (k — 1). Then

Wr(e\ {v} er \ {ur}) = Wr(e\ {v},es \{w}) = 2le\{v}]-les \{u1}|
2(k —1)2,
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and
Wile\ {0} Va\ (61 Uea Ues)) — Wi e\ {0} i\ (ex Uea U )
= SO @ e U] = - (121 1) (- 17
Since
W) = We(V)+We(e\ {o}) + Wr(e\ (v}e2U )
FWae\ fuhen\ fn) + Wr(e\ {0}V \ (e U s Uey))
and
W) = WilVi) + Wale\ o) + Wr(e\ {v},e2Uey)
Ao\ {oher \ () + Wil \ {0}, Vi \ (e Uea Ucy),
we have
W)~ W(T) = Wile\ {oh.er\ i) + We(e\ {6}.Vi \ (e Ues Uey)
“Wrle\ {oheer\ {m}) = Warle\ {0}, K\ (e Ues Uea)
= (67 Z:i) (k=12
and thus the result follows. |

Let F,,’L,2 be the tree obtained by attaching a pendant edge at vertex vz of the path
v1...Up—1. Let F; 5 be the tree obtained by attaching two pendant edges at vy and v,_4

of the path vy ...v,_4, respectively.

Theorem 4.3. For Zj > 6, let T be a k-uniform hypertree on n vertices. Suppose that
T % Fop, Pog. Then

(i) if k =2, then W(T') < W(F}, ,) with equality if and only if T = F}, 5

(it) if k > 3 and %= = 6, then W(T) < W(B3 ) = W(E,x) with equality if and only
if T = B?L,k orT=E,;

(i) if k > 3 and Zj > 6, then W(T) < W(B2 ) with equality if and only if T = ng

Proof. Let T be a k-uniform hypertree on n vertices nonisomorphic to P, and F, ; with
maximum Wiener index.

Let A be the maximum degree of 7. Obviously, A > 2.

Suppose that A > 4. Then by Theorem 3.1, T = Bﬁk. Note that F,’L,2 2 Fok, Py for
k =2 and Bﬁ;l % F, k, Poy for k > 3. By Proposition 3.2, we have W(T') = W(Bﬁk) <
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W(F,,) if k =2 and W(T) = W(BS,) < W(B2,") for k > 3, a contradiction. Thus
A =2or3.

Suppose that k& = 2. Then A = 3. Note that T' 2 F, 5, P,>. By similar argument
of Case 1 in the proof of Theorem 3.1, there are at most two vertices of degree 3 in 7.
If there is a unique vertex of degree 3 in 7', then by Proposition 3.2, T' is obtainable
by attaching a pendant edge at a internal vertex of a path on n — 1 vertices, and thus
T = F} ,. If there are exactly two vertices of degree 3 in T, then by Proposition 3.2, T"is
obtainable by attaching two pendant edges each at an internal vertex of a path on n — 2
vertices, and thus T = F,. By direct calculation, we have W (F},,) > W(Fy,). This
proves (i).

Suppose in the following that & > 3. If A = 3, then by Theorem 3.1, T = B3 .

Now suppose that A = 2. Since T' 2 P,y, there is at least one edge with at least
three vertices of degree 2 in T'. Suppose that there are at least two such edges. Let u be a
vertex of degree 1 in 7. Choose an edge e = {wy, ..., w;} in T with at least three vertices
of degree 2 such that dr(u,ws) is as large as possible, where dr(u,w;) = dr(u,w;) — 1
for 2 < i < k. Then there are two pendant paths at different vertices of e, say P at
w; and @ at w;, where 1 < i < j < k. Let p and ¢ with p,q > 1 be the lengths of P
and @, respectively. Then T' = Hy, ., (p,q) with H = T[V(T) \ (V(P U Q) \ {w;, w;})].
Note that dy(w;) = du(w;) = 1. Suppose without loss of generality that p > ¢. Note
that TV = Hoy, (p+1,¢g — 1) is a k-uniform hypertree that is not isomorphic to P, .
If 7 = Hap, o (p +1,¢g — 1) is also not isomorphic to F,, then by Proposition 3.1,
we have W(T) < W(T"), a contradiction. Suppose that 7" = Hy,w;(p + 1,4 — 1) =
F, % Then T is isomorphic to the k-uniform hypertree obtained from P,_s—1y)% =
(uo,el,ul, . ,u%_g,e%_mu%_a by attaching a pendant edge ¢’ at a vertex w' in
e \ {u1,us} and attaching a pendant edge €¢” at a vertex w” in e; \ {u;_1,u;}, where
3<1< Z—j — 3. Suppose without loss of generality that 7' is such a hypertree. By
moving edge €” from w” to up in T, we get a k-uniform hypertree T”. Let L be the unique

path in T from wug to w” and Vi = V(T) \ (V(L) Ue' U e”)‘ Then
We(VT)\ @\ (') = W VD) (\ {u"}),
W\ {0"}) = Wan(e\ {u"}),
Wi\ {w"} V(L)) = Wi\ {u"}, V(L)),
W'\ {0} \ {u'}) = Wra(e'\ {0} &\ u'}) = (i = 3)(k — )2,
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and
n—1
k—1

Wale\ {(u"}. Vi) — Wia (e \ {u”}.Vh) = — ( . 2) (i~ 1)k~ 1)

The last two equalities hold because as we pass from T to 7", the distance between a
vertex of ¢\ {w”} and a vertex of ¢’\ {w'} is decreased by ¢ — 3, and the distance between

a vertex of ¢” \ {w"} and a vertex of V) is increased by ¢ — 1. Note that

W(T) = Wr(V(T)\ (" \ {w"})) + Wr(e" \ {w"}) + Wr(e” \ {w"}, V(L))
+Wr(e" \ {w"}, e\ {w'}) + Wr(e” \ {w"}, V1),
and
W(T") = Wrn(V(T)\ (" \ {w"})) + Wrn(e" \ {w"}) + Wrn(e” \ {w"}, V(L))
FWrn (" \ {w"}, €\ {w'}) + Wrn(e” \ {w"}, V1)
Then
W(T)—W(T") = Wg(e"\ {w"}, e\ {w}) +Wr(e"\ {w"}, V1)
—Wrn(e" \{w"}, €'\ {w'}) = Wrn(e"\ {w"}, V1)
= (i—3)(k—-1)?— (”71 71'72) (i —1)(k — 1)

E—1
(i—=3)(k—=12=(-1)(k-17%<0

IN

and thus W(T") > W(T), a contradiction. Thus e is the unique edge with at least three
vertices of degree 2.

Suppose that there are four vertices wy, wq, w3 and wy of degree 2 in e. Let Q; be the
pendant path of length [; at w;, where [; > 1 fori = 1,2. Suppose without loss of generality
that [y > lp. Let G = T[V(T)\(V(Q1UQ2)\{w1, ws})]. Then T = Gy, w, (11, 12). Note that
de(wy) = 1 and T* = Gy u, (Il + 1,15 — 1) is a k-uniform hypertree that is not isomorphic
to P,y If T* is also not isomorphic to F,j, by Proposition 3.1, W(T) < W(T*), a

contradiction. If 7% = F, i, then T is isomorphic to the k-uniform hypertree obtained

and ¢’ at y and 2z in ey \ {u1, us}, respectively, where y # z. Note that T' = H, .(1,1)
with H = T[V(T)\ ((¢Ue”)\ {y, z})]. Let T** = H,.(2,0). Note that T** = E, ;. By
Proposition 3.1, we have W (T**) > W(T'), a contradiction. Thus there are exactly three

vertices of degree 2 in e, say wy,ws and ws.
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Let Q; be the pendant path at w; with length /;, where ¢ = 1,2,3 and [; > 1. Suppose
without loss of generality that I; > Iy > I3 > 2. Let G = T[V(T)\ (V(Q1UQ2)\{w1, wa})].
Then T = Gy, wy(lh, 12). Note that dg(wr) = 1 and T* = Gy, (l1+1,lo—1) is a k-uniform
hypertree that is not isomorphic to P, ; and F), . By Proposition 3.1, W(T) < W(T™), a
contradiction. Thus there is at least one of @1, Q2 and @3 with length 1.

As above, T is a k-uniform hypergraph obtained from P,_ji1; = (vo,el,'ul,...,
Unzi_y,€nz1 1,1)117}_1) by attaching a pendant edge to a vertex of e; \ {v;_1,v;} with
3<i< = -3

Suppose that T’ %‘“ E, ;. Then there is a pendant edge e* at a vertex w in e; \ {v;_1,v;},
where 4 <1 < 775 —4. Since T' 2 F, 4, it is trivial if ;=3 = 6,7. Suppose that Z—j >8in
the following. By moving the pendant edge e* from w to a vertex, say v in e3 \ {ve, v},
we get a k-uniform hypergraph T*. Note that 7" = E, ;. Let P’ be the unique path from
vtowand Vo =V (T)\ (V(P)Ue; UeyUe*). Then

Wr(V(T)\ (" \ {w})) Wr-(V(T)\ (e \ {w})),
Wr(e"\{w}) = Wr-(e" \ {w}),
Wr(e"\ {w}, V(P")) Wr- (e \ {w}, V(P")),
Wr(e\ {w}, e1 U (e2\ {uz})) = W (e \ {w}, e1 U (e2 \ {ua})) = 2(i = 3)(k — 1)°,

and

W\ {wh 12) = Wi (e \ (), 10) = - (11 —i=1) =3k - 11

The last two equalities hold because as we pass from T to T™, the distance between a
vertex of e* \ {w} and a vertex of e; U (e5 \ {ua}) is decreased by ¢ — 3, and the distance

between a vertex of e* \ {w} and a vertex of V3 is increased by i — 3. Note that

W(T) = Wr(V(T)\ (" \ {w})) + Wr(e"\ {w}) + Wr (e \ {w}, V(P'))
+Wr(em\ {w},e1U (€2 \ {ua})) + Wr (e \ {w}, V2)
and
W(T™) = Wr-(V(T)\ (" \ {w})) + Wr- (e \ {w}) + Wre(e"\ {w}, V(P'))
+Wre (e \ {w}, e1 U (€2 \ {u2})) + Wr=(e* \ {w}, V2).

Then

W(T) = W(T") = Wr(e"\{w},e1 U (e \ {u2})) + Wr(e \ {w}, V)
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=Wr-(e" \ {w}, e1 U (e2 \ {uz})) — Wr-(e" \ {w}, V2)
= 26-3)(k—1)2— <"‘1—¢—1) (i —3)(k — 1)2

k—1

(3+z’—%) (i—-3)k—-1)?%<0,

and thus W(T™) > W(T'), a contradiction. Therefore T = E, ; if A = 2.
Now we have proved that T = B3, or T = E, if K > 3. Thus the results (ii) and

1,

(iii) follow from Lemma 4.2. |

5 Hypertrees with small Wiener indices

In this section, we determine the unique k-uniform hypertrees with minimum, second

minimum and third minimum Wiener indices, respectively.

Theorem 5.1. For Zf’ll > 1, let T be a k-uniform hypertree with n vertices. Then

W(T) > W(Snx) with equality if and only if T = S, .

Proof. Tt is trivial if Z%} < 2. Suppose that Z—:ll > 3. Let T be a k-uniform hypertree on
n vertices with minimum Wiener index.

Let d be the diameter of 7. Obviously, d > 2. Suppose that d > 3. Let P =
(vo, €1,01, . - ., V4—1,€4,v4) be a diametral path of T. Let E be the set of edges containing
vg—1 except eq_1, Fy be the set of vertices in those edges in E, and E] = E; \ {vq_1}. By
moving each edge in F from vy 1 to vg_2 in T, we get a k-uniform hypertree 7", Let @

be the set of vertices in e,_; and pendant edges at each vertex in eq_1 \ {v4—2,va—1}. Let

V =V/(T). Note that
Wr(E) = Wp(E),
Wr(V\E) = Wn(V\E)
WT('ELQ) = WT’(ELQL

and

Wr(EyL VA (EyUQ)) > Wr(ELL VA (BT UQ)).

The only inequality holds because as we pass from T to 7", the distance between a vertex

of Y} and a vertex of V'\ (E] U Q) is decreased by 1. Since

W(T) = Wr(Ey) +Wr(V\ EY) + Wr(E{, Q) + Wr(ELV\ (BT UQ))
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and
W(T') = Wr(E}) + Wr(V\ Ey) + W (B Q) + W (B VA (B UQ)),
we have
W(T) = W(T) = Wi (BLV\ (S UQ)) — Win(BL V\ (B UQ)) >0,
and thus W(T") < W(T), a contradiction. Thus d = 2, implying that 7" = S, ;. |

For % >3and 1 <a < {%J, let Dy, o be the k-uniform hypertree obtained
from vertex-disjoint Sg(k—1)4+1,6 With center u and Sy, _g_a(k—1)4+1,& With center v by adding

k — 2 new vertices wy, ..., w,_o and an edge {u,v,wy, ..., wE_o}.

Lemma 5.1. For2 < a < | 25|, W(Duga) > W(Dnsa 1),

Proof. Let b = Zf”f —a. Let u and v be the vertices of D, ;, with degrees a + 1 and
b+ 1, respectively. Let E(Dyx,) = E(u) U E(v) Ue, where e = {u,v,ws, ..., w2}, and
E(u), E(v) are respectively the set of edges containing u, v except e. Let E;(u) and E;(v)
be the set of vertices in those edges of E(u) and E(v), respectively. By moving an edge

€ € E(u) from u to v, we get Dy q—1. Let V =V (D, 4). Note that

WDn,k,u(e/ \ {u}) WDn,k,lkl (6, \ {u})v
Wp, VA (EN{u})) = Wp, . (VN (€ {u})),
WDn,k,a (6/ \ {’LL}, 6) WDn,k,n—l (6/ \ {“‘}7 6)7

W, 0.\ {u}, Bi(0) \ {v}) = Wp, , ., (¢'\ {u}, Bi(v) \ {v}) = b(k — 1)%,

and

Wp,a (€ \{ut Bi(w) \ €) = Wp, , (€ \ {u}, Bi(w) \ €) = —(a — 1)(k — 1).
The last two equalities hold because as we pass from Dy, to Dy -1, the distance
between a vertex of €'\ {u} and a vertex of E;(v)\ {v} is decreased by 1, and the distance
between a vertex of €'\ {u} and a vertex of Fj(u) \ € is increased by 1. Since
W(Dnpa) = Wp, . (¢ \{u}) + Wp,, . (V\ (' \{u})) + Wp, (e \{u},e)
W, €\ {ul, Ex() \ {v}) + Wp, . (e"\ {u}, Ex(u) \ €)

and

W(Dnka-1) = Wp, .o (€\{u}) +Wp, (VAN {u}) +Wp, . (e"\{u},€)
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AWo, o (€N {ud, Er(0)\ {0}) + Wp, -, (€' {u}, Er(u) \ €),

we have
W(Dnka) = W(Dpsa-1)
= Wp,,. (e \{u}, Ex(v) \ {v}) + Wp,, (" \ {u}, Ex(u) \ ¢)
Wb, ks (€ \{u}, Er(v) \ {v}) = Wp, . (¢"\ {u}, Er(u) \ €)
= bk—-12-(a—1)(k-12>0,
and thus W (Dpe) > W(Dpga_1)- [ |

Theorem 5.2. For Z—j >3, let T be a k-uniform hypertree on n vertices. Suppose that

T 2 S, .. Then W(T) > W (D, ;1) with equality if and only if T = D, 1.

Proof. It is trivial if = = 3. Suppose that = > 4. Let T’ be a k-uniform hypertree on
n vertices nonisomorphic to S, ; with minimum Wiener index.

Let d be the diameter of T'. Since T' 2 S,, 1, we have d > 3. By similar argument as in
the proof of Theorem 5.1, we have d = 3. Let P = (vg, e, v1, €2, V9, €3,v3) be a diametral
path of T, and V = V(7).

Suppose that & > 3 and there is at least one pendant edge at a vertex u € es\ {v1,va}.
For w € {u, v}, let E(w) be the set of edges containing w except ez, E1(w) be the set of
vertices in those edges in E(w), and Ej(w) = Fj(w) \ {w}. By moving each edge in F(u)
from u to vy in T, we get a k-uniform hypertree T7". Obviously, 7" 2 S,, k. Note that

Wr(V\ Ei(u)) = Wr(V\ Ej(u),
Wr(Ey(u)) = Wr(Ej(u)),
Wr(Eq(u), V\ (E{(u) U E{(v2))) Wr (Ey(u), V\ (B (u) U E(v2))),

and
Wr(E{(u), By (v2)) > W (Ey(u), Ey(v2)).

The only inequality holds because as we pass from T to T”, the distance between a vertex

of F{(u) and a vertex of E{(vy) is decreased by 1. Since

W(T) = Wr(V\ Ej(uv)) +Wr(E)(u))
+Wr(Ei(u), V\ (B (v2) U B (u))) + Wr(E (u), B (v2))

and

W(T') = W (V\ (E}(w))) + Wr (£ (u))
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AW (B (u), V\ (Ei(v2) U Ey(u)) + Wr (B (u), Eq(v2)),

we have

W(T) = W(T") = Wr(E}(u), By (v2)) = Wi (B (u), By (v2)) > 0,

and thus W(T") < W(T), a contradiction. So there is no pendant edge at any vertex in
es \ {v1,ve}. Then T'= D, k., with 1 < a < I.Z(nk;—kl)J for & > 3. Obviously, this is also

true for £ = 2. By Lemma 5.1, we have T'= D, 1. ;. [ |

For Zf_i =4, let T" be a k-uniform hypertree on n vertices nonisomorphic to Sy, Dy .1
If k=2, then T = P,y If k >3, then T = F, , Py, and thus W(T) > W(F, ;) with

equality if and only if T = F,, ;. because we have by Theorem 4.1 that W (F,, ;) < W (P, x)-

Theorem 5.3. For Z—j > 5, let T be a k-uniform hypertree on n vertices. Suppose that

T 2 Sp g, Dujg. Then W(T) > W (Dyi2) with equality if and only if T = Dy, . .

Proof. Let T be a k-uniform hypertree on n vertices nonisomorphic to S, 5, D, 1 with
minimum Wiener index.

Let d be the diameter of T'. Since T' 2 S, 1, we have d > 3. By similar argument as
in the proof of Theorem 5.1, we have d < 4.

In the following we will show that d = 3. Suppose that d = 4.

Suppose that k = 2. Let P = vguivov3v4 be a diametral path of T'. Suppose without
loss of generality that dr(vi) > dr(vs). By identifying v and vz into ve and attaching a
new pendant vertex vs at vs, we get a tree 7. Obviously, T" 2 S,2. Suppose first that
T" = D, 1. Then T is the graph obtained from wvyv vev3vs by attaching n — 5 pendant
vertices at ve. By direct calculation, W(T') > W(D,22), a contradiction. Next suppose
that 7" 2 D, 1. Let 77 and T be the components of T — vov3 containing v, and wvs,

respectively. Let V; = V(T7) and Vo = V(13) \ {vs}. Obviously, |V;i| > 3. Then

W(T) = W(T') = Wr(V, {us}) = Wr(Va, {us}) + Wi (Va, Va) = Wi (V2 Va)
= IVl + 1Vl >0,

and thus W(T") < W(T), also a contradiction. Thus, in any case, d = 3, implying that
T = Dpa, with 1 < a < L"?*QJ Since T % Sy 2, Dy 2.1, we have by Lemma 5.1 that
72D,

Suppose that k > 3. Let P = (vo, €1, 01, €2, V2, €3, U3, €4,04) be a diametral path of

T. Suppose that there is at least one pendant edge at a vertex u € ey \ {vi,vs}. For
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w € {u,v}, let E(w) be the set of edges containing w except e, E1(w) be the set of
vertices in those edges in E(w), and Ej(w) = Ey(w) \ {w}. By moving each edge in E(u)
from w to vy in T, we get a k-uniform hypertree T”. Obviously, T" 2 S, i, Dy k1. Note

that
Wr(V\ Ei(u)) = Wpi(V\ E{(u)),
Wr(Ei(v) = Wri(Ey(u)),
Wr(E(uw),V\ (Bi(v) U Ei(u)) = Wr(Ej(w),V\ (EBi(v1) U Ej(u)),
and

Wi (Ey(u), By (v1)) > W (E{(u), By (v1)).

The only inequality holds because as we pass from T to T”, the distance between a vertex

of F{(u) and a vertex of E{(vy) is decreased by 1. Since

W(T) = Wr(V\ Ey(u)) + Wr(E(u))
AW (B (u), V\ (Ei(01) U Eq(w)) + Wr(Ej(w), B (v1))

and

W(T") = Wro(V\ (B{(w))) + Wrn (B (u))
AW (Bi(uw), V\ (B (01) U B (w))) + Wi (B (u), Ef (v1)),

we have
W(T) = W(T") = Wr(E{(u), E{(v1)) — Wrn(Ef(u), Ef(v1)) > 0,

and thus W (T") < W(T), a contradiction. So there is no pendant edge at any vertex in
e \ {v1,v2}. By similar argument as above, there is no pendant edge at any vertex in
es \ {va, v}

Let E(vs) be the set of edges containing vs except es, Ei(vs) be the set of vertices
in the edges of F(v3) and Fj(v3) = Ei(vs3) \ {v3}. Now by moving each edge in F(v3)
from v; to a vertex in ey \ {v1,v2} of T, we get a k-uniform hypertree 7*. Obviously,
T* 2 Sk, Dnga. Let E(vy) be the set of edges containing vy except es, Ey(v1) be the set
of vertices in the edges of E(v1), and Ej(v1) = E1(v1) \ {v1}. Note that

Wp(Ei(vs)) = Wy (Ej(v3)),
Wr(V\ Ej(vs)) = Wr(V\ Eq(v3))
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Wr(Ei(vs), V\ (Ey(v1) U Ej(v3))) = Wr-(Ei(vs),V\ (Ef(01) U Ei(vs))),
and
Wr(E{(vs), E{(v1)) > Wr- (B (v3), E{(v1))-
The only inequality holds because as we pass from T' to T*, the distance between a vertex
of Ej(v3) and a vertex of Ej(vy) is decreased by 1. Since
W(T) = Wr(Ei(vs)) + Wr(V\ Ei(vs))

+Wr(Ei(vs), V\ (Ei(01) U Eq(vs))) + Wr (B (vs), B (v1))

and
W(T*) = Wr-(Ei(vs)) + Wr-(V'\ Ei(v3))

+Wr- (Ei(vs), V \ (B (01) U E{(v3))) + Wr- (B} (vs), Ef(v1)),

we have

W(T) = W(T") = Wp(E;(v3), Ey(v1)) — Wre (B (vs), Ey(v1)) > 0,

and thus W(T*) < W(T), a contradiction. Thus d = 3.

By similar argument as above, we may show that there is no pendant edge at any
vertex in es \ {vy,vo}. Then T = D,y with 1 < a < Lz&—’fnJ Since T' 2 Sy s Dy ki1, We
have by Lemma 5.1 that T'= D,, ;. o. |
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