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Abstract

Recently, the notion of strong trace was introduced as a mathematical support for
self-assembly of polypeptide. Graphs which admit parallel strong traces and antiparallel
strong traces were then characterized. In this paper, we introduce the notion of F -
strong trace, i.e. a strong trace whose corresponding antiparallel edges are exactly edges
in F ⊆ E, which includes parallel strong trace (F = ∅) and antiparallel strong trace
(F = E) as two extreme cases. Given a graph G = (V,E) and F ⊆ E, in this paper we
study the problem whether G admits an F -strong trace. We solve it when (V, F ) is acyclic
by proving that in this case G admits an F -strong trace if and only if G \ F is even. We
provide two examples to show that this condition is not always true when (V, F ) contains
cycles.

1 Background and notions

Throughout this paper we use A ⊆ B and A ⊂ B to denote A is a subset of B and

A is a proper subset of B, respectively. All graphs considered in this paper are simple,

connected and finite unless otherwise specified. Let G = (V,E) be a graph with vertex

set V and edge set E. For v ∈ V , we denote by N(v) (resp. E(v)) the set of vertices

adjacent to (resp. edges incident with) v, and by dG(v) (d(v) for short) the degree of v

in G, i.e. d(v) = |N(v)| = |E(v)|. We use δ(G) to denote the minimum degree of G, i.e.

δ(G) = minv∈V {d(v)}. A graph G is called to be even if d(v) is even for each v ∈ V . For

F ⊆ E, we denote by G \ F the graph obtained from G by deleting all edges in F . An

edge e ∈ E is said to be a cut edge of G if its deletion results in a disconnected graph.
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A walk in a graph G is a sequence W = v0e1v1 · · · vl−1elvl, whose terms are alternately

vertices and edges of G (not necessarily distinct), such that vi−1 and vi are the ends of ei,

1 ≤ i ≤ l. The walk W in a graph is closed if its initial and terminal vertices v0 and vl are

identical. A tour of a graph G is a closed walk and an Euler tour is a tour that traverses

each edge exactly once. A graph is Eulerian if it admits an Euler tour. A fundamental

theorem of graph theory, known as Euler’s theorem, states that G is Eulerian if and only

if it is connected and even [1,2]. A double trace in G is a tour which traverses each edge of

G exactly twice. Let T be a double trace in G and e ∈ E. We say that e is parallel (resp.

antiparallel) (with respect to T ) if e is traversed in the same (resp. opposite) direction

along T . A double trace of G is said to be parallel (resp. antiparallel) if every e ∈ E is

parallel (resp. antiparallel).

We say that a double trace contains a retracing if it has an immediate succession of

an edge e by its parallel copy as shown in Figure 1. Let T be a double trace in G and

v ∈ V . We say that T contains a repetition through v if there exist u, w ∈ N(v) such

that the vertex sequence u → v → w appears twice in T in any direction (u → v → w or

w → v → u) as shown in Figure 2. A double trace is said to be a proper trace if it does

not contain any retracing. A proper trace is said to be a stable trace if it does not contain

any repetition through any vertex.

Figure 1. Retracing of
an edge e.

Figure 2. Repetitions through the vertex
v.

In 2013, a strategy to design self-assembling polypeptide nanostructured polyhedra

based on modularization using orthogonal dimerizing segments was presented in [3], and

the authors succeeded in designing and experimentally demonstrating the formation of the

tetrahedron, named by TET12, that self-assembles from a single polypeptide chain com-

prising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges,

see Figure 3. The notion of stable trace was introduced in [4] to provide a mathematical

support for self-assembly polypeptides. But in [5], the authors found the notion deficient
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in dealing with graphs with either very small (≤ 2) or large (≥ 6) degree vertices, and

thus they introduced the notion of the strong trace.

Figure 3. The tetrahedron designed from a single polypeptide chain comprising 12
concatenated coiled coil-forming segments [3].

Let T be a double trace in G of length l, v ∈ V and N ⊆ N(v). We say that T has

an N -repetition at v if, for every i ∈ {0, · · · , l − 1}, if v = vi then vi+1 ∈ N if and only if

vi−1 ∈ N . An N -repetition at v is a d-repetition if |N | = d, and a d-repetition will also

be called a repetition of order d. An N -repetition at v is trivial if N = ∅ or N = N(v).

Clearly if T has an N -repetition at v, then it also has an N(v) \ N -repetition at v. A

strong trace is a double trace without nontrivial repetitions. Parallel and antiparallel

strong trace can be defined similarly.

Note that the experimentally obtained tetrahedron, TET12, has four parallel and two

antiparallel coiled-coil pairs. Viewed as a double trace it has four parallel edges and two

antiparallel edges. It has been proved theoretically that such a single-chain tetrahedron

cannot be constructed without the use of both parallel and antiparallel pairs [6]. This

further motivates us to introduce the following notions.

Let T be a double trace in G and F ⊆ E. We say that T is an F -double trace of G if

edges in E \F are parallel and edges in F are antiparallel with respect to T . Furthermore,

T is said to be an F -strong trace if T is not only an F -double trace but also a strong

trace. Observe that the parallel strong trace and the antiparallel strong trace are both

special cases of F -strong trace with F = ∅ and F = E, respectively.

The purpose of this paper is to study, given a graph G = (V,E) and F ⊆ E, whether
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there exists an F -strong trace in G. We solve it when (V, F ) is acyclic, by proving that in

this case G admits an F -strong trace if and only if G \ F is even. We give two examples

to show that this condition is not always true when (V, F ) contains cycles.

By now more parallel coiled-coil dimers have been characterized for the molecular

design than antiparallel dimers [7]. It is therefore more applicable when F has relatively

few edges compared with edges of G, including the case that F induces a forest. In [12],

the authors studied the cases that F is an independent set or induces a path or cycle.

The main result of this paper contains the case that F is an independent set or induces

a path.

2 Some known results

A d-stable trace is a double trace without repetitions of order i for all 1 ≤ i ≤ d. Note

that a proper trace (resp. stable trace) is exactly a 1-stable trace (resp. 2-stable trace).

It follows from the definitions that we have:

Proposition 2.1 Let T be a strong trace of G. Then T is a d-stable trace of G if and

only if δ(G) > d.

Let T be a double trace in G, v ∈ V , the vertex figure of v of G with respect to T ,

denoted by Fv,T , is a 2-regular graph having E(v) as its vertex set and making edges e, e′ ∈

E(v) adjacent if e and e′ are consecutive edges along T . The connected components of a

vertex figure are cycles, including: a vertex with a loop (C1) and two vertices connected

by two parallel edges (C2) as special cases. The vertex figure is quite useful in describing

strong trace.

Lemma 2.1 [5] Let T be a double trace in G. Then T is a strong trace if and only if

Fv,T is connected (i.e. a single cycle) for every v ∈ V .

The characterization of graphs that admit a proper trace, stable trace, d-stable trace

and strong trace were studied in [8, 9], [4] and [5], respectively.

Lemma 2.2 [4, 5, 8, 9]

(1) A graph G admits a proper trace if and only if δ(G) ≥ 2;

(2) A graph G admits a stable trace if and only if δ(G) ≥ 3;
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(3) A graph G admits a d-stable trace if and only if δ(G) > d;

(4) Every graph admits a strong trace.

The necessary and sufficient conditions of graphs that admit a parallel proper trace [4],

parallel stable trace [10], parallel d-stable trace [5] and parallel strong trace [5] were

investigated respectively.

Lemma 2.3 [4, 5, 10]

(1) A graph G admits a parallel proper trace if and only if G is Eulerian;

(2) A graph G admits a parallel stable trace if and only if G is Eulerian and δ(G) ≥ 3;

(3) A graph G admits a parallel d-stable trace if and only if G is Eulerian and δ(G) > d;

(4) A graph G admits a parallel strong trace if and only if G is Eulerian.

In [5], Fijavž, Pisanski and Rus characterized graphs that admit an antiparallel strong

trace as follows:

Lemma 2.4 [5] A graph G admits an antiparallel strong trace if and only if G has a

spanning tree ST such that each connected component of G \E(ST ) has an even number

of edges.

A graph G that admits an F -double trace was independently characterized by Vaster-

gaard [11] and by Fleischner [1].

Lemma 2.5 [1, 11] Let G be a connected graph and F ⊆ E(G). G admits an F -double

trace if and only if G \ F is even.

3 Our results

Theorem 3.1 Let G = (V,E) be a connected graph, F ⊂ E and (V, F ) be a forest. Then

G admits an F -strong trace if and only if G \ F is even.

By Lemma 2.5, we only need to prove the following lemma.

Lemma 3.1 Let G = (V,E) be a connected graph, F ⊂ E and (V, F ) be a forest. If G\F

is even, then G admits an F -strong trace.
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Proof We prove the lemma by induction on l, the cardinality of F . Lemma 2.3(4)

implies the lemma is true for l = 0 (and for any G). Now assume that the lemma is true

for any F and G with |F | = l < k (k ≥ 1). Now we suppose that F ⊂ E, |F | = k, (V, F )

is a forest and G \ F is even, we shall prove that G admits an F -strong trace.

Notice that F ⊂ E and G\F is even, then there must exist an edge of F, say e = u1u2,

such that at least one of its two endpoints is of degree d ≥ 2 in G \ F . Without loss of

generality, suppose that dG\F (u2) ≥ 2. There are two cases.

Case 1 e is not a cut edge of G.

Let G′ = G \ e and F ′ = F \ e. It is obvious that G′ is connected, F ′ ⊂ E(G′), (V, F ′)

is a forest of G′ and G′ \ F ′ is even since G′ \ F ′ = G \ F. By the induction hypothesis,

G′ admits an F ′-strong trace T ′. Moreover, there is at least one edge, say e2 , such

that e2 ∈ EG′(u2) \ F ′, is traversed twice and both towards u2 along T ′, since edges in

F ′ ∩ EG′(u2) are all antiparallel edges, keeping in-coming and out-going edges balanced.

Note that dG′(u1) ≥ 1 and that dG′(u2) ≥ 2, without loss of generality, we may describe

the strong trace T ′ as:

T ′ = v1e1u1f1w1t1v2e2u2f2w2t2v2e2u2h2y2t3

such that e1, f1 ∈ EG′(u1) (e1 = f1 if and only if dG′(u1) = 1), and that f2, h2 ∈ EG′(u2)

(h2 = f2 if and only if dG′(u2) = 2), moreover, t1, t2 and t3 are segments of T ′ that e2

is not contained in ti for i ∈ {1, 2, 3}. See Figure 4(1). Now we construct a new double

trace T of G from T ′ as follows.

T = v1e1u1eu2f2w2t2v2e2u2eu1f1w1t1v2e2u2h2y2t3.

See Figure 4(2). In fact, roughly speaking, T is a double trace of G obtained from T ′ by

interchanging two segments between u1 and u2 with direction preserved and by adding

the edge e which is traversed exactly once in each direction. Therefore, T is an F -double

trace of G.

Next, we shall show that T is a strong trace of G. For v /∈ {u1, u2}, its vertex figure

Fv,T is exactly the same as Fv,T ′ , which is a single cycle by Lemma 2.1. For v = ui

(i = 1, 2), it is not difficult to see that the vertex figure Fui,T is obtained from Fui,T ′ by

replacing the edge eifi with two adjacent edges eie and efi as shown in Figure 5. Hence,

Fui,T is also a single cycle and thus T is an F -strong trace of G.
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Figure 4. The strong traces: (1) T ′ and (2) T . Note that, v1 = w1 if and only if
dG′(u1) = 1, and that y2 = w2 if and only if dG′(u2) = 2.

Figure 5. The vertex figures: (1) Fu1,T ′ , (2) Fu2,T ′ , (3) Fu1,T , (4) Fu2,T .

Case 2 e is a cut edge of G.

Let G1 and G2 be two connected components of G \ e with ui ∈ V (Gi). For i = 1, 2,

set Fi = F ∩E(Gi). Then Fi ⊆ E(Gi) and (Vi, Fi) is a forest of Gi, and F2 ⊂ E(G2) since

dG\F (u2) ≥ 2. Now we first prove that G1 admits an F1-strong trace T1. If F1 ⊂ E(G1),

then G1 admits an F1-strong trace by the induction hypothesis; if F1 = E(G1), then G1

is a tree and admits an F1-strong trace by Lemma 2.4. Second, G2 admits an F2-strong

trace T2 by the induction hypothesis. By the similar arguments of Case 1, there must

exist an edge in G2, say e2, that is incident with u2 and is traversed twice towards u2 in

T2. Without loss of generality, we may describe T2 as

T2 = v2e2u2f2w2t2v2e2u2h2y2t
′
2

such that f2, h2 ∈ EG2
(u2) (h2 = f2 if and only if dG2

(u2) = 2), and that t2 and t′2 are

segments of T2. See Figure 6(2).
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Figure 6. (1) The strong trace T1, (2) The strong trace T2, (3) Construct T from
T1 and T2.

Subcase 2.1 dG1
(u1) ≥ 2 and each edge incident with u1 is traversed exactly once in

each direction in T1. Without loss of generality, we may describe T1 as

T1 = v1e1u1f1w1t1y1h1u1e1v1t
′
1,

such that e1, f1, h1 ∈ EG1
(u1) (h1 = f1 if and only if dG1

(u1) = 2), and that t1 and t′1 are

segments of T1. See Figure 6(1). Now we construct T as follows.

T = v1e1u1eu2f2w2t2v2e2u2h2y2t
′
2v2e2u2eu1f1w1t1y1h1u1e1v1t

′
1.

See Figure 6(3). It is clear that T is an F -double trace of G. By the analogous analysis to

that of Case 1, each vertex figure Fv,T is a single cycle, therefore, T is an F -strong trace

of G.

Figure 7. (1) The strong traces T1, (2) Construct T from T1 and T2.

Subcase 2.2 dG1
(u1) ≥ 2 and there is at least one edge, say e1, that is incident with u1

and is traversed in the same direction in T1. Without loss of generality, assume that e1 is
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traversed twice towards u1 in T1. Then we may describe T1 as

T1 = v1e1u1f1w1t1v1e1u1h1y1t
′
1,

such that f1, h1 ∈ EG1
(u1) (h1 = f1 if and only if dG1

(u1) = 2), and that t1 and t′1 are

segments of T1. See Figure 7(1). Construct a double trace T of G as follows:

T = v1e1u1eu2f2w2t2v2e2u2h2y2t
′
2v2e2u2eu1f1w1t1v1e1u1h1y1t

′
1.

See Figure 7(2). By the similar arguments to that of Subcase 2.1, T is an F -strong trace

of G.

Figure 8. (1) The strong traces T1, (2) Construct T from T1 and T2.

2f

2e

1e

(4)

2f

2e

(2)

1e

(1)

ee

(3)

Figure 9. The vertex figures: (1) Fu1,T1
, (2) Fu2,T2

, (3) Fu1,T , (4) Fu2,T .

Subcase 2.3 dG1
(u1) = 1. Assume that EG1

(u1) = {e1}, then e1 must be antiparallel in

T1. Without loss of generality, we may describe T1 as

T1 = v1e1u1e1v1t1,

such that t1 is a segment of T1. See Figure 8(1).
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Construct T as follows.

T = v1e1u1eu2f2w2t2v2e2u2h2y2t
′
2v2e2u2eu1e1v1t1.

See Figure 8(2). By the similar arguments to that of Subcase 2.1 and by Figure 9, T is

an F -strong trace of G.

Subcase 2.4 dG1
(u1) = 0. Construct T as follows.

T = v2e2u2eu1eu2f2w2t2v2e2u2h2y2t
′
2.

See Figure 10(1). By Figure 10 and by the analogous arguments to that of Subcase 2.1,

T is an F -strong trace of G.

Figure 10. (1) The strong trace T, (2) The vertex figure Fu2,T2
, (3) The vertex

figure Fu2,T , (4) The vertex figure Fu1,T .

This completes the proof of Lemma 3.1. �

As a result of combining Proposition 2.1 with Theorem 3.1, we have:

Corollary 3.1 Let G = (V,E) be a connected graph, F ⊂ E, (V, F ) be a forest of G.

Then G admits an F - and d-stable trace if and only if δ(G) > d and G \ F is even.

4 Concluding remarks

Except Figure 3, two other mathematical topological solutions of self-assembling tetra-

hedron from a single chain are also given in [6]. See Figure 11. Note that in these two

models, the antiparallel edges both form a star with 3 arms. These solutions are consistent

with our Theorem 3.1.
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Figure 11. Two other mathematical models of self-assembling tetrahedron from a
single chain.

It is proved that if F induces a 2-regular graph (i.e. disjoint union of cycles) and G\F

is even then G admits an F -stong trace [12]. Let F ⊂ E. It is then natural to ask that

if the condition G \ F is even can always guarantee that G has an F -strong trace when

(V, F ) contains cycles. The answer is ”no”. Here we give two examples: one has cut edges

and the other has not.

Example 4.1 Let H be the graph depicted in Figure 12, whose vertex set V is {ui, vi, wi|i =

1, 2} and edge set E is {uivi, uiwi, viwi|i = 1, 2}∪{u1u2}. Let F = {u1u2, u1v1, u1w1, v1w1},

it is seen that (V, F ) is not a forest and H \F is even. But H does not admit an F -strong

trace.

Proof Suppose that T is an F -double trace of H, without loss of generality, assume

that the edge u2w2 is traversed twice from u2 to w2 in T, then the directions of w2v2 and

v2u2 must be as shown in Figure 12. Start from an edge of H, say u1u2, without loss of

generality, assume that it is traversed from u1 to u2 firstly, then the second edge must be

u2w2, otherwise, a retracing occurs at u2. Since the edge u1u2 is a cut edge of H, three

edges u2w2, w2v2 and v2u2 must be traversed exactly twice before T goes from u2 to u1.

We keep going along T, without loss of generality, the successive edge of u2u1 is u1v1, then

the next edges must be v1w1 and w1u1. Now we can see that a retracing will occur at u1

and therefore H does not admit an F -strong trace. �
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Figure 12. The graph H

and orienta-
tions.

Figure 13. The graph G and orientations.

Example 4.2 Let G be the graph with vertex set V = {ui, vi, wi|i = 1, 2, 3} and edge

set E = {uivi, uiwi, viwi|i = 1, 2, 3} ∪ {w1w3, u1u2, v2v3} as shown in Figure 13. Let

F = {uivi, uiwi, viwi|i = 1, 3} ∪ {u1u2, v2v3, w1w3}. Then (V, F ) is not a forest and G \F

is even. But G does not have an F -strong trace.

Proof Let G1 be the subgraph of G induced on vertex set {ui, vi, wi|i = 1, 2} and

F1 = F ∩ E(G1). Then G1 = H, the graph in Example 4.1. Furthermore, we color the

four edges in F1 yellow and three edges in E(G1) \ F1 blue. Assume to the contrary that

G admits an F -strong trace T. Without loss of generality, the orientation of G is as shown

in Figure 13. Start from an edge of G, say u1u2, without loss of generality, assume that it

is traversed from u1 to u2 firstly, then the second and third edge must be u2w2 and w2v2,

respectively. Note that the maximum degree of G is 3, in order to avoid retracing and

repetition in T , there are at most two possible successive edges when T arrives at a vertex

of degree 3, and there is only one possible successive edge when T arrives at a vertex of

degree 2. The successive edge of w2v2 may be one of v2v3 and v2u2.

Figure 14. Four possibilities of T if the successive edge of w2v2 is v2v3.

Case 1 The successive edge of w2v2 is v2v3. Keep going along T, it will arrive at the vertex

w3 from v3 either by edge v3w3 or by path v3u3w3, no matter under which circumstance,

the next edge in T must be w3w1, otherwise, three blue edges will be traversed twice
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before T arrives the yellow edges, and an F1-strong trace of G1 will be obtained from

T by omitting the vertices and edges not in G1, a contradiction with Example 4.1. By

simple analysis, there are four possibilities which are shown in Figure 14. Then a retracing

appears at the vertex v3, a contradiction.

Case 2 The successive edge of w2v2 is v2u2. We keep going along T, the successive edge

of v2u2 may be one of u2w2 and u2u1.

Subcase 2.1 The successive edge of v2u2 is u2w2. By the similar analysis, there are

four possibilities (see Figure 15), in each of which a retracing occurs at vertex v3, a

contradiction.

Figure 15. Four possibilities of T if the successive edge of v2u2 is u2w2.

Subcase 2.2 The successive edge of v2u2 is u2u1. Then T will arrive at vertex w1 from

u1 either by edge u1w1 or by path u1v1w1, no matter how T arrives at w1, the next edge

must be w1w3, otherwise, a retracing occurs at u1. Keep going along T, it will arrive at

the vertex v3 from w3 either by edge w3v3 or by path w3u3v3, and the next edge must be

v3v2 after simple analysis. Thus, there are four possibilities (see Figure 16), in each of

Figure 16. Four possibilities of T if the successive edge of v2u2 is u2u1.

which a retracing occurs at w3, a contradiction. �
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Finally, Theorem 3.1 can be viewed as a generalization of Lemma 2.3 (4) from F = ∅

to the F which induces a forest. It is natural to ask if Lemma 2.4 can be extended and

which extent can it be extended.
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