
Almost Parallel Strong Trace Model of

Self–Assembly Polypeptide Nanostructure

Jing Wanga, Guang Hub, Meng Jic

a Department of Mathematics and Computer Science, Changsha University, China
b Center for Systems Biology, Soochow University, China

c School of Mathematical Sciences, Xiamen University, China

wangjing1001@hotmail.com, huguang@suda.edu.cn, danmeng9005@foxmail.com

(Received July 19, 2016)

Abstract

Polypeptides are programmable natural polymers, which can be self-assembled into
ordered nanostructures. The stable trace and strong trace have been introduced in [17]
and [19], respectively, to provide the underlying mathematical model for self-assembly of
polypeptide nanostructures. In this paper, we introduce the E1-antiparallel strong trace
of a graph G = (V,E), which is a strong trace of G with only the edges of E1 ⊂ E are
traversed in the opposite direction. Given a graph G and its edge subset E1, the main
purpose of the paper is to consider under which conditions G has an E1-antiparallel strong
trace, and we solve it in the case that E1 is an independent edge set, E1 induces a path
and E1 induces a cycle of G, respectively. Furthermore, we discuss the molecular design
of polypeptide nanostructures based on almost parallel strong trace model.

1 Introduction

Polynucleotides and polypeptides are two kinds of programmable natural polymers, which

have long been recognized as building blocks in nanotechnology [1]. Due to the base-

pairing rules, DNA is a tractable molecule in designing defined complex 3D structures [2],

from the first DNA cube [3] to the largest DNA prism [4]. More recently, some symmetrical

polypeptide nanostructures have been self-assembled by fusing protein oligomerization

domains [5], and designing new protein-protein interacting surfaces [6]. On the other

hand, the mathematical model of DNA polyhedra was proposed and the invariant of

corresponding polyhedral links was computed to reveal the structural properties of DNA
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polyhedra [7–11]. Designing the principle of self-assembly represents a major challenge,

not only for DNA but also for protein nanostructures [12].

In comparison with DNA nanostructures [13], the self-assembling of polypeptides into

protein nanostructures is based on cooperative and long-range interactions, and hence

developed more slowly but provides more versatile functionality [14]. However, a sim-

ple topology-based method was proposed for self-assembling a single-chain polypeptide

tetrahedron [15]. In this approach, coiled-coil dimers were used to mimic DNA duplexes

as building modules. Unlike with DNA duplexes which are always antiparallel, coiled-

coil dimers adopt either a parallel or antiparallel orientation, expanding the number of

reachable designed topologies. These landmark discoveries could lead to significant devel-

opment in biotechnology since they provide a foundation for constructing new topological

polypeptide folds based on the set of orthogonal interacting polypeptide segments [16].

Therefore, the study of underlying mathematical model is of great importance in designing

of self-assembly polypeptide nanostructures.

The stable trace introduced in [17] provides a general mathematical support for self-

assembly polypeptides, and it has been proved that the structure created from its stable

trace could be guaranteed to be stable. But in [19], Fijavž, Pisanski and Rus observed

that this model has two deficiencies: firstly it does not account for vertices of degree ≤ 2,

and secondly, a stable trace of G may fold to a graph different from G when G contains

a vertex of degree ≥ 6. They further introduced the strong trace which overcomes the

two deficiencies. And the authors in [17–19] investigated the necessary and sufficient

conditions of graphs that admit a parallel proper trace, parallel stable trace and parallel

strong trace, respectively. Graphs which admit an antiparallel strong trace were also

studied in [19].

It has been proved that a single-chain tetrahedron cannot be constructed without the

use of both parallel and antiparallel strands, which means that the strong trace of a topfold

can be constructed by polypeptide rather than DNA [16]. In addition, more parallel coiled-

coil dimers have been characterized for the molecular design than antiparallel dimers [20].

For example, the experimentally obtained single-chain tetrahedron is the topofold with

the largest number of parallel segments, comprising four parallel and two antiparallel

coiled-coil dimeric edges [15]. This motivated us to study the almost parallel strong trace

model, which may give new insight into the folding of polypeptide nanostructures.
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To this aim, we introduce the notion of E1−antiparallel strong trace of a graph G =

(V,E) with E1 ⊂ E, which is an almost parallel strong trace with only the edges in E1 of G

are traversed in the opposite direction. Usually, E1 is a subset with fewer edges compared

with edges of G, which justifies the notion of almost parallel strong trace. Throughout

this paper, we will assume that all graphs are finite, connected and simple (i.e. no loops

and no multiple edges) unless stated otherwise. We use A ⊆ B and A ⊂ B to denote A

is a subset of B and A is a proper subset of B, respectively. This paper is organized as

follows. Section 2 is devoted to present some basic definitions and some known results. In

Section 3, we consider the case that E1 is an independent edge set of G, E1 induces a path

and a cycle of G, respectively. We discuss some biological implications of the molecular

design of polypeptide nanostructures base on almost parallel strong trace model in the

last Section 4.

2 Definitions and some known results

We shall first give some necessary definitions and notations, for those not given here we

refer the readers to [21, 22].

Let G = (V,E) be a graph with vertex set V and edge set E. For v ∈ V , we denote

by N(v) (resp. E(v)) the set of vertices adjacent to (resp. edges incident with) v, and

we denote by dG(v) the degree of v in G, i.e. dG(v) = |N(v)| = |E(v)|. We use δ(G) to

denote the minimum degree of G, i.e. δ(G) = minv∈V {dG(v)}. A graph G is called to be

even if dG(v) is even for each v ∈ V . For E1 ⊂ E, we denote by G\E1 the graph obtained

from G by deleting edges in E1. An edge e of G is said to be a cut edge of G if its deletion

results in a disconnected graph.

A tour of a graph G is a closed walk that traverses each edge of G at least once, and

an Euler tour one that traverses each edge exactly once. A graph is Eulerian if it admits

an Euler tour. A fundamental theorem of graph theory, known as Euler’s theorem, states

that G is Eulerian if and only if it is connected and even.

A double trace in G is a closed walk which traverses each edge of G exactly twice,

we say that a double trace contains a retracing if it has an immediate succession of an

edge e by its parallel copy, see Figure 1. Moreover, if v is a vertex of a graph G with a

double trace T , then we say that T contains a repetition through v if the vertex sequence

u → v → w appears twice in T in any direction (u → v → w or w → v → u), where
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u, w ∈ N(v), see Figure 2. A double trace that with no retracing is a proper trace, and a

proper trace that with no repetitions through all vertices is a stable trace.

Figure 1. Retracing of the edge e.

Figure 2. Repetition through the vertex v.

Let T be a double trace of length l, and let N ⊆ N(v), we say that T has an

N−repetition at v if the following condition holds:

for every i ∈ {0, · · · , l − 1} : if v = vi then vi+1 ∈ N if and only if vi−1 ∈ N.

Clearly if T has an N−repetition at v, then it also has an N(v) \N−repetition at v.

An N−repetition at v is a d−repetition if |N | = d, and a d−repetition will also be called

a repetition of order d. An N−repetition at v is trivial if N = ∅ or N = N(v). A strong

trace is a double trace without nontrivial repetitions, and a d−stable trace is a double

trace without repetitions of order i for all 1 ≤ i ≤ d. It is easily seen that a proper trace

(respectively, stable trace) is a 1-stable trace (respectively, 2-stable trace).

Let T be a double trace in G and v ∈ V , the vertex figure of v, denoted by Fv,T , is a

graph having E(v) as its vertex set by making edges e, e′ ∈ E(v) adjacent if e and e′ are

consecutive edges along T. Observe that Fv,T is a 2-regular graph, and it contains a loop as

a subgraph if and only if T contains a retracing at v, and contains a pair of parallel edges

as a subgraph if and only if T contains a repetition through v. The following theorem

will be used in the paper.
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Theorem 2.1 [19] Let T be a double trace in G. Then T is a strong trace of G if and

only if Fv,T is a single cycle for each v ∈ V .

The characterization of graphs that admit proper trace, stable trace and strong trace

were studied in [23,24], [17] and [19], respectively.

Theorem 2.2 (1) [19] Every graph admits a strong trace.

(2) [19] A graph G admits a d−stable trace if and only if δ(G) > d.

Let T be a double trace of G and e ∈ E. Then e is traversed exactly twice along

T , if in both cases e is traversed in the same direction, we say that e is a parallel edge

(with respect to T ), and say that e is an antiparallel edge (with respect to T ) otherwise.

Furthermore, a double trace T is said to be a parallel double trace if every edge of G is

parallel and an antiparallel double trace if every edge of G is antiparallel. The authors

in [17–19] investigated the necessary and sufficient conditions of graphs that admit parallel

d−stable trace and parallel strong trace, respectively.

Theorem 2.3 (1) [19] A graph G admits a parallel strong trace if and only if G is

Eulerian.

(2) [19] A graph G admits a parallel d−stable trace if and only if G is Eulerian and

δ(G) > d.

In [19], Fijavž, Pisanski and Rus also characterized graphs that admit an antiparallel

strong trace, and they obtained:

Theorem 2.4 [19] A graph G admits an antiparallel strong trace if and only if G has a

spanning tree ST such that each connected component of G \E(ST ) has an even number

of edges.

Let E1 ⊆ E, and T be a double trace of a graph G = (V,E), we say that T is

an E1−antiparallel double trace of G if exactly the edges of E1 are traversed in the op-

posite direction in T. Furthermore, T is said to be an E1−antiparallel strong (respec-

tively, d−stable) trace if T is not only a strong (respectively, d−stable) trace but also an

E1−antiparallel double trace. Observe that the parallel double trace and the antiparal-

lel double trace are both special cases of E1−antiparallel double trace for E1 = ∅ and

E1 = E, respectively. The following lemma is quite useful in the subsequent section.
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Lemma 2.1 Let E1 ⊆ E, the edge set of G. If G admits an E1−antiparallel double trace,

then G \ E1 is even.

Proof Suppose that T is an E1−antiparallel double trace of G and DG is the multi-graph

obtained from G by doubling each of its edges. It follows from the definition of T that

edges of G inside E1 are antiparallel and edges of G outside E1 are parallel. In addition,

the double trace T viewed as an oriented closed walk induces an orientation of edges of

DG. Let v ∈ V . Suppose that the number of antiparallel edges of G incident with v

is x and the number of parallel edges of G whose heads (resp. tails) are v is y1 (resp.

y2). Note that the in-degree d−(v) of v will be equal to its out-degree d+(v) in DG, and

d−(v) = x+ 2y1, d
+(v) = x+ 2y2. Hence y1 = y2, which implies dG\E1

(v) is even. �

In next section we are going to study when the necessary condition will also be sufficient

and only consider E1 ⊂ E.

3 A little theoretical result

3.1 E1 is an independent set

Lemma 3.1 Suppose that E1 ⊂ E is an independent set of a connected graph G = (V,E).

If G \ E1 is even, then G admits an E1−antiparallel strong trace.

Proof For simplicity, let |E1| = k. We shall prove the lemma by induction on k. By

Theorem 2.3 (1), the lemma holds for k = 0. Now suppose that k > 0, assume that the

lemma is true for l < k, and that E1 is an independent set with k edges of G and G \E1

is even. Choose an arbitrary edge, say e = u1u2, from E1, let G
′ = G \ e and E2 = E1 \ e.

It is obvious that E2 ⊂ E(G′) with (k− 1) independent edges, and that G′ \E2 = G \E1,

is even.

Case 1 e is not a cut edge of G.

In this case G′ is connected and dG\E1
(ui) ≥ 2 for i = 1, 2. By our induction hypothesis,

G′ admits an E2−antiparallel strong trace T ′.

Then all the edges incident with ui (i = 1, 2) except e must be parallel in T ′. Further-

more, there must exist an edge, say e2 = u2v2, that is traversed twice both towards u2 in

T ′. Without loss of generality, we may describe T ′ as

T ′ = v1e1u1f1w1t1v2e2u2f2w2t2v2e2u2h2y2t3,
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such that e1 = u1v1, f1 = u1w1 are two edges incident with vertex u1, and f2 = u2w2,

h2 = u2y2 are edges incident with vertex u2, whenever h2 = f2 if and only if dG′(u2) = 2,

and ti (i = 1, 2, 3) is a segment of T ′ and doesn’t contain e2, see Figure 3(1). By Theorem

2.1, the vertex figure Fv,T ′ is a single cycle for each v ∈ V (G).

Now let

T = v1e1u1eu2f2w2t2v2e2u2eu1f1w1t1v2e2u2h2y2t3

obtained from T ′ by interchanging its two interior segments between u1 and u2 with

direction preserved and by adding the edge e twice in the opposite direction. See Figure

3(2). It is easy to see that T is an E1-antiparallel double trace of G. For any vertex

v ∈ V (G) \ {u1, u2}, note that the vertex figure Fv,T is exactly the same as Fv,T ′ , which is

a single cycle. For the vertex ui (i = 1, 2), it is not difficult to see that Fui,T is obtained

from Fui,T ′ by replacing the edge eifi with two adjacent edges eie and efi, which means

that Fui,T is also a single cycle, see Figure 4. Hence T is an E1-antiparallel strong trace

of G.

Figure 3. (1)The double trace T ′ of G′. (2)The double trace T of G.

Figure 4. The vertex figures: (1)Fu1,T ′ (2)Fu2,T ′ (3)Fu1,T and (4)Fu2,T .

Case 2 e is a cut edge of G.
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Let G1 and G2 be the two connected components of G′ with ui ∈ V (Gi). Then at most

one of Gi (i = 1, 2) is trivial, otherwise, G = K2 and E1 = {e} is not a proper edge

subset of G. We shall suppose that G2 is not trivial. For i ∈ {1, 2}, let E1i = E1 ∩E(Gi).

Obviously, |E11| + |E12| = k − 1. Notice that E12 is a proper independent edge subset of

G2 satisfying G2 \ E12 is even. Similar to Case 1, we may describe the E12-antiparallel

strong trace T2 of G2 as

T2 = v2e2u2f2w2t2v2e2u2h2y2t
′
2,

such that f2 = u2w2, h2 = u2y2 are edges incident with u2, whenever h2 = f2 if and only

if dG2
(u2) = 2, and t2, t

′
2 are segments of T2, which do not contain e2. See Figure 6(2).

Figure 5. (1)The strong trace T , (2)the vertex figure Fu2,T2
, (3)the vertex figure

Fu2,T and (4)the vertex figure Fu1,T .

Subcase 2.1 G1 is trivial.

In this case we can construct T as follows:

T = v2e2u2eu1eu2f2w2t2v2e2u2h2y2t
′
2.

See Figure 5(1). By Figures 5(2)-(4)we know that T is an E1−antiparallel strong trace

of G.

Subcase 2.2 G1 is not trivial.

In this case E11 is also a proper independent edge subset of G1 satisfying G1 \E11 is even.

Hence we may describe T1 as

T1 = v1e1u1f1w1t1v1e1u1h1y1t
′
1,

such that f1 = u1w1, h1 = u1y1 are edges incident with u1, whenever h1 = f1 if and only if

dG1
(u1) = 2, and that t1, t

′
1 are segments of T1, which do not contain e1. See Figure 6(1).
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Now we construct a double trace T of G as follows:

T = v1e1u1eu2f2w2t2v2e2u2h2y2t
′
2v2e2u2eu1f1w1t1v1e1u1h1y1t

′
1.

See Figure 6(3). By checking changes of vertex figures (also see Figure 4) we know that

T is an E1−antiparallel strong trace of G. �

Figure 6. The double traces: (1)T1, (2)T2 and (3)T .

By combining Lemma 2.1 and Lemma 3.1, we obtain:

Theorem 3.1 Suppose that E1 ⊂ E is an independent set of a connected graph G =

(V,E). Then G admits an E1−antiparallel strong trace if and only if G \ E1 is even.

As a consequence we have:

Corollary 3.1 Let G be a connected graph. Then G admits an {e}−antiparallel strong

trace if and only if G \ e is even.

3.2 The subgraph induced by E1 is a path and a cycle

Firstly, we present some lemmas which are necessary in the later proofs.

Lemma 3.2 Let G = (V,E) be a graph, x ∈ V, and G′ be the graph obtained from G by

splitting x into two adjacent vertices x′ and x′′ such that dG′(x′) ≥ 3 and dG′(x′′) ≥ 3. Let

T ′ be a double trace of G′, and T be a double trace of G obtained from T ′ by ignoring the

edge e = x′x′′ and by identifying both the vertices x′ and x′′ with a single x. If the vertex

figure Fx′,T ′ and Fx′′,T ′ are both a single cycle, then the vertex figure Fx,T is also a single

cycle.
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Proof Firstly, we assume that the edge e is traversed twice in the same direction and

without loss of generality, we assume the direction is from x′ to x′′ in T ′, and hence

we may describe T ′ = · · · e′x′ex′′e′′ · · · f ′x′ex′′f ′′ · · · , where e′ and f ′ (respectively, e′′

and f ′′) are edges incident with vertex x′ (respectively, x′′), see Figure 7(1). Then

T = · · · e′xe′′ · · · f ′xf ′′ · · · , as shown in Figure 7(2). Furthermore, since dG′(x′) ≥ 3 (re-

spectively, dG′(x′′) ≥ 3) and Fx′,T ′ (respectively, Fx′′,T ′) is a single cycle, we have e′ 6= f ′

(respectively, e′′ 6= f ′′). Note that Fx,T is obtained from two disjoint single cycles Fx′,T ′

and Fx′′,T ′ by removing four edges e′e, ef ′, e′′e, ef ′′ and adding two new edges e′e′′, f ′f ′′.

Hence Fx,T is also a single cycle. See Figure 8. Secondly, if e is traversed exactly once in

Figure 7. (1) The double trace T ′ of G′ and (2) the double trace T of G.

each direction in T ′, then we can also obtain that Fx,T is a single cycle, and we leave the

details to the readers. �

Figure 8. The vertex figures: (1) Fx′,T ′ , (2) Fx′′,T ′ and (3) Fx,T .

Lemma 3.3 Let G = (V,E) be a connected graph and E1 ⊂ E. Suppose that the subgraph

induced by E1 is a path of length k ≥ 2. If G\E1 is even, then G admits an E1−antiparallel

strong trace.

Proof We first consider the case of k = 2, then the general case of k ≥ 3.
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Case 1 k = 2.

Suppose that E1 = {a, b}, where a = u1x and b = u2x. Then dG(x) is even and dG(ui)

are both odd for i = 1, 2.

Subcase 1.1 dG(x) = 2.

Let G′ be the graph obtained from G by merging a and b into a single edge e as shown in

Figure 9. Then G′ \ e is even.

Figure 9. (1) The graph G and (2) the graph G′.

Therefore G′ admits an {e}-antiparallel strong trace T ′ by Corollary 3.1. This means

that each vertex figure Fv,T ′ is a single cycle by Theorem 2.1. Now we construct a double

trace T of G from T ′ by replacing u1eu2 with u1axbu2, and by replacing u2eu1 with

u2bxau1. Note that only a and b are traversed in the opposite direction in T. Moreover, it

is clear that Fv,T is isomorphic to Fv,T ′ for each v 6= x, and there is no retracing appeared

at the vertex x. Thus T is an E1−antiparallel strong trace of G.

Subcase 1.2 dG(x) ≥ 4.

For convenience, let d = dG(x). We assume that N(x) = {u1, u2, x1, x2, · · · , xd−2}. We

construct G′ from G as shown in Figure 10. Let E2 = {a′, b′}. Then E2 ⊂ E(G′) and

G′ \ E2 is even. By Theorem 3.1, G′ admits an E2−antiparallel strong trace T ′. Note

that dG′(x′) = 2⌊d
4
⌋+ 1 ≥ 3, dG′(x′′) = d− 2⌊d

4
⌋+ 1 ≥ 3 and let T be the double trace of

G obtained from T ′ by ignoring the edge e firstly and then identifying the vertices x′ and

x′′ to become x. By Lemma 3.2, T is an E1−antiparallel strong trace of G.

Case 2 k > 2.

Let E1 = {z1, · · · , zk} with zi = xi−1xi for i ∈ {1, · · · , k}. Then only the vertices x0 and

xk are of odd degrees in G. Let 1 ≤ i1 < i2 <, · · · , < il ≤ k − 1 such that dG(xi) > 2 if

i ∈ {i1, i2, · · · , il} and dG(xi) = 2 otherwise. Let E ′
1 = {x0xi1 , xi1xi2 , · · · , xilxk}. Let G′

be the graph obtained from (G\E1) by adding the edges in E ′
1 firstly and then by deleting

the isolated vertices (if there exist isolated vertices). Let G′′ be the graph obtained from

G′ by splitting each xij for j ∈ {1, 2, · · · , l} as shown in Figure 10. Applying Subcase 1.2
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Figure 10. (1)The graph G and (2)the graph G′.

to G′′, we obtain G′ admits an E ′
1-antiparallel strong trace. Applying Subcase 1.1 to G′,

we obtain G admits an E1-antiparallel strong trace. �

Combining Lemma 2.1 and Lemma 3.3, we obtain:

Theorem 3.2 Let G = (V,E) be a connected graph and E1 ⊂ E. Suppose that the

subgraph induced by E1 is a path. Then G admits an E1−antiparallel strong trace if and

only if G \ E1 is even.

As a consequence we have:

Corollary 3.2 Let G = (V,E) be a connected graph and {a, b} ⊂ E. Then G admits

{a, b}-antiparallel strong trace if and only if G \ {a, b} is even.

Furthermore, it is not difficult to combine Theorem 3.1 and Theorem 3.2 into the case

that E1 forms several disjoint paths. Now we consider the case that E1 forms a cycle.

Theorem 3.3 Let G = (V,E) be a connected graph and E1 ⊂ E. Suppose that the

subgraph induced by E1 is a cycle. Then G admits an E1−antiparallel strong trace if and

only if G \ E1 is even.

Proof It suffices to prove its sufficiency. Since E1 ⊂ E, there must exist an edge, say

e ∈ E1, such that one of its two endpoints is of degree ≥ 2 in G \ E1. Let G′ = G \ e,

E2 = E1 \ e. Then G′ is connected with E2 ⊂ E(G′) and G \E1 = G′ \E2. Similar to the

proof of Lemma 3.3, G′ admits an E2−antiparallel strong trace T ′. An E1−antiparallel

strong trace T of G can be obtained just like Case 1 in Lemma 3.1. �
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(1) (2)

Figure 11. (1) The tetrahedron designed from a single polypeptide chain com-
prising 12 concatenated coiled coil-forming segments [15]. It has two
independent antiparallel edges. Theory suggests that this is one of
the three possible topologies with two others having three parallel and
three antiparallel edges. (2) A strong trace of the cube such that only
the edges in its perfect matching are traversed oppositely. It has four
independent antiparallel edges.

4 Implications and discussions for

the molecular design

Based on the mathematical model of polyhedral links, some topological operations have

been introduced for the molecular design of DNA nanostructures [25,26]. Compared to the

elaborate field of structural DNA nanotechnology, the field of designed modular polypep-

tide nanotechnology is at the very beginning. Herein, we suggest that almost parallel

strong trace model may provide novel insight into the molecular design of polypeptide

nanostructures.

A tetrahedron is of degree 3, removing a single edge leaves a non-even graph. By

Corollary 3.1, there is no strong trace for the tetrahedron such that only one edge is

traversed in the opposite direction for this trace. By Corollary 3.2, there is a strong trace

for the tetrahedron such that exactly two edges are traversed in the opposite direction

for this trace, and these two edges should be independent and can not be connected

to be a path. This confirms that the largest number of parallel edges in the previous

experimentally realized single-chain polypetptide tetrahedron is 4. See Figure 11(1).

According to Corollaries 3.1 and 3.2, it is easy to determine where a graph admits a

strong trace with only 1 or 2 antiparallel edges. Theorems 3.1, 3.2 and 3.3 could be used

to design almost parallel strong trace. There is no strong trace for regular polyhedron
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Figure 12. (1) For a 3-cycle of the octahedron, we can realize a strong trace such
that only the edges of the cycle are traversed oppositely. (2) For a
4-cycle of the octahedron, we can realize a strong trace such that only
the edges of the cycle are traversed oppositely.

such that only edges on a path are traversed oppositely. A perfect matching of a graph is

a set of independent edges covering every vertex of the graph. For a regular polyhedron

of degree 3, we can realize a strong trace with only edges in its perfect matching traversed

oppositely. Figure 11(2) illustrates a strong trace of the cube such that only the edges in

its perfect matching are traversed in the opposite direction. An octahedron is a regular

polyhedron of degree 4, for a given cycle of this polyhedron with length 3, 4, 5, or 6, we

can realize a strong trace with only edges on the cycle traversed oppositely, see Figure 12

and Figure 13.

Figure 13. (1) For a 5-cycle of the octahedron, we can realize a strong trace such
that only the edges of the cycle are traversed oppositely. (2) For a
6-cycle of the octahedron, we can realize a strong trace such that only
the edges of the cycle are traversed oppositely.
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It is easier for the self-assembling of polypeptide nanostructures with largest number

of parallel edges, because there is a larger number of known orthogonal parallel coiled-coil

dimers than antiparallel dimers as the building blocks. We leave the following mathemat-

ical question for further study.

Question 4.1 Given a graph, determine the minimum number of edges such that there

is a strong trace with only these edges traversed oppositely.
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TOPOFOLD, the designed modular biomolecular folds: polypeptide-based molec-
ular origami nanostructures following the footsteps of DNA, WIREs Nanomed.
Nanobiotech. 7 (2015) 218–237.

[17] S. Klavžar, J. Rus, Stable traces as a model for self–assembly of polypeptide nanoscale
polyhedrons, MATCH Commun. Math. Comput. Chem. 70 (2013) 317–330.

[18] J. Rus, Parallelism of stable traces, preprint.
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