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Abstract

Hexagonal chains consist of hexagonal rings connected with each other by edges. This class

of graphs contains molecular graphs of unbranched cata-condensed benzenoid hydrocarbons.

The Wiener index is a topological index of a molecule, defined as the sum of distances between

all pairs of vertices in the chemical graph representing the non-hydrogen atoms in the molecule.

A segment of length ` of a chain is its maximal subchain with ` linear annelated hexagons. The

Wiener index for chains in which all segments have equal lengths is considered. Conditions for

the existence of hexagonal chains of distinct sizes having the same Wiener index are formulated

and examples of such chains are presented.

1 Introduction

Topological indices have been extensively used for the development of quantitative stru-

cture–property relationships in which the biological activity or other properties of molecu-

les are correlated with their chemical structure [2, 4, 5, 17, 24, 25, 26]. A well-known

distance-based topological index is the Wiener index, which was introduced as structural

descriptor for acyclic organic molecules [27]. It is defined as the sum of distances between

all unordered pairs of vertices of an undirected connected graph G with vertex set V (G):

W (G) =
1

2

∑
u,v∈V (G)

d(u, v)
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where distance d(u, v) is the number of edges in the shortest path connecting vertices u

and v in G. The Wiener index and its numerous modifications are extensively studied in

theoretical and mathematical chemistry. The bibliography on the Wiener index and its

applications can be found in books [3, 17, 20, 21] and reviews [9, 10, 14, 18, 19, 22, 23].

In the present paper, we deal with the Wiener index for hexagonal chains that include

molecular graphs of unbranched cata-condensed benzenoid hydrocarbons. Benzenoid hy-

drocarbons are important raw materials of the chemical industry (used, for instance,

for the production of dyes and plastics) but are also dangerous pollutants [15]. A class

of hexagonal chains with constant number of linear annelated hexagons ` is considered.

Properties of the Wiener index of this class are reported in [10, 13]. Fibonacenes are

examples of such graphs with ` = 2 [1, 11, 12, 16].

In this paper, necessary conditions for the existence of hexagonal chains of different

sizes having the same Wiener index are formulated and examples of such chains are

presented.

2 Hexagonal chains

In this section, we describe a class of graphs that includes molecular graphs of unbranched

polycyclic aromatic hydrocarbons. A hexagonal system is a connected plane graph in

which every inner face is bounded by hexagon. An inner face with its hexagonal bound

is called a hexagonal ring (or simply ring). We consider hexagonal systems in which two

hexagonal rings are either disjoint or have exactly one common edge (adjacent rings),

a hexagonal ring has at most two adjacent rings, and no three rings share a common

vertex. A ring having exactly one adjacent ring is called terminal. A hexagonal system

having exactly two terminal rings is called a hexagonal chain. Denote by Ch the set of all

hexagonal chains with h hexagonal rings.

A segment of a hexagonal chain is its maximal subchain in which all rings are linearly

annelated. A segment including a terminal hexagon is a terminal segment. The number

of hexagons in a segment S is called its length and is denoted by `(S). If S is a segment

of a chain G ∈ Ch then 2 ≤ `(S) ≤ h.

Denote by Gn,` ⊂ Ch the set of all hexagonal chains having n segments of equal length

`. Since two neighboring segments of G ∈ Gn,` have always one hexagon in common, i.e.

h = n(`− 1) + 1, the number of segments is n = (h− 1)/(`− 1). We say that G consists
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of the set of segments S1, S2, . . . , Sn with lengths ` for some n ≥ 3. As an illustration, all

hexagonal chains having 5 segments of length 3 are shown in Fig. 1. Hexagonal chains of

Gn,2 with minimal length of segments ` = 2 are known as fibonacenes [1]. The name of

these chains comes from the fact that the number of perfect matchings of any fibonacene

relates with the Fibonacci numbers. This class of hexagonal chains will be also denoted

by Fn. It is clear that the cardinality of Gn,` does not depend on ` and [1]

| Gn,` | =

 2 n−3 + 2
n−4
2 , if n is even

2 n−3 + 2
n−3
2 , if n is odd .

The set of graphs Gn,` can be divided into two disjoint subsets Gn,` = Ln,` ∪ Nn,`,

where the set Ln,` is composed of chains which are embedded into a two-dimensional

regular hexagonal lattice without vertex overlapping, while chains of the set Nn,` cannot

be embedded into such a hexagonal lattice. For small hexagonal chains with ` = 2, n ≤ 4

and ` ≥ 3, n ≤ 5, we have Nn,` = ∅.

O
5,3

Z
5,3

Figure 1. Hexagonal chains of G5,3 with 5 segments of length 3.

3 Representation of hexagonal chains

By construction of hexagonal chains, segments of G ∈ Gn,` can be of two kinds. Sup-

pose that a nonterminal segment S with two neighboring segments embedded into a two-

dimensional regular hexagonal lattice and draw a line through the centers of the hexagons

of S. If the neighboring segments of S lie on different sides of the line, then S is called a

zigzag segment. If these segments lie on the same side, then S is said to be a nonzigzag

segment. It is convenient to consider that the terminal segments are zigzag segments.
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The zigzag hexagonal chain Zn,` ∈ Gn,` contains only zigzag segments. All segments of

the spiral hexagonal chain On,` ∈ Gn,` are nonzigzag with the exception of the terminal

segments. The zigzag and spiral hexagonal chains of G5,3 are shown in Fig. 1.

Since we have two types of segments, a hexagonal chain G ∈ Gn,` can be represented

by its binary code r(G). Every nonzigzag (zigzag) segment of chain G corresponds to 1

(0) in the code r(G). We assume that all segments of a chain are sequentially numbered

by 0, 1, ..., n − 1 beginning from a terminal segment. Then the structure of a hexagonal

chain G with n segments is completely defined by code r(G) = (r1, r2, ..., rn−2) of length

n− 2, n ≥ 3. Note that a reverse code generates the same chain. A chain with nontrivial

symmetry has symmetrical code. For instance, the central hexagonal chains in Fig. 1 have

the following codes: (101) and (010). The zigzag and the spiral chains have codes (00..0)

and (11..1), respectively. Denote by ri the bitwise negation of component ri of a code.

4 Hexagonal chains with extremal Wiener index

The spiral and zigzag chains, On,` and Zn,`, are extremal hexagonal chains with regard

to the Wiener index [10]. Their Wiener indices have the minimal W (On,`) = Wmin(n, `)

and the maximal W (Zn,`) = Wmax(n, `) values: W (On,`) < W (G) < W (Zn,`) for all

G ∈ Gn,` \ {On,`, Zn,`}, where

Wmin(n, `) =
1

3

(
8n3(`− 1)2(2`− 3) + 96n2(`− 1)2 − 2n(`− 1)(2`− 75) + 81

)
,

Wmax(n, `) =
1

3

(
16n3(`− 1)3 + 72n2(`− 1)2 + n(`− 1)(12`+ 134) + 81

)
.

For fibonacenes of Ln,2 embedded into regular hexagonal lattice, the minimal value of

the Wiener index is [6, 7, 8]

Wmin(n, 2) =
8

9

[
(n+ 1)2(4n+ 25) + φ(n)

]
,

where

φ(n) =


−6n+ 49, if n = 3m, m = 1, 2, 3, ...

−54n+ 107, if n = 3m+ 1, m = 0, 1, 2, ...

−6n+ 75, if n = 3m+ 2, m = 0, 1, 2, ...

5 Values of the Wiener index

It is well-known that for hexagonal chains G1, G2 ∈ Ch the difference W (G1)−W (G2) is

divisible by 8, that is W (G1) ≡ W (G2) (mod 8) [10]. For chains of Gn,l, we have
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Proposition 1. [13] If G1, G2 ∈ Gn,` , then W (G1) ≡ W (G2) (mod 16(`− 1)2).

Denote by En,` the discrete interval of all possible values of the Wiener index for

hexagonal chains of Gn,`:

En,` = [Wmin(n, `), Wmin(n, `) + 16(`− 1)2, ... ,Wmax(n, `)− 16(`− 1)2, Wmax(n, `) ],

where |En,`| = [Wmax(n, `)−Wmin(n, `) ]/16(`− 1)2 + 1 =
(
n
3

)
+ 1.

Let G1 ∈ Ch1 , G2 ∈ Ch2 and h1 6= h2. If hexagonal chains G1 and G2 have equal Wiener

indices, then h1 ≡ h2 (mod 4) [7]. Such graphs may exist if intervals of the corresponding

W -values have non-empty intersection. This implies that h1 ≥ 23 and h2 ≥ 27. Examples

of such hexagonal chains with h1 = 25 and h2 = 29 were presented in [7, 8]. Here we

construct similar examples for graphs of Gn,`.

Case 1. Let G1 ∈ Gn,`1 , G2 ∈ Gn,`2 and hexagonal chains have distinct segments’

lengths, `1 < `2. Then the equality W (G1) = W (G2) implies that En,`1 ∩ En,`2 6= ∅ or

Wmax(n, `1)−Wmin(n, `2) > 0. Since the difference

Wmax(n, `− 1)−Wmin(n, `) =

= − 1

3
n3(40l2 − 128l + 104)− n2(8l2 + 32l − 64) +

1

3
n(16l2 − 56l − 94)

is negative for ` > 2, there are no such chains G1 and G2 with W (G1) = W (G2).

Case 2. Let G1 ∈ Gn1,` , G2 ∈ Gn2,` and hexagonal chains have distinct numbers of

segments, n1 6= n2. Then h1 − h2 = (`− 1)(n1 − n2) ≡ 0 (mod 4).

Proposition 2. If W (G1) = W (G2) then

1. ` ≡ 1 (mod 4) or

2. n1 ≡ n2 (mod 4) or

3. ` ≡ 3 (mod 4) and n1 ≡ n2 (mod 2).

Proposition 2 gives some necessary conditions for chains with the same Wiener index

in terms of number of segments and their lengths. For example, if n1 and n2 have distinct

parity and ` 6= 5, 9, 13, ..., then W (G1) 6= W (G2).

We consider the case when n1 ≡ n2 (mod 4). Since the Wiener index depends con-

siderably on the number of vertices, the number of segments in a graph from Gn,` is

compensated for by shorter distances between its vertices than in a graph from the class

Gn−4k,`. Thus, a graph from Gn,` is expected to be similar to a graph with the minimal

-125-



value of the Wiener index in Gn,`, while a graph from Gn−4k,` is expected to be similar to

a graph with the maximal value of the Wiener index in Gn−4k,`.

Proposition 3. Let G1 ∈ Gn−4k,` and G2 ∈ Gn,` be hexagonal chains, k ≥ 1 and ` 6= 74.

If W (G1) = W (G2), then n1 ≡ n2 (mod 8(`− 1)).

Proof. Since |En−4k,` ∩ En,` | > 0, the following expression has to be an integer

1

16(`− 1)2

(
Wmax(n− 4k, `)−Wmin(n, `)

)
=

=
1

6

(
n3 − 3n2[ 8k(`− 1) + 1 ] + 2n[ 48k2(`− 1)− 36k + 1 ]

− 2k[ 64k2(`− 1)− 72k + 3 ]− 73k

(`− 1)

)
.

It is easy to see that the expression in the big brackets is an even integer if and only

if 73k/(`− 1) is an even integer. Then k = 2m(`− 1) or k = 2m when ` = 74, m ≥ 1.

Values of the minimal numbers of segments n1 and n2 with nonempty intersections

En1,` ∩ En2,` are shown in Table 1 for fibonacenes of Fni
and Lni,2, and hexagonal chains

of Gni,3, i = 1, 2.

Codes of several fibonacenes of F39 and F47 and their Wiener indices are presented in

Table 2. Diagrams of six chains are shown in Fig. 2.

Codes of four fibonacenes of L63,2 and L71,2 are given Table 3. Diagrams of these

graphs are depicted in Fig. 3.

Codes of hexagonal chains of G165,3 and G181,3 are shown in Table 4. Diagrams of two

chains are presented in Fig. 4.

Table 1. Minimal numbers of segments with nonempty intersections of W -values.

Fn1 and Fn2 Ln1,2 and Ln2,2 Gn1,3 and Gn2,3

n1 n2 |En1,2 ∩ En2,2| n1 n2 |En1,2 ∩ En2,2| n1 n2 |En1,3 ∩ En2,3|
39 47 323 62 70 24 164 180 206
40 48 684 63 71 523 165 181 5228
41 49 1076 64 72 1076 166 182 10366
42 50 1500 65 73 1684 167 183 15621
43 51 1957 66 74 2276 168 184 20994
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Table 2. Fibonacenes of F39 and F47 with the same W .

chains codes of lengths 37 and 45 W

G1 0000000000000000000000000000001000100 349801
O39,2 111111111111111111111111111111111111111111111 349801

G3 0000000000000000000000000000010000001 350521
G4 111111111111111111111111111111111111111111110 350521

G5 1000000000000000000000000000000000011 352617
G6 101111111111111111111111111111111111111111101 352617

G7 0100000000000000000000000000000000010 352649
G8 011111111111111111111111111111111111111111100 352649

G9 0000000000000000000000000000000000011 353209
G10 111111111111111111111111111111111111111110110 353209

G11 0000000000000000000000000000000000100 353273
G12 111111111111111111111111111111111111111111001 353273

G13 0000000000000000000000000000000000010 353801
G14 111111111111111111111111111111111111111101110 353801

G15 0000000000000000000000000000000000001 354361
G16 111111111111111111111111111111111111111011110 354361

Table 3. Fibonacenes of L63,2 and L71,2 with the same W .

chains codes of lengths 61 and 69 W

G1 000000000000000000 ... 00000000000000001 1431209
G2 11011011011011011011011 ... 0110110110110100100 1431209

Z63,2 000000000000000000 ... 000000000000000000 1432185
G4 00011011011011011011011 ... 0110110110101101010 1432185

Table 4. Hexagonal chains of G165,3 and G181,3 with the same W .

chains codes of lengths 163 and 179 W

G1 101000000000000 ... 000000011101101 193961799
O165,3 111111111111111111111 ... 1111111111111111111 193961799
G3 000000000000000 ... 000000000010111 194183367
G4 111111111111111111111 ... 1111111111100101111 194183367
G5 000000000000000 ... 000000000100101 194194311
G6 111111111111111111111 ... 1111111111010110110 194194311
G7 000000000000000 ... 000000000001100 194224455
G8 111011111011111111111 ... 1111111110111111111 194224455
G9 000000000000000 ... 000000001000000 194225991
G10 011111111111111111111 ... 1111111110011111010 194225991
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. . . . . . . . .

G1

O39,2

G3

G
4

G5

G6

Figure 2. Fibonacenes of F39 and F47 with the same Wiener index.
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. . .

G
1

G1 G2 G4

. . .

Z63,2

Figure 3. Fibonacenes of L63,2 and L71,2 with the same Wiener index.
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. . .

. .
 . 

. .
 .

O163,3 G1

Figure 4. Hexagonal chains of G163,3 and G179,3 with the same Wiener index.
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There is a method for constructing new hexagonal chains with the same Wiener indices

by switching of two symmetrical components of codes of asymmetrical chains.

Proposition 4. [11] Let G1, G2 ∈ Gn,` and r(G1) = (... ri ... rn−i−1 ...), where ri 6= rn−i−1

for fixed i ∈ {1, 2, ..., n− 2}. Suppose that code r(G2) coincide with r(G1) except for two

components, r(G2) = (... ri ... rn−i−1 ...). Then W (G1) = W (G2).

By Proposition 4, it is possible to obtain a new hexagonal chain from every chain G1,

G3, G9, G10, G12, G14, or G16 of Table 2. Several chains with the same Wiener index can

be constructed, for example, from every chain G1 or G6 of Table 4.
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