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Abstract

The Hosoya index of a graphG is defined as Z (G) =
∑
k≥0

m (G, k), wherem (G, k)

the number of ways in which k mutually independent edges can be selected in G.
In this article we introduce the Hosoya vector of a graph at a given edge. Based on
this concept and the recurrence relations known for Z, we give reduction formulas
to compute the Hosoya index of any catacondensed hexagonal system via a product
of 4×4 matrices with entries in N. As a consequence, we discuss the extremal value
problem of the Hosoya index over certain subsets of the set of cataconsed hexagonal
systems.

1 Introduction

Let G be a graph. We denote by m (G, k) the number of ways in which k mutually

independent edges can be selected in G. By definition m (G, 0) = 1 and clearly m (G, 1)

is the number of edges of G. The Hosoya index of G [4] is denoted by Z (G) and defined

as

Z (G) =
∑
k≥0

m (G, k)

The Hosoya index is a graph invariant used in mathematical chemistry for quantifying

certain structural features of organic molecules. We refer the reader to the survey [12] for

further details.

The following recurrence relations are fundamental and can be found in [12]:

∗Corresponding author. Email: pablo.rada@udea.edu.co

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 77 (2017) 749-764
                         

                                          ISSN 0340 - 6253 



a) If G1, . . . , Gr are the connected components of the graph G, then

Z (G) =
r∏

i=1

Z (Gi) (1)

b) Let e = vw be an edge of G. Then

Z (G) = Z (G− uv) + Z (G− v − w) (2)

Our interest is the Hosoya index over hexagonal systems, natural representations of

benzenoid hydrocarbons, which play an important role in mathematical chemistry. For

the definition and basic properties of hexagonal systems we refer to ( [1], [2]), and for

recent results on the study of the Hosoya index over hexagonal systems see ( [3], [8]- [15]).

An important class of hexagonal systems are the catacondensed hexagonal systems, whose

hexagons are terminal, linear, angular or branched as we can see in Figure 1.

Figure 1. Types of hexagons in catacondensed hexagonal systems

In this article we introduce the Hosoya vector of a graph at a given edge. Based on this

concept and the recurrence relations given above, we give reduction formulas to compute

the Hosoya index of any catacondensed hexagonal system via a product of 4× 4 matrices

with entries in N. As a consequence, we discuss the extremal value problem of the Hosoya

index over certain subsets of the set of cataconsed hexagonal systems.

2 Computing the Hosoya index of catacondensed

hexagonal systems

We begin introducing the Hosoya vector of a graph at an edge.

Definition 2.1 Let uv be an edge of a graph G. We define the Hosoya vector of G at

uv, denoted by Zuv (G), as the column vector

Zuv (G) = (Z (G) , Z (G− u) , Z (G− v) , Z (G− u− v))>
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Note that

Zuv (G) = PZvu (G) (3)

where P is the permutation matrix

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


In case G = Lj, the linear hexagonal chain with j hexagons (see Figure 2), we will write

Zuv (Lj) = (λj, ξj, ξj, ηj)
>

In other words,

λj = Z (Lj) , ξj = Z (Lj − u) = Z (Lj − v) , ηj = Z (Lj − u− v) . (4)

Figure 2. Linear hexagonal chain Lj

Proposition 2.2 Let G be the graph obtained from the edge-coalescence of the graph H

and a hexagon at st (see Figure 3). Then

Zuv (G) = QZst (H)

where Q =


5 3 3 2
2 2 1 1
2 1 2 1
1 1 1 1

 .
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Proof. We delete the independent edges xs and yt from G (see Figure 3) using relations

(1) and (2):

Z (G) = Z (G− yt− xs) + Z (G− yt− x− s)

+Z (G− y − t− xs) + Z (G− y − t− x− s)

= Z (P4)Z (H) + Z (P3)Z (H − s) + Z (P3)Z (H − t) +

+Z (P2)Z (H − s− t)

= 5Z (H) + 3Z (H − s) + 3Z (H − t) + 2Z (H − s− t)

= (5, 3, 3, 2) · Zuv (H) ,

Z (G− u) = Z (G− u− yt− xs) + Z (G− u− yt− x− s) +

+Z (G− u− y − t− xs) + Z (G− u− y − t− x− s)

= Z (P1)Z (P2)Z (H) + Z (P2)Z (H − s) + Z (P1)Z (P1)Z (H − t) +

+Z (P1)Z (H − s− t)

= 2Z (H) + 2Z (H − s) + Z (H − t) + Z (H − s− t)

= (2, 2, 1, 1) · Zuv (H) ,

Z (G− v) = Z (G− v − yt− xs) + Z (G− v − yt− x− s) +

+ (G− v − y − t− xs) + Z (G− v − y − t− x− s)

= Z (P1)Z (P2)Z (H) + Z (P1)Z (P1)Z (H − s) + Z (P2)Z (H − t) +

+Z (P1)Z (H − s− t)

= 2Z (H) + Z (H − s) + 2Z (H − t) + Z (H − s− t)

= (2, 1, 2, 1) · Zuv (H) ,

Z (G− u− v) = Z (G− u− v − yt− xs) + Z (G− u− v − yt− x− s) +

+Z (G− u− v − y − t− xs) + Z (G− u− v − y − t− x− s)

= Z (P1)Z (P1)Z (H) + Z (P1)Z (H − s) + Z (P1)Z (H − t) +

+Z (H − s− t)

= Z (H) + Z (H − s) + Z (H − t) + Z (H − s− t)

= (1, 1, 1, 1) · Zuv (H) ,
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Figure 3. Graph used in Proposition 2.2

where Pk denotes the path on k vertices.

A direct consequence of Proposition 2.2 is

(λj, ξj, ξj, ηj)
> = Q (λj−1, ξj−1, ξj−1, ηj−1)

> (5)

Corollary 2.3 Let G be the graph obtained from the coalescence of the graph H and the

linear chain Lj at an edge st (see Figure 4). Then

Zuv (G) = QjZst (H)

In particular, Zuv (Lj) := (λj, ξj, ξj, ηj)
> = QjX0, where X0 = (2, 1, 1, 1)> is the Hosoya

vector of K2.

Figure 4. Graph used in Corollary 2.3

Proof. This is a consequence of Proposition 2.2 and induction. Note that Zuv (K2) =

(2, 1, 1, 1)> = X0.

If uv is an edge of the graph H we will denote by Z∗
st (H) the (4× 4)-matrix

Z∗
st (H) = (EkZst (H))k (6)

whose 4 columns are given by E1Zst (H) , E2Zst (H) , E3Zst (H) and E4Zst (H), where

E1 =


2 1 0 0
1 0 0 0
1 1 0 0
1 0 0 0

 , E2 =


1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


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and

E3 =


0 0 2 1
0 0 1 0
0 0 1 1
0 0 1 0

 , E4 =


0 0 1 1
0 0 1 0
0 0 0 0
0 0 0 0

 .

Proposition 2.4 Let G be the graph obtained from the edge-coalescence of the graphs H

and K to a hexagon at the edges st and xy, respectively (see Figure 5). Then

Zuv (G) = Z∗
st (H)Zxy (K)

Proof. We delete the independent edges us, vx and yt from G (see Figure 5) using

relations (1) and (2):

Z (G) = Z (G− yt− xv − us) + Z (G− yt− xv − u− s)

+Z (G− yt− us− x− v) + Z (G− yt− x− v − u− s) +

+Z (G− xv − us− y − t) + Z (G− xv − y − t− u− s) +

+Z (G− us− y − t− x− v) + Z (G− y − t− x− v − u− s)

= [2Z (H) + Z (H − s)]Z (K) + [Z (H) + Z (H − s)]Z (K − x) +

+ [2Z (H − t) + Z (H − s− t)]Z (K − y) +

+ [Z (H − t) + Z (H − s− t)]Z (K − x− y)

= [(2, 1, 0, 0) · Zst (H)]Z (K) + [(1, 1, 0, 0) · Zst (H)]Z (K − x) +

+ [(0, 0, 2, 1) · Zst (H)]Z (K − y) + [(0, 0, 1, 1) · Zst (H)]Z (K − x− y)

Z (G− u) = Z (G− u− yt− xv) + Z (G− u− yt− x− v) +

+Z (G− u− xv − y − t) + Z (G− u− y − t− x− v)

= Z (H)Z (K) + Z (H)Z (K − x) +

+Z (H − t)Z (K − y) + Z (H − t)Z (K − x− y)

= [(1, 0, 0, 0) · Zst (H)]Z (K) + [(1, 0, 0, 0) · Zst (H)]Z (K − x) +

+ [(0, 0, 1, 0) · Zst (H)]Z (K − y) + [(0, 0, 1, 0) · Zst (H)]Z (K − x− y)
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Z (G− v) = Z (G− u− yt− us) + Z (G− v − yt− u− s) +

+Z (G− v − us− y − t) + Z (G− v − y − t− u− s)

= [Z (H) + Z (H − s)Z (K)] +

+ [Z (H − t) + Z (H − t− s)]Z (K − y)

= [(1, 1, 0, 0) · Zst (H)]Z (K) + [(0, 0, 0, 0) · Zst (H)]Z (K − x) +

+ [(0, 0, 1, 1) · Zst (H)]Z (K − y) + [(0, 0, 0, 0) · Zst (H)]Z (K − x− y)

Z (G− u− v) = Z (G− u− v − yt) + Z (G− u− v − y − t)

= Z (H)Z (K) + Z (H − t)Z (K − y)

= [(1, 0, 0, 0) · Zst (H)]Z (K) + [(0, 0, 0, 0) · Zst (H)]Z (K − x) +

+ [(0, 0, 1, 0) · Zst (H)]Z (K − y) + [(0, 0, 0, 0) · Zst (H)]Z (K − x− y)

Figure 5. Graph used in Proposition 2.4

Let us define for every integer j ≥ 0 the 4×4-matrix associated to the linear hexagonal

chain Lj

Sj = Z∗
uv (Lj)

Note that by Corollary 2.3

Sj =
(
EkQ

jX0

)
k

(7)

In particular,

S0 = (EkX0)k =


5 3 3 2
2 2 1 1
3 0 2 0
2 0 1 0


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Corollary 2.5 Let G be a graph as in the hypothesis of Proposition 2.4, where H = Li

and K = Lj. Then

Zuv (G) = SiQ
jX0 = (λjE1 + ξj (E2 + E3) + ηjE4)Q

iX0

Proof. By Proposition 2.4 and (4)

Zuv (G) = Z∗
st (Li)Zxy (Lj) = SiQ

jX0 = Si (λj, ξj, ξj, ηj)
>

= λjE1Q
iX0 + ξj (E2 + E3)Q

iX0 + ηjE4Q
iX0

= (λjE1 + ξj (E2 + E3) + ηjE4)Q
iX0

Figure 6. General form of catacondensed hexagonal systems

Note that Proposition 2.2, Corollary 2.3 and Proposition 2.4 gives a reduction formula

to find the Hosoya index of any catacondensed hexagonal system. In fact, if X is any

catacondensed hexagonal system then X has the form depicted in Figure 6 (H or K can

be isomorphic to K2). Hence

Zuv (X) = Qp {EkZst (H)}k Zxy (K) .

After a finite number of steps, which ends when there are no more branched or angular

hexagons, we have expressed the vector Zuv (X) as a product of matrices evaluated in X0.

Example 2.6 Consider the hexagonal system S (i, j, k) (see Figure 7). Then by Propo-

sition 2.2 and Corollary 2.5

Zuv (S (i, j, k)) = QkSiQ
jX0 = Qk (λjE1 + ξj (E2 + E3) + ηjE4)Q

iX0 (8)
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Figure 7. Catacondensed hexagonal system S(i, j, k).

More generally, let H be any hexagonal chain with angular hexagons

H1, . . . , Hr

Assume that H0 is the first hexagon and Hr+1 is the last hexagon of the chain. For

i = 0, . . . , r let pi ≥ 0 be the number of (linear) hexagons between Hi and Hi+1. We

construct a catacondensed hexagonal system Ĥ from H by attaching to each 22-edge of

Hi (i = 1, . . . , r) a linear hexagonal chain Lqi (see Figure 8). We construct a sequence of

vertices x1, y1, x2, y2, . . . , xr, yr in H as follows: Let x1 be the closest vertex to u belonging

to H1, and y1 the closest vertex to x1 in the hexagon adjacent to H1. Then choose x2 the

closest vertex to y1 in H2 and y2 the closest vertex to x2 in the next hexagon adjacent to

H2, and so on .... (see Figure 8).

Theorem 2.7 Let Ĥ be the catacondensed hexagonal system described above with se-

quence of vertices x1, y1, x2, y2, . . . , xr, yr in H. Then

Zuv

(
Ĥ
)
= Qp0+1H1Q

p1H2Q
p2 · · ·Hr−1Q

pr−1HrQ
pr+1X0

where Hi = PSi if d (xi, yi) = 1 and Hi = Si if d (xi, yi) = 2.

Proof. The proof will be using induction on the number N
(
Ĥ
)

of non-linear

hexagons of the catacondensed hexagonal system Ĥ (equivalently, the sum of the numbers

of angular hexagons and branching hexagons of Ĥ). If N
(
Ĥ
)
= 0 then clearly Ĥ = Lp0+1

and Zuv = Qp0+1X0 by Corollary 2.3. Now assume that the results holds for hexagonal
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systems X̂ such that N
(
X̂
)
= h. Let Ŷ = Ĥ (see Figure 8) such that N

(
Ŷ
)
= h + 1.

By Corollary 2.3 and Proposition 2.4

Zuv

(
Ŷ
)
= Qp0+1H1Zy1w1

(
K̂
)

where K̂ is obtained from Ĥ by deleting the (sub)hexagonal system in bold of Ĥ (see

Figure 8) and

H1 =

{
PS1 d(x1, y1) = 1

S1 d(x1, y1) = 2.

Hence, by induction

Zy1w1

(
K̂
)
= Qp1H1Q

p2 · · ·

and we are done.

Figure 8. Sequence of vertices associated to a catacondensed hexagonal system.

Note that all catacondensed hexagonal systems with at most three branched hexagons

are of the type Ĥ described in Theorem 2.7.

Example 2.8 Consider the catacondensed hexagonal system Y shown in Figure 9. Then

Zuv (Y ) = Q2S1QS1Q
3X0
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where S1 = (EkQX0)k =


44 26 21 13
18 18 8 8
26 0 13 0
18 0 8 0

, Q =


5 3 3 2
2 2 1 1
2 1 2 1
1 1 1 1

 and X0 =


2
1
1
1

.

Figure 9. Catacondensed hexagonal system used in Example 2.8

When no linear hexagonal chains are attached to the 22-edge of Hi (i = 1, . . . , r) then

Ĥ = H is a hexagonal chain. In this case Hi = PS0 if d (xi, yi) = 1 and Hi = S0 if

d (xi, yi) = 2, for all i = 1, . . . , r. In other words, we have a formula for the Hosoya vector

of any hexagonal chain.

Corollary 2.9 Let H be a hexagonal chain with angular hexagons H1, . . . , Hr and se-

quence x1, y1, . . . , xr, yr as above. Then

Zuv

(
Ĥ
)
= Qp0+1H1Q

p1H2Q
p2 · · ·Hr−1Q

pr−1HrQ
pr+1X0

where Hi =


5 3 3 2
3 0 2 0
2 2 1 1
0 0 0 0

 if d (xi, yi) = 1 and Hi =


5 3 3 2
2 2 1 1
3 0 2 0
2 0 1 0

 if d (xi, yi) = 2.

We next discuss the extremal value problem of the Hosoya index over certain subsets of

the set of cataconsed hexagonal systems. Let S (i, j, k) be the catacondensed hexagonal

system introduced in Example 2.6. We take the difference between Hosoya vectors of

catacondensed hexagonal systems S (i, j, k) and S (i− 1, j + 1, k) (see Figure 10). Then

by (8)

Zuv (S (i, j, k)) = QkSiQ
jX0

= Qk (λjE1 + ξj (E2 + E3) + ηjE4) (λi, ξi, ξi, ηi)
>
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and

Zvu (S (i− 1, j + 1, k))

= QkSj+1Q
i−1X0

= Qk (λi−1E1 + ξi−1 (E2 + E3) + ηi−1E4) (λj+1, ξj+1, ξj+1, ηj+1)
>

Figure 10. Catacondensed hexagonal systems S(i, j, k) and S(i− 1, j + 1, k).

It follows from (5)

Zuv (S (i, j, k))− Zvu (S (i− 1, j + 1, k))

= Qk


3 (λjξi−1 − ξjλi−1) + 2 (λjηi−1 − ηjλi−1) + (ξjηi−1 − ηjξi−1)

− (λjξi−1 − ξjλi−1)
6 (λjξi−1 − ξjλi−1) + 3 (λjηi−1 − ηjλi−1) + 2 (ξjηi−1 − ηjξi−1)
4 (λjξi−1 − ξjλi−1) + 2 (λjηi−1 − ηjλi−1) + (ξjηi−1 − ηjξi−1)


Let

(
q
(k)
11 , q

(k)
12 , q

(k)
13 , q

(k)
14

)
be the first row of the matrix Qk. Since q

(k)
11 , q

(k)
12 , q

(k)
13 , q

(k)
14 are all

positive, q
(k)
12 = q

(k)
13 and ξk

λk
, ηk
λk
, ηk
ξk

are strict decrease functions on k [15], it follows that

Z (S (i, j, k))− Z (S (i− 1, j + 1, k))

= q
(k)
11 (3 (λjξi−1 − ξjλi−1) + 2 (λjηi−1 − ηjλi−1) + (ξjηi−1 − ηjξi−1))

+q
(k)
12 (5 (λjξi−1 − ξjλi−1) + 3 (λjηi−1 − ηjλi−1) + 2 (ξjηi−1 − ηjξi−1))

+q
(k)
14 (4 (λjξi−1 − ξjλi−1) + 2 (λjηi−1 − ηjλi−1) + (ξjηi−1 − ηjξi−1))

> 0 (9)

This fact can be used to find extremal values of the Hosoya index over significant classes

of catacondensed hexagonal systems. Let CHh be the set of catacondensed hexagonal

systems and CHh,p,q is formed by those X ∈ CHh such that X has p branched hexagons
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and q angular hexagons. It was shown in [7] that CHh can be partitioned as a disjoint

union

CHh =
⋃

CHh,p,q

where (p, q) runs through the set{
(p, q) ∈ N× N : 0 ≤ p ≤

⌊
1

2
(h− 2)

⌋
, 0 ≤ q ≤ h− 2 (p+ 1)

}
(10)

So a natural question is: find the extremal values of the Hosoya index over CHh,p,q, for

each p, q as in (10). This problem is far from being solved. However, we can use relation

(9) to deduce the extremal values of the Hosoya index over CHh,0,1 and CHh,1,0.

Theorem 2.10 The minimal value of the Hosoya index over CHh,0,1 is attained

S (1, h− 2, 0) the minimal; the maximal in S
(⌊

h−1
2

⌋
, h−

⌊
h−1
2

⌋
− 1, 0

)
.

Proof. Every catacondensed hexagonal system in CHh,0,1 is of the form S (i, j, 0).

The result follows from (9).

Theorem 2.11 The minimal value of the Hosoya index over CHh,1,0 is attained in

S (1, 1, h− 3). The maximal value in
S
(
h
3
, h
3
, h
3
− 1

)
h ≡ 0mod(3)

S
(
h−1
3
, h−1

3
, h−1

3

)
h ≡ 1mod(3)

S
(
h−2
3
, h−2

3
, h+11

3

)
h ≡ 2mod(3)

Proof. From (9) it is clear that the minimal occurs in S (1, 1, h− 3) and the maximal

when the differences of the lengths of the branches are at most one.

Using the algorithm given in Theorem 2.7, we found the extremal values of the Hosoya

index over CHh,2,0, CHh,1,1 and CHh,0,2 for 8 ≤ h ≤ 40. These extremal catacondensed

systems are depicted in Figures 11, 12 and 13 respectively.
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Figure 11. Catacondensed hexagonal systems in CHh,2,0 with the extremal values
of the Hosoya index for 8 ≤ h ≤ 40.

Figure 12. Catacondensed hexagonal systems in CHh,1,1 with the extremal values
of the Hosoya index for 8 ≤ h ≤ 40.

Figure 13. Catacondensed hexagonal systems in CHh,0,2 with the extremal values
of the Hosoya index for 8 ≤ h ≤ 40.
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A problem we propose is the following:

Problem 2.12 Find the extremal values of the Hosoya index over the set CHh,p,q for

other values of p, q.
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