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Abstract

The Wiener index of a connected hypergraph is defined as the summation of dis-
tances between all pairs of vertices. We determine the unique k-uniform hypertrees with
maximum, second maximum and third maximum Wiener indices, as well as the unique
k-uniform hypertrees with minimum, second minimum and third minimum Wiener in-
dices, respectively. We also determine the unique hypertree with maximum Wiener index
among k-uniform hypertrees with given maximum degree and study two types of graft
transformations that increase the Wiener index.

1 Introduction

A hypergraph G consists of a vertex set V (G) and an edge E(G), where V (G) is nonempty,

and each edge e ∈ E(G) is a nonempty subset of V (G). For an integer k ≥ 2, we say

that a hypergraph G is k-uniform if every edge contains exactly k vertices. A (simple)

graph is a 2-uniform hypergraph. The degree of a vertex v in G, denoted by dG(v), is the

number of edges of G which contain v.

Hypergraph theory found applications in chemistry [4, 7, 8]. The study in [7] indicated

that the hypergraph model gives a higher accuracy of molecular structure description: the

higher the accuracy of the model, the greater the diversity of the behavior of its invariants.

For u, v ∈ V (G), a path from u to v in G is defined to be a sequence of vertices and

edges (v0, e1, v1, . . . , vp−1, ep, vp) with all vi distinct and all ei distinct such that vi−1, vi ∈ ei

for i = 1, . . . , p, where v0 = u and vp = v. A cycle in G is defined to be a sequence of

vertices and edges (v0, e1, v1, . . . , vp−1, ep, vp) with p ≥ 2, all vi distinct except v0 = vp and
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all ei distinct such that vi−1, vi ∈ ei for i = 1, . . . , p. The value p is the length of this

path or cycle. If there is a path from u to v for any u, v ∈ V (G), then we say that G is

connected.

Let G be a k-uniform hypergraph with V (G) = {v1, . . . , vn}. For u, v ∈ V (G),

the distance between u and v is the length of a shortest path from u and v in G, de-

noted by dG(u, v). In particular, dG(u, u) = 0. The diameter of G is the maximum

distance between all vertex pairs of G. The Wiener index W (G) of G is defined as

the summation of distances between all unordered pairs of distinct vertices in G, i.e.,

W (G) =
∑

{u,v}⊆V (G)

dG(u, v). Let WG(u) =
∑

v∈V (G)

dG(u, v). Then W (G) = 1
2

∑
u∈V (G)

WG(u).

The Wiener index of an ordinary (connected) graph has a long history [2, 5, 11, 13, 14]

since 1947 when Wiener introduced this parameter as the path number [16]. The empirical

Wiener’s definition has been formalized via the distance matrix by Hosoya [6]. The study

of transmission [12], average distance [1], and mean distance [3] of a connected graph is

essentially the study of Wiener index. The Wiener index of a (connected) hypergraph

was discussed in [9]. In a very recent paper, Sun et al. [15] computed the Wiener indices

of some special k-uniform hypergraphs, and provided a lower bound for Wiener index of

a k-uniform hypergraph with given circumference.

A hypertree is a connected hypergraph with no cycle. A k-uniform hypertree with m

edges always has 1 + (k − 1)m vertices.

In this paper, we determine the unique k-uniform hypertrees with maximum, second

maximum and third maximum Wiener indices, as well as the unique k-uniform hypertrees

with minimum, second minimum and third minimum Wiener indices, respectively and

we also determine the unique hypertree with maximum Wiener index among k-uniform

hypertrees with given maximum degree, and study two types of graft transformations that

increase the Wiener index.

2 Preliminaries

Let G be a connected hypergraph. For A ⊆ V (G), let WG(A) =
∑

{u,v}⊆A

dG(u, v). For

A,B ⊆ V (G) with A ∩B = ∅, let WG(A,B) =
∑

a∈A,b∈B
dG(a, b).

For u ∈ V (G), let G − u be the sub-hypergraph of G obtained by deleting u and all

edges containing u. We remark that in the literature this is sometimes denoted by strongly

deleting the vertex u. For e ∈ E(G), let G − e be the sub-hypergraph of G obtained by

deleting e. For X ⊆ V (G) with X 6= ∅, let G[X] be the sub-hypergraph induced by X,
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i.e., G[X] has vertex set X and edge set {e ⊆ X : e ∈ E(G)}.

A path (v0, e1, v1, . . . , vs−1, es, vs) in a k-uniform hypergraph G is called a pendant

path at v0, if dG(v0) ≥ 2, dG(vi) = 2 for 1 ≤ i ≤ s − 1, dG(v) = 1 for v ∈ ei \ {vi−1, vi}

with 1 ≤ i ≤ s, and dG(vs) = 1. An edge e = {w1, . . . , wk} in G is called a pendant edge

at w1 if dG(w1) ≥ 2, dG(wi) = 1 for 2 ≤ i ≤ k. A vertex of degree one is known as a

pendant vertex.

If P is a pendant path of length s at u in a hypergraph G, we say G is obtained from

H by attaching a pendant path of length s at u with H = G[V (G) \ (V (P ) \ {u})]. If P

is a pendant path of length 1 at u in G, then we also say that G is obtained from H by

attaching a pendant edge at u.

Let G be a k-uniform hypergraph with u, v ∈ V (G) and e1, . . . , er ∈ E(G) such that

u ∈ ei, v /∈ ei and e′i /∈ E(G) for 1 ≤ i ≤ r, where e′i = (ei \ {u}) ∪ {v}. Let G′ be the

hypergraph with V (G′) = V (G) and E(G′) = (E(G) \ {e1, . . . , er}) ∪ {e′1, . . . , e′r}. Then

we say that G′ is obtained from G by moving edges e1, . . . , er from u to v.

3 Hypergraph transformations increasing Wiener in-

dex

In the following, we propose two types of graft transformations that increase the Wiener

index.

Let G be a connected k-uniform hypergraph with u, v ∈ e ∈ E(G). For nonnegative

integers p and q, let Gu,v(p, q) be the k-uniform hypergraph obtained from G by attaching

a pendant path of length p at u and a pendant path of length q at v.

Proposition 3.1. Let G be a connected k-uniform hypergraph with |E(G)| ≥ 2, u, v ∈

e ∈ E(G) and dG(u) = 1. For integers p ≥ q ≥ 1, W (Gu,v(p, q)) < W (Gu,v(p+ 1, q − 1)).

Proof. Let H = Gu,v(p, q). Let P = (u, e1, u1, . . . , up−1, ep, up) and Q = (v, e′1, v1, . . . ,

vq−1, e
′
q, vq) be the pendant paths of H at u and v of lengths p and q, respectively.

Let H∗ be the hypergraph obtained from H by moving edge e′q from vq−1 to up. It is

easily seen that H∗ ∼= Gu,v(p+1, q− 1). Let V1 = e∪V (P )∪ (V (Q) \ (e′q \ {vq−1})). Note

that

WH(V (H) \ (e′q \ {vq−1})) = WH∗(V (H) \ (e′q \ {vq−1})),

WH(e
′
q \ {vq−1}) = WH∗(e′q \ {vq−1}),

WH(e
′
q \ {vq−1}, V1) = WH∗(e′q \ {vq−1}, V1),
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and

WH(e
′
q \ {vq−1}, V (H) \ V1) < WH∗(e′q \ {vq−1}, V (H) \ V1).

The only inequality holds because as we pass from H to H∗, the distance between a vertex

of e′q \ {vq−1} and a vertex of V (H) \ V1 is increased by at least 1, which follows from the

fact that dG(u) = 1. Since

W (H) = WH(V (H) \ (e′q \ {vq−1})) +WH(e
′
q \ {vq−1})

+WH(e
′
q \ {vq−1}, V1) +WH(e

′
q \ {vq−1}, V (H) \ V1)

and

W (H∗) = WH∗(V (H) \ (e′q \ {vq−1})) +WH∗(e′q \ {vq−1})

+WH∗(e′q \ {vq−1}, V1) +WH∗(e′q \ {vq−1}, V (H) \ V1),

we have

W (H)−W (H∗) = WH(e
′
q \ {vq−1}, V (H) \ V1)−WH∗(e′q \ {vq−1}, V (H) \ V1) < 0,

i.e., W (H) < W (H∗).

For positive integers p, q, and a k-uniform hypergraph G, let Gu(p, q) be the k-uniform

hypergraph obtained from G by attaching two pendant paths of lengths p and q at u,

respectively, and Gu(p, 0) be the k-uniform hypergraph obtained from G by attaching a

pendant path of length p at u.

Proposition 3.2. Let G be a connected k-uniform hypergraph with |E(G)| ≥ 1 and

u ∈ V (G). For integers p ≥ q ≥ 1, W (Gu(p, q)) < W (Gu(p+ 1, q − 1)).

Proof. Let H = Gu(p, q). Let P = (u, e1, u1, . . . , up−1, ep, up) and Q = (u, e′1, v1, . . . ,

vq−1, e
′
q, vq) be the pendant paths of H at u of lengths p and q, respectively.

Let H∗ be the hypergraph obtained from H by moving edge e′q from vq−1 to up. It is

easily seen that H∗ ∼= Gu(p+1, q− 1). Let V1 = V (P )∪ (V (Q) \ (e′q \ {vq−1})). Note that

WH(V (H) \ (e′q \ {vq−1})) = WH∗(V (H) \ (e′q \ {vq−1})),

WH(e
′
q \ {vq−1}) = WH∗(e′q \ {vq−1}),

WH(e
′
q \ {vq−1}, V1) = WH∗(e′q \ {vq−1}, V1),

and

WH(e
′
q \ {vq−1}, V (H) \ V1) < WH∗(e′q \ {vq−1}, V (H) \ V1).
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The only inequality holds because as we pass from H to H∗, the distance between a vertex

of e′q \ {vq−1} and a vertex of V (H) \ V1 is increased by at least 1. Since

W (H) = WH(V (H) \ (e′q \ {vq−1})) +WH(e
′
q \ {vq−1})

+WH(e
′
q \ {vq−1}, V1) +WH(e

′
q \ {vq−1}, V (H) \ V1)

and

W (H∗) = WH∗(V (H) \ (e′q \ {vq−1})) +WH∗(e′q \ {vq−1})

+WH∗(e′q \ {vq−1}, V1) +WH∗(e′q \ {vq−1}, V (H) \ V1),

we have

W (H)−W (H∗) = WH(e
′
q \ {vq−1}, V (H) \ V1)−WH∗(e′q \ {vq−1}, V (H) \ V1) < 0,

i.e., W (H) < W (H∗).

For a k-uniform hypertree G with V (G) = {v1, . . . , vn}, if E(G) = {e1, . . . , em}, where

ei = {v(i−1)(k−1)+1, . . . , v(i−1)(k−1)+k} for i = 1, . . . ,m, then we call G a k-uniform loose

path, denoted by Pn,k.

For a k-uniform hypertree G of order n, if there is a disjoint partition of the vertex set

V (G) = {u} ∪ V1 ∪ · · · ∪ Vm such that |V1| = · · · = |Vm| = k − 1, and E(G) = {{u} ∪ Vi :

1 ≤ i ≤ m}, then we call G is a k-uniform hyperstar (with center u), denoted by Sn,k.

In particular, S1,k is a hypergraph with a single vertex and Sk,k is a hypergraph with a

single edge.

For positive integers ∆, n with 1 ≤ ∆ ≤ n−1
k−1

, let B∆
n,k be the k-uniform hyper-

tree obtained from vertex-disjoint hyperstar S(∆−1)(k−1)+1,k with center u and loose path

Pn−(∆−1)(k−1),k with an end vertex v by identifying u and v. In particular, B∆
n,k

∼= Pn,k if

∆ = 1, 2.

In the proof of the following theorem, we follow the proof given in [10].

Theorem 3.1. Let T be a k-uniform hypertree on n vertices with maximum degree ∆,

where 1 ≤ ∆ ≤ n−1
k−1

. Then W (T ) ≤ W (B∆
n,k) with equality if and only if T ∼= B∆

n,k.

Proof. It is trivial if ∆ = 1. Suppose that ∆ ≥ 2. Let T be a k-uniform hypertree on n

vertices with maximum degree ∆ having maximum Wiener index.

Let u be a vertex of T with degree ∆.

Case 1. ∆ ≥ 3.
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Suppose that there are at least two vertices of degree at least 3 in T . Choose a vertex

v of degree at least 3 such that dT (u, v) is as large as possible. Let T1, . . . , TdT (v) be

the vertex disjoint sub-hypergraphs of T − v with ∪dT (v)
i=1 V (Ti) = V (T ) \ {v} such that

T [V (Ti) ∪ {v}] is a k-uniform hypertree for 1 ≤ i ≤ dT (v). Suppose without loss of

generality that u ∈ V (T1). If k = 2, then T [V (Ti) ∪ {v}] is a pendant path at v for

2 ≤ i ≤ dT (v). Suppose that k ≥ 3 and T [V (Ti) ∪ {v}] is not a pendant path at v for

2 ≤ i ≤ dT (v). Then there is at least one edge in T [V (Ti) ∪ {v}] with at least three

vertices of degree 2. We choose such an edge e = {w1, . . . , wk} by requiring that dT (v, w1)

is as large as possible, where dT (v, w1) = dT (v, wj)− 1 for 2 ≤ j ≤ k. Then there are two

pendant paths at different vertices of e, say P at ws and Q at wt, where 2 ≤ s < t ≤ k.

Let p and q with p, q ≥ 1 be the length of P and Q, respectively. Then T ∼= Hws,wt(p, q)

with H = T [V (T ) \ (V (P ∪ Q) \ {ws, wt})]. Note that dH(ws) = dH(wt) = 1. Suppose

without loss of generality that p ≥ q. Obviously, T ′ = Hws,wt(p+ 1, q − 1) is a k-uniform

hypertree with maximum degree ∆. By Proposition 3.1, we have W (T ′) > W (T ), a

contradiction. Thus T [V (Ti)∪ {v}] is a pendant path at v for 2 ≤ i ≤ dT (v) when k ≥ 2.

Let li be the lengths of the pendant path T [V (Ti) ∪ {v}] at v, where 2 ≤ i ≤ dT (v)

and li ≥ 1. Suppose without loss of generality that l2 ≥ l3. Then T = Gv(l2, l3), where

G = T [V (T )\ (V (T2)∪V (T3))]. Note that T
′′ = Gv(l2+1, l3−1) is a k-uniform hypertree

with maximum degree ∆. By Proposition 3.2, W (T ′′) > W (T ), a contradiction. Thus u

is the unique vertex of degree at least 3 in T .

Let G1, . . . , G∆ be the vertex disjoint sub-hypergraphs of T − u with ∪∆
i=1V (Gi) =

V (T ) \ {u} such that T [V (Gi)∪{u}] is a connected k-uniform hypergraph for 1 ≤ i ≤ ∆.

By similar argument as above, T [V (Gi) ∪ {u}] is a pendant path at u for 1 ≤ i ≤

∆. Suppose that there are at least two pendant paths of length at least 2 at u, say

T [V (Gi)∪ {u}] and T [V (Gj)∪ {u}] are such two paths with lengths p and q respectively,

where 1 ≤ i < j ≤ ∆. Then T ∼= Hu(p, q) with H = T [V (T ) \ (V (Gi)∪ V (Gj))]. Suppose

without loss of generality that p ≥ q. Then T ′ = Hu(p+1, q−1) is a k-uniform hypertree

with maximum degree ∆. By Proposition 3.2, we have W (T ′) > W (T ), a contradiction.

Thus there is at most one pendant path of length at least 1, implying that T ∼= B∆
n,k.

Case 2. ∆ = 2.

It is trivial if k = 2. Suppose that k ≥ 3 and T � B2
n,k. Then there is an edge in

T with at least three vertices of degree 2. We choose such an edge e = {w1, . . . , wk} in

T by requiring that dT (u,w1) is as large as possible, where dT (u,w1) = dT (u,wj)− 1 for
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2 ≤ j ≤ k. Then there are two pendant paths at different vertices of e, say P at wj and

Q at wl, where 2 ≤ j < l ≤ k. Let p and q with p, q ≥ 1 be the lengths of P and Q,

respectively. Then T ∼= Hwj ,wl
(p, q) with H = T [V (T ) \ (V (P ∪Q) \ {wj, wl})]. Note that

dH(wj) = dH(wl) = 1. Suppose without loss of generality that p ≥ q. Obviously, T ′ =

Hwj ,wl
(p+1, q−1) is a k-uniform hypertree with maximum degree 2. By Proposition 3.1,

we have W (T ′) > W (T ), a contradiction. Thus there are at most two vertices of degree

2 in each edge, implying that T ∼= B2
n,k.

Combining Cases 1 and 2, we complete the proof.

4 Hypertrees with large Wiener indices

In this section, we determine the unique k-uniform hypertrees with maximum, second

maximum and third maximum Wiener indices, respectively.

Theorem 4.1. For n−1
k−1

≥ 1, let T be a k-uniform hypertree on n vertices. Then W (T ) ≤

W (Pn,k) with equality if and only if T ∼= Pn,k.

Proof. It is trivial if n−1
k−1

= 1, 2. Suppose that n−1
k−1

≥ 3. Let T be a k-uniform hypertree

on n vertices with maximum Wiener index. Let ∆ be the maximum degree of T . Then

by Theorem 3.1, T ∼= B∆
n,k. Suppose that ∆ ≥ 3. Then by Proposition 3.2, we have

W (B∆
n,k) < W (B∆−1

n,k ), a contradiction. Then ∆ = 2, and thus T ∼= B2
n,k

∼= Pn,k.

For k ≥ 3, n−1
k−1

≥ 3 and a loose path Pn−k+1,k =
(
u0, e1, u1, . . . , en−k

k−1
, un−k

k−1

)
, let Fn,k be

the k-uniform hypertree obtained from Pn−k+1,k by attaching a pendant edge at a vertex

in e2 \ {u1, u2}. If n−1
k−1

= 3, then Fn,k
∼= Pn,k. Let Fn,2 = B3

n,2.

Lemma 4.1. Suppose that k ≥ 3 and n−1
k−1

≥ 3. Then W (B3
n,k) < W (Fn,k).

Proof. If n−1
k−1

= 3, then the result follows from Theorem 4.1. Suppose that n−1
k−1

≥ 4. Let

T = Fn,k. Let v ∈ e2 \ {u1, u2} with dT (v) = 2, and let e be the pendant edge at v in

T . Let T ′ be the hypergraph obtained from T by moving e from v to u1. Obviously,

T ′ ∼= B3
n,k. Let V1 = V (T ) \ (e \ {v}). Note that

WT (V1) = WT ′(V1),

WT (e \ {v}) = WT ′(e \ {v}),

WT (e \ {v}, V1 \ (e1 \ {u1})) = WT ′(e \ {v}, V1 \ (e1 \ {u1})),

and

WT (e \ {v}, e1 \ {u1}) > WT ′(e \ {v}, e1 \ {u1}).
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The only inequality holds because as we pass from T to T ′, the distance between a vertex

of e \ {v} and a vertex of e1 \ {u1} is decreased by 1. Since

W (T ) = WT (V1) +WT (e \ {v}) +WT (e \ {v}, V1 \ (e1 \ {u1}))

+WT (e \ {v}, e1 \ {u1})

and

W (T ′) = WT ′(V1) +WT ′(e \ {v}) +WT ′(e \ {v}, V1 \ (e \ {u1}))

+WT ′(e \ {v}, e1 \ {u1}),

we have

W (T )−W (T ′) = WT (e \ {v}, e1 \ {u1})−WT ′(e \ {v}, e1 \ {u1}) > 0,

i.e., W (T ′) < W (T ).

Theorem 4.2. For n−1
k−1

≥ 4, let T be a k-uniform hypertree with n vertices. Suppose that

T � Pn,k. Then W (T ) ≤ W (Fn,k) with equality if and only if T ∼= Fn,k.

Proof. Let T be a k-uniform hypertree on n vertices nonisomorphic to Pn,k with maximum

Wiener index.

Let ∆ be the maximum degree of T . Then ∆ ≥ 3 if k = 2 and ∆ ≥ 2 if k ≥ 3.

If ∆ ≥ 3, then by Theorem 3.1, T ∼= B∆
n,k. Suppose that ∆ ≥ 4. Note that B∆−1

n,k �

Pn,k. By Proposition 3.2, we have W (T ) = W (B∆
n,k) < W (B∆−1

n,k ), a contradiction. Thus

∆ = 2 or 3, and if ∆ = 3, then T ∼= B3
n,k.

Suppose that ∆ = 2. Then k ≥ 3. Since T � Pn,k, there is at least one edge with at

least three vertices of degree 2. Suppose that there are at least two such edges. Let u be a

vertex of degree 1 in T . Choose an edge e = {w1, . . . , wk} in T with at least three vertices

of degree 2 such that dT (u,w1) is as large as possible, where dT (u,w1) = dT (u,wi) − 1

for 2 ≤ i ≤ k. Then there are two pendant paths at different vertices of e, say P at wi

and Q at wj, where 1 ≤ i < j ≤ k. Let p and q with p, q ≥ 1 be the lengths of P and

Q, respectively. Then T ∼= Hwi,wj
(p, q) with H = T [V (T ) \ (V (P ∪Q) \ {wi, wj})]. Note

that dH(wi) = dH(wj) = 1. Suppose without loss of generality that p ≥ q. Obviously,

T ′ = Hwi,wj
(p + 1, q − 1) is a k-uniform hypertree that is not isomorphic to Pn,k. By

Proposition 3.1, we have W (T ) < W (T ′), a contradiction. Thus e is the unique edge with

at least three vertices of degree 2.
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Suppose that there are four vertices, say w1, w2, w3 and w4 of degree 2 in e. Let Qi be

the pendant path of length li at wi, where li ≥ 1 for i = 1, 2, 3, 4. Suppose without loss of

generality that l1 ≥ l2. LetG = T [V (T )\(V (Q1∪Q2)\{w1, w2})]. Then T ∼= Gw1,w2(l1, l2).

Note that dG(w1) = 1 and T ′′ = Gw1,w2(l1 + 1, l2 − 1) is a k-uniform hypertree that is not

isomorphic to Pn,k. By Proposition 3.1, W (T ) < W (T ′′), a contradiction. Thus there are

exactly three vertices of degree 2 in e, say w1, w2, and w3.

Let Qi be the pendant path at wi with length li, where i = 1, 2, 3 and li ≥ 1. Suppose

without loss of generality that l1 ≥ l2 ≥ l3. Suppose that l1 ≥ l2 ≥ 2. Let G =

T [V (T ) \ (V (Q1 ∪ Q2) \ {w1, w2})]. Then T ∼= Gw1,w2(l1, l2). Note that dG(w1) = 1 and

T ∗ = Gw1,w2(l1 + 1, l2 − 1) is a k-uniform hypertree that is not isomorphic to Pn,k. By

Proposition 3.1, W (T ) < W (T ∗), a contradiction. Thus there are at least two of Q1, Q2

and Q3 with length 1. It follows that T ∼= Fn,k.

By Lemma 4.1, W (B3
n,k) < W (Fn,k). Thus T ∼= Fn,k.

For k ≥ 3, n−1
k−1

≥ 5 and a loose path Pn−k+1,k =
(
u0, e1, u1, · · · , en−k

k−1
, un−k

k−1

)
, let En,k

be the k-uniform hypertree obtained from Pn−k+1,k by attaching a pendant edge at a

vertex in e3 \ {u2, u3}.

Lemma 4.2. Suppose that k ≥ 3 and n−1
k−1

≥ 6. Then W (B3
n,k) ≥ W (En,k) with equality

if and only if n−1
k−1

= 6.

Proof. Let T = En,k. Let v ∈ e3 \ {u2, u3} with dT (v) = 2, and let e be the pendant

edge at v in T . Let T ′ be the hypergraph obtained from T by moving e from v to u1.

Obviously, T ′ ∼= B3
n,k. Let V1 = V (T ) \ (e \ {v}). Note that

WT (V1) = WT ′(V1),

WT (e \ {v}) = WT ′(e \ {v}),

and

WT (e \ {v}, e2 ∪ e3) = WT ′(e \ {v}, e2 ∪ e3).

As we pass from T to T ′, the distance between a vertex of e\{v} and a vertex of e1\{u1} is

decreased by 2, and the distance between a vertex of e\{v} and a vertex of V1\(e1∪e2∪e3)

is increased by 1. Note also that |V1 \ (e1 ∪ e2 ∪ e3)| =
(
n−1
k−1

− 4
)
(k − 1). Then

WT (e \ {v}, e1 \ {u1})−WT ′(e \ {v}, e1 \ {u1}) = 2|e \ {v}| · |e1 \ {u1}|

= 2(k − 1)2,
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and

WT (e \ {v}, V1 \ (e1 ∪ e2 ∪ e3))−WT ′(e \ {v}, V1 \ (e1 ∪ e2 ∪ e3))

= −|e \ {v}| · |V1 \ (e1 ∪ e2 ∪ e3)| = −
(
n− 1

k − 1
− 4

)
(k − 1)2.

Since

W (T ) = WT (V1) +WT (e \ {v}) +WT (e \ {v}, e2 ∪ e3)

+WT (e \ {v}, e1 \ {u1}) +WT (e \ {v}, V1 \ (e1 ∪ e2 ∪ e3))

and

W (T ′) = WT ′(V1) +WT ′(e \ {v}) +WT ′(e \ {v}, e2 ∪ e3)

+WT ′(e \ {v}, e1 \ {u1}) +WT ′(e \ {v}, V1 \ (e1 ∪ e2 ∪ e3)),

we have

W (T )−W (T ′) = WT (e \ {v}, e1 \ {u1}) +WT (e \ {v}, V1 \ (e1 ∪ e2 ∪ e3))

−WT ′(e \ {v}, e1 \ {u1})−WT ′(e \ {v}, V1 \ (e1 ∪ e2 ∪ e3))

=

(
6− n− 1

k − 1

)
(k − 1)2,

and thus the result follows.

Let F ′
n,2 be the tree obtained by attaching a pendant edge at vertex v3 of the path

v1 . . . vn−1. Let F
∗
n,2 be the tree obtained by attaching two pendant edges at v1 and vn−4

of the path v1 . . . vn−4, respectively.

Theorem 4.3. For n−1
k−1

≥ 6, let T be a k-uniform hypertree on n vertices. Suppose that

T � Fn,k, Pn,k. Then

(i) if k = 2, then W (T ) ≤ W (F ′
n,2) with equality if and only if T ∼= F ′

n,2;

(ii) if k ≥ 3 and n−1
k−1

= 6, then W (T ) ≤ W (B3
n,k) = W (En,k) with equality if and only

if T ∼= B3
n,k or T ∼= En,k;

(iii) if k ≥ 3 and n−1
k−1

> 6, then W (T ) ≤ W (B3
n,k) with equality if and only if T ∼= B3

n,k.

Proof. Let T be a k-uniform hypertree on n vertices nonisomorphic to Pn,k and Fn,k with

maximum Wiener index.

Let ∆ be the maximum degree of T . Obviously, ∆ ≥ 2.

Suppose that ∆ ≥ 4. Then by Theorem 3.1, T ∼= B∆
n,k. Note that F ′

n,2 � Fn,k, Pn,k for

k = 2 and B∆−1
n,k � Fn,k, Pn,k for k ≥ 3. By Proposition 3.2, we have W (T ) = W (B∆

n,k) <
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W (F ′
n,2) if k = 2 and W (T ) = W (B∆

n,k) < W (B∆−1
n,k ) for k ≥ 3, a contradiction. Thus

∆ = 2 or 3.

Suppose that k = 2. Then ∆ = 3. Note that T � Fn,2, Pn,2. By similar argument

of Case 1 in the proof of Theorem 3.1, there are at most two vertices of degree 3 in T .

If there is a unique vertex of degree 3 in T , then by Proposition 3.2, T is obtainable

by attaching a pendant edge at a internal vertex of a path on n − 1 vertices, and thus

T ∼= F ′
n,2. If there are exactly two vertices of degree 3 in T , then by Proposition 3.2, T is

obtainable by attaching two pendant edges each at an internal vertex of a path on n− 2

vertices, and thus T ∼= F ∗
n,2. By direct calculation, we have W (F ′

n,2) > W (F ∗
n,2). This

proves (i).

Suppose in the following that k ≥ 3. If ∆ = 3, then by Theorem 3.1, T ∼= B3
n,k.

Now suppose that ∆ = 2. Since T � Pn,k, there is at least one edge with at least

three vertices of degree 2 in T . Suppose that there are at least two such edges. Let u be a

vertex of degree 1 in T . Choose an edge e = {w1, . . . , wk} in T with at least three vertices

of degree 2 such that dT (u,w1) is as large as possible, where dT (u,w1) = dT (u,wi) − 1

for 2 ≤ i ≤ k. Then there are two pendant paths at different vertices of e, say P at

wi and Q at wj, where 1 ≤ i < j ≤ k. Let p and q with p, q ≥ 1 be the lengths of P

and Q, respectively. Then T ∼= Hwi,wj
(p, q) with H = T [V (T ) \ (V (P ∪ Q) \ {wi, wj})].

Note that dH(wi) = dH(wj) = 1. Suppose without loss of generality that p ≥ q. Note

that T ′ = Hwi,wj
(p + 1, q − 1) is a k-uniform hypertree that is not isomorphic to Pn,k.

If T ′ = Hwi,wj
(p + 1, q − 1) is also not isomorphic to Fn,k, then by Proposition 3.1,

we have W (T ) < W (T ′), a contradiction. Suppose that T ′ = Hwi,wj
(p + 1, q − 1) ∼=

Fn,k. Then T is isomorphic to the k-uniform hypertree obtained from Pn−2(k−1),k =(
u0, e1, u1, . . . , un−1

k−1
−3, en−1

k−1
−2, un−1

k−1
−2

)
by attaching a pendant edge e′ at a vertex w′ in

e2 \ {u1, u2} and attaching a pendant edge e′′ at a vertex w′′ in ei \ {ui−1, ui}, where

3 ≤ i ≤ n−1
k−1

− 3. Suppose without loss of generality that T is such a hypertree. By

moving edge e′′ from w′′ to u0 in T , we get a k-uniform hypertree T ′′. Let L be the unique

path in T from u0 to w′′ and V1 = V (T ) \ (V (L) ∪ e′ ∪ e′′). Then

WT (V (T ) \ (e′′ \ {w′′})) = WT ′′(V (T ) \ (e′′ \ {w′′})),

WT (e
′′ \ {w′′}) = WT ′′(e′′ \ {w′′}),

WT (e
′′ \ {w′′}, V (L)) = WT ′′(e′′ \ {w′′}, V (L)),

WT (e
′′ \ {w′′}, e′ \ {w′})−WT ′′(e′′ \ {w′′}, e′ \ {w′}) = (i− 3)(k − 1)2,
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and

WT (e
′′ \ {w′′}, V1)−WT ′′(e′′ \ {w′′}, V1) = −

(
n− 1

k − 1
− i− 2

)
(i− 1)(k − 1)2.

The last two equalities hold because as we pass from T to T ′′, the distance between a

vertex of e′′ \{w′′} and a vertex of e′ \{w′} is decreased by i−3, and the distance between

a vertex of e′′ \ {w′′} and a vertex of V1 is increased by i− 1. Note that

W (T ) = WT (V (T ) \ (e′′ \ {w′′})) +WT (e
′′ \ {w′′}) +WT (e

′′ \ {w′′}, V (L))

+WT (e
′′ \ {w′′}, e′ \ {w′}) +WT (e

′′ \ {w′′}, V1),

and

W (T ′′) = WT ′′(V (T ) \ (e′′ \ {w′′})) +WT ′′(e′′ \ {w′′}) +WT ′′(e′′ \ {w′′}, V (L))

+WT ′′(e′′ \ {w′′}, e′ \ {w′}) +WT ′′(e′′ \ {w′′}, V1).

Then

W (T )−W (T ′′) = WT (e
′′ \ {w′′}, e′ \ {w′}) +WT (e

′′ \ {w′′}, V1)

−WT ′′(e′′ \ {w′′}, e′ \ {w′})−WT ′′(e′′ \ {w′′}, V1)

= (i− 3)(k − 1)2 −
(
n− 1

k − 1
− i− 2

)
(i− 1)(k − 1)2

≤ (i− 3)(k − 1)2 − (i− 1)(k − 1)2 < 0 ,

and thus W (T ′′) > W (T ), a contradiction. Thus e is the unique edge with at least three

vertices of degree 2.

Suppose that there are four vertices w1, w2, w3 and w4 of degree 2 in e. Let Qi be the

pendant path of length li at wi, where li ≥ 1 for i = 1, 2. Suppose without loss of generality

that l1 ≥ l2. LetG = T [V (T )\(V (Q1∪Q2)\{w1, w2})]. Then T ∼= Gw1,w2(l1, l2). Note that

dG(w1) = 1 and T ∗ = Gw1,w2(l1+1, l2−1) is a k-uniform hypertree that is not isomorphic

to Pn,k. If T ∗ is also not isomorphic to Fn,k, by Proposition 3.1, W (T ) < W (T ∗), a

contradiction. If T ∗ ∼= Fn,k, then T is isomorphic to the k-uniform hypertree obtained

from Pn−2(k−1),k =
(
u0, e1, u1, . . . , un−1

k−1
−3, en−1

k−1
−2, un−1

k−1
−2

)
by attaching pendant edges e′

and e′′ at y and z in e2 \ {u1, u2}, respectively, where y 6= z. Note that T ∼= Hy,z(1, 1)

with H = T [V (T ) \ ((e′ ∪ e′′) \ {y, z})]. Let T ∗∗ = Hy,z(2, 0). Note that T ∗∗ ∼= En,k. By

Proposition 3.1, we have W (T ∗∗) > W (T ), a contradiction. Thus there are exactly three

vertices of degree 2 in e, say w1, w2 and w3.
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Let Qi be the pendant path at wi with length li, where i = 1, 2, 3 and li ≥ 1. Suppose

without loss of generality that l1 ≥ l2 ≥ l3 ≥ 2. Let G = T [V (T )\(V (Q1∪Q2)\{w1, w2})].

Then T ∼= Gw1,w2(l1, l2). Note that dG(w1) = 1 and T ∗ = Gw1,w2(l1+1, l2−1) is a k-uniform

hypertree that is not isomorphic to Pn,k and Fn,k. By Proposition 3.1, W (T ) < W (T ∗), a

contradiction. Thus there is at least one of Q1, Q2 and Q3 with length 1.

As above, T is a k-uniform hypergraph obtained from Pn−k+1,k =
(
v0, e1, v1, . . . ,

vn−1
k−1

−2, en−1
k−1

−1, vn−1
k−1

−1

)
by attaching a pendant edge to a vertex of ei \ {vi−1, vi} with

3 ≤ i ≤ n−1
k−1

− 3.

Suppose that T 6∼= En,k. Then there is a pendant edge e∗ at a vertex w in ei\{vi−1, vi},

where 4 ≤ i ≤ n−1
k−1

− 4. Since T � Fn,k, it is trivial if
n−1
k−1

= 6, 7. Suppose that n−1
k−1

≥ 8 in

the following. By moving the pendant edge e∗ from w to a vertex, say v in e3 \ {v2, v3},

we get a k-uniform hypergraph T ∗. Note that T ∗ ∼= En,k. Let P
′ be the unique path from

v to w and V2 = V (T ) \ (V (P ′) ∪ e1 ∪ e2 ∪ e∗). Then

WT (V (T ) \ (e∗ \ {w})) = WT ∗(V (T ) \ (e∗ \ {w})),

WT (e
∗ \ {w}) = WT ∗(e∗ \ {w}),

WT (e
∗ \ {w}, V (P ′)) = WT ∗(e∗ \ {w}, V (P ′)),

WT (e
∗ \ {w}, e1 ∪ (e2 \ {u2}))−WT ∗(e∗ \ {w}, e1 ∪ (e2 \ {u2})) = 2(i− 3)(k − 1)2,

and

WT (e
∗ \ {w}, V2)−WT ∗(e∗ \ {w}, V2) = −

(
n− 1

k − 1
− i− 1

)
(i− 3)(k − 1)2.

The last two equalities hold because as we pass from T to T ∗, the distance between a

vertex of e∗ \ {w} and a vertex of e1 ∪ (e2 \ {u2}) is decreased by i− 3, and the distance

between a vertex of e∗ \ {w} and a vertex of V2 is increased by i− 3. Note that

W (T ) = WT (V (T ) \ (e∗ \ {w})) +WT (e
∗ \ {w}) +WT (e

∗ \ {w}, V (P ′))

+WT (e
∗ \ {w}, e1 ∪ (e2 \ {u2})) +WT (e

∗ \ {w}, V2)

and

W (T ∗) = WT ∗(V (T ) \ (e∗ \ {w})) +WT ∗(e∗ \ {w}) +WT ∗(e∗ \ {w}, V (P ′))

+WT ∗(e∗ \ {w}, e1 ∪ (e2 \ {u2})) +WT ∗(e∗ \ {w}, V2).

Then

W (T )−W (T ∗) = WT (e
∗ \ {w}, e1 ∪ (e2 \ {u2})) +WT (e

∗ \ {w}, V2)
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−WT ∗(e∗ \ {w}, e1 ∪ (e2 \ {u2}))−WT ∗(e∗ \ {w}, V2)

= 2(i− 3)(k − 1)2 −
(
n− 1

k − 1
− i− 1

)
(i− 3)(k − 1)2

=

(
3 + i− n− 1

k − 1

)
(i− 3)(k − 1)2 < 0 ,

and thus W (T ∗) > W (T ), a contradiction. Therefore T ∼= En,k if ∆ = 2.

Now we have proved that T ∼= B3
n,k or T ∼= En,k if k ≥ 3. Thus the results (ii) and

(iii) follow from Lemma 4.2.

5 Hypertrees with small Wiener indices

In this section, we determine the unique k-uniform hypertrees with minimum, second

minimum and third minimum Wiener indices, respectively.

Theorem 5.1. For n−1
k−1

≥ 1, let T be a k-uniform hypertree with n vertices. Then

W (T ) ≥ W (Sn,k) with equality if and only if T ∼= Sn,k.

Proof. It is trivial if n−1
k−1

≤ 2. Suppose that n−1
k−1

≥ 3. Let T be a k-uniform hypertree on

n vertices with minimum Wiener index.

Let d be the diameter of T . Obviously, d ≥ 2. Suppose that d ≥ 3. Let P =

(v0, e1, v1, . . . , vd−1, ed, vd) be a diametral path of T . Let E be the set of edges containing

vd−1 except ed−1, E1 be the set of vertices in those edges in E, and E ′
1 = E1 \ {vd−1}. By

moving each edge in E from vd−1 to vd−2 in T , we get a k-uniform hypertree T ′. Let Q

be the set of vertices in ed−1 and pendant edges at each vertex in ed−1 \ {vd−2, vd−1}. Let

V = V (T ). Note that

WT (E
′
1) = WT ′(E ′

1),

WT (V \ E ′
1) = WT ′(V \ E ′

1),

WT (E
′
1, Q) = WT ′(E ′

1, Q),

and

WT (E
′
1, V \ (E ′

1 ∪Q)) > WT ′(E ′
1, V \ (E ′

1 ∪Q)).

The only inequality holds because as we pass from T to T ′, the distance between a vertex

of E ′
1 and a vertex of V \ (E ′

1 ∪Q) is decreased by 1. Since

W (T ) = WT (E
′
1) +WT (V \ E ′

1) +WT (E
′
1, Q) +WT (E

′
1, V \ (E ′

1 ∪Q))
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and

W (T ′) = WT ′(E ′
1) +WT ′(V \ E ′

1) +WT ′(E ′
1, Q) +WT ′(E ′

1, V \ (E ′
1 ∪Q)),

we have

W (T )−W (T ′) = WT (E
′
1, V \ (E ′

1 ∪Q))−WT ′(E ′
1, V \ (E ′

1 ∪Q)) > 0,

and thus W (T ′) < W (T ), a contradiction. Thus d = 2, implying that T ∼= Sn,k.

For n−1
k−1

≥ 3 and 1 ≤ a ≤
⌊

n−k
2(k−1)

⌋
, let Dn,k,a be the k-uniform hypertree obtained

from vertex-disjoint Sa(k−1)+1,k with center u and Sn−k−a(k−1)+1,k with center v by adding

k − 2 new vertices w1, . . . , wk−2 and an edge {u, v, w1, . . . , wk−2}.

Lemma 5.1. For 2 ≤ a ≤
⌊

n−k
2(k−1)

⌋
,W (Dn,k,a) > W (Dn,k,a−1).

Proof. Let b = n−k
k−1

− a. Let u and v be the vertices of Dn,k,a with degrees a + 1 and

b+ 1, respectively. Let E(Dn,k,a) = E(u) ∪ E(v) ∪ e, where e = {u, v, w1, . . . , wk−2}, and

E(u), E(v) are respectively the set of edges containing u, v except e. Let E1(u) and E1(v)

be the set of vertices in those edges of E(u) and E(v), respectively. By moving an edge

e′ ∈ E(u) from u to v, we get Dn,k,a−1. Let V = V (Dn,k,a). Note that

WDn,k,a
(e′ \ {u}) = WDn,k,a−1

(e′ \ {u}),

WDn,k,a
(V \ (e′ \ {u})) = WDn,k,a−1

(V \ (e′ \ {u})),

WDn,k,a
(e′ \ {u}, e) = WDn,k,a−1

(e′ \ {u}, e),

WDn,k,a
(e′ \ {u}, E1(v) \ {v})−WDn,k,a−1

(e′ \ {u}, E1(v) \ {v}) = b(k − 1)2,

and

WDn,k,a
(e′ \ {u}, E1(u) \ e′)−WDn,k,a−1

(e′ \ {u}, E1(u) \ e′) = −(a− 1)(k − 1)2.

The last two equalities hold because as we pass from Dn,k,a to Dn,k,a−1, the distance

between a vertex of e′ \{u} and a vertex of E1(v)\{v} is decreased by 1, and the distance

between a vertex of e′ \ {u} and a vertex of E1(u) \ e′ is increased by 1. Since

W (Dn,k,a) = WDn,k,a
(e′ \ {u}) +WDn,k,a

(V \ (e′ \ {u})) +WDn,k,a
(e′ \ {u}, e)

+WDn,k,a
(e′ \ {u}, E1(v) \ {v}) +WDn,k,a

(e′ \ {u}, E1(u) \ e′)

and

W (Dn,k,a−1) = WDn,k,a−1
(e′ \ {u}) +WDn,k,a−1

(V \ (e′ \ {u})) +WDn,k,a−1
(e′ \ {u}, e)
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+WDn,k,a−1
(e′ \ {u}, E1(v) \ {v}) +WDn,k,a−1

(e′ \ {u}, E1(u) \ e′),

we have

W (Dn,k,a)−W (Dn,k,a−1)

= WDn,k,a
(e′ \ {u}, E1(v) \ {v}) +WDn,k,a

(e′ \ {u}, E1(u) \ e′)

−WDn,k,a−1
(e′ \ {u}, E1(v) \ {v})−WDn,k,a−1

(e′ \ {u}, E1(u) \ e′)

= b(k − 1)2 − (a− 1)(k − 1)2 > 0 ,

and thus W (Dn,k,a) > W (Dn,k,a−1).

Theorem 5.2. For n−1
k−1

≥ 3, let T be a k-uniform hypertree on n vertices. Suppose that

T � Sn,k. Then W (T ) ≥ W (Dn,k,1) with equality if and only if T ∼= Dn,k,1.

Proof. It is trivial if n−1
k−1

= 3. Suppose that n−1
k−1

≥ 4. Let T be a k-uniform hypertree on

n vertices nonisomorphic to Sn,k with minimum Wiener index.

Let d be the diameter of T . Since T � Sn,k, we have d ≥ 3. By similar argument as in

the proof of Theorem 5.1, we have d = 3. Let P = (v0, e1, v1, e2, v2, e3, v3) be a diametral

path of T , and V = V (T ).

Suppose that k ≥ 3 and there is at least one pendant edge at a vertex u ∈ e2 \{v1, v2}.

For w ∈ {u, v2}, let E(w) be the set of edges containing w except e2, E1(w) be the set of

vertices in those edges in E(w), and E ′
1(w) = E1(w) \ {w}. By moving each edge in E(u)

from u to v2 in T , we get a k-uniform hypertree T ′. Obviously, T ′ � Sn,k. Note that

WT (V \ E ′
1(u)) = WT ′(V \ E ′

1(u)),

WT (E
′
1(u)) = WT ′(E ′

1(u)),

WT (E
′
1(u), V \ (E ′

1(u) ∪ E ′
1(v2))) = WT ′(E ′

1(u), V \ (E ′
1(u) ∪ E ′

1(v2))),

and

WT (E
′
1(u), E

′
1(v2)) > WT ′(E ′

1(u), E
′
1(v2)).

The only inequality holds because as we pass from T to T ′, the distance between a vertex

of E ′
1(u) and a vertex of E ′

1(v2) is decreased by 1. Since

W (T ) = WT (V \ E ′
1(u)) +WT (E

′
1(u))

+WT (E
′
1(u), V \ (E ′

1(v2) ∪ E ′
1(u))) +WT (E

′
1(u), E

′
1(v2))

and

W (T ′) = WT ′(V \ (E ′
1(u))) +WT ′(E ′

1(u))
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+WT ′(E ′
1(u), V \ (E ′

1(v2) ∪ E ′
1(u))) +WT ′(E ′

1(u), E
′
1(v2)),

we have

W (T )−W (T ′) = WT (E
′
1(u), E

′
1(v2))−WT ′(E ′

1(u), E
′
1(v2)) > 0,

and thus W (T ′) < W (T ), a contradiction. So there is no pendant edge at any vertex in

e2 \ {v1, v2}. Then T ∼= Dn,k,a with 1 ≤ a ≤ b n−k
2(k−1)

c for k ≥ 3. Obviously, this is also

true for k = 2. By Lemma 5.1, we have T ∼= Dn,k,1.

For n−1
k−1

= 4, let T be a k-uniform hypertree on n vertices nonisomorphic to Sn,k, Dn,k,1.

If k = 2, then T = Pn,2. If k ≥ 3, then T ∼= Fn,k, Pn,k, and thus W (T ) ≥ W (Fn,k) with

equality if and only if T ∼= Fn,k because we have by Theorem 4.1 that W (Fn,k) < W (Pn,k).

Theorem 5.3. For n−1
k−1

≥ 5, let T be a k-uniform hypertree on n vertices. Suppose that

T � Sn,k, Dn,k,1. Then W (T ) ≥ W (Dn,k,2) with equality if and only if T ∼= Dn,k,2.

Proof. Let T be a k-uniform hypertree on n vertices nonisomorphic to Sn,k, Dn,k,1 with

minimum Wiener index.

Let d be the diameter of T . Since T � Sn,k, we have d ≥ 3. By similar argument as

in the proof of Theorem 5.1, we have d ≤ 4.

In the following we will show that d = 3. Suppose that d = 4.

Suppose that k = 2. Let P = v0v1v2v3v4 be a diametral path of T . Suppose without

loss of generality that dT (v1) ≥ dT (v3). By identifying v2 and v3 into v2 and attaching a

new pendant vertex v3 at v2, we get a tree T ′. Obviously, T ′ � Sn,2. Suppose first that

T ′ ∼= Dn,2,1. Then T is the graph obtained from v0v1v2v3v4 by attaching n − 5 pendant

vertices at v2. By direct calculation, W (T ) > W (Dn,2,2), a contradiction. Next suppose

that T ′ � Dn,2,1. Let T1 and T2 be the components of T − v2v3 containing v2 and v3,

respectively. Let V1 = V (T1) and V2 = V (T2) \ {v3}. Obviously, |V1| ≥ 3. Then

W (T )−W (T ′) = WT (V2, {v3})−WT ′(V2, {v3}) +WT (V2, V1)−WT ′(V2, V1)

= −|V2|+ |V2||V1| > 0 ,

and thus W (T ′) < W (T ), also a contradiction. Thus, in any case, d = 3, implying that

T ∼= Dn,2,a with 1 ≤ a ≤
⌊
n−2
2

⌋
. Since T � Sn,2, Dn,2,1, we have by Lemma 5.1 that

T ∼= Dn,2,2.

Suppose that k ≥ 3. Let P = (v0, e1, v1, e2, v2, e3, v3, e4, v4) be a diametral path of

T . Suppose that there is at least one pendant edge at a vertex u ∈ e2 \ {v1, v2}. For
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w ∈ {u, v1}, let E(w) be the set of edges containing w except e2, E1(w) be the set of

vertices in those edges in E(w), and E ′
1(w) = E1(w) \ {w}. By moving each edge in E(u)

from u to v1 in T , we get a k-uniform hypertree T ′′. Obviously, T ′′ � Sn,k, Dn,k,1. Note

that

WT (V \ E ′
1(u)) = WT ′′(V \ E ′

1(u)),

WT (E
′
1(u)) = WT ′′(E ′

1(u)),

WT (E
′
1(u), V \ (E ′

1(v1) ∪ E ′
1(u))) = WT ′′(E ′

1(u), V \ (E ′
1(v1) ∪ E ′

1(u))),

and

WT (E
′
1(u), E

′
1(v1)) > WT ′′(E ′

1(u), E
′
1(v1)).

The only inequality holds because as we pass from T to T ′′, the distance between a vertex

of E ′
1(u) and a vertex of E ′

1(v1) is decreased by 1. Since

W (T ) = WT (V \ E ′
1(u)) +WT (E

′
1(u))

+WT (E
′
1(u), V \ (E ′

1(v1) ∪ E ′
1(u))) +WT (E

′
1(u), E

′
1(v1))

and

W (T ′′) = WT ′′(V \ (E ′
1(u))) +WT ′′(E ′

1(u))

+WT ′′(E ′
1(u), V \ (E ′

1(v1) ∪ E ′
1(u))) +WT ′′(E ′

1(u), E
′
1(v1)),

we have

W (T )−W (T ′′) = WT (E
′
1(u), E

′
1(v1))−WT ′′(E ′

1(u), E
′
1(v1)) > 0,

and thus W (T ′′) < W (T ), a contradiction. So there is no pendant edge at any vertex in

e2 \ {v1, v2}. By similar argument as above, there is no pendant edge at any vertex in

e3 \ {v2, v3}.

Let E(v3) be the set of edges containing v3 except e3, E1(v3) be the set of vertices

in the edges of E(v3) and E ′
1(v3) = E1(v3) \ {v3}. Now by moving each edge in E(v3)

from v3 to a vertex in e2 \ {v1, v2} of T , we get a k-uniform hypertree T ∗. Obviously,

T ∗ � Sn,k, Dn,k,1. Let E(v1) be the set of edges containing v1 except e2, E1(v1) be the set

of vertices in the edges of E(v1), and E ′
1(v1) = E1(v1) \ {v1}. Note that

WT (E
′
1(v3)) = WT ∗(E ′

1(v3)),

WT (V \ E ′
1(v3)) = WT ∗(V \ E ′

1(v3)),
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WT (E
′
1(v3), V \ (E ′

1(v1) ∪ E ′
1(v3))) = WT ∗(E ′

1(v3), V \ (E ′
1(v1) ∪ E ′

1(v3))),

and

WT (E
′
1(v3), E

′
1(v1)) > WT ∗(E ′

1(v3), E
′
1(v1)).

The only inequality holds because as we pass from T to T ∗, the distance between a vertex

of E ′
1(v3) and a vertex of E ′

1(v1) is decreased by 1. Since

W (T ) = WT (E
′
1(v3)) +WT (V \ E ′

1(v3))

+WT (E
′
1(v3), V \ (E ′

1(v1) ∪ E ′
1(v3))) +WT (E

′
1(v3), E

′
1(v1))

and

W (T ∗) = WT ∗(E ′
1(v3)) +WT ∗(V \ E ′

1(v3))

+WT ∗(E ′
1(v3), V \ (E ′

1(v1) ∪ E ′
1(v3))) +WT ∗(E ′

1(v3), E
′
1(v1)),

we have

W (T )−W (T ∗) = WT (E
′
1(v3), E

′
1(v1))−WT ∗(E ′

1(v3), E
′
1(v1)) > 0,

and thus W (T ∗) < W (T ), a contradiction. Thus d = 3.

By similar argument as above, we may show that there is no pendant edge at any

vertex in e2 \ {v1, v2}. Then T ∼= Dn,k,a with 1 ≤ a ≤
⌊

n−k
2(k−1)

⌋
. Since T � Sn,k, Dn,k,1, we

have by Lemma 5.1 that T ∼= Dn,k,2.
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