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Abstract 

The saturation number of a graph � is the cardinality of any smallest maximal matching of �, 
and it is denoted by �(�). Finding the saturation number of a graph is an NP-hard problem in 
general, but it is polynomial-time solvable for some special classes of graphs. For instance, it 
has been shown that the saturation number of a graph problem can be solved in linear time in 
trees. In this paper, we present a tight asymptotic bound on the saturation number of 
benzenoid parallelogram graph. Then we propose a mathematical model for determining the 
saturation number of a graph and analyze its efficacy on some fullerene and benzenoid graphs. 
Then by relaxation the mathematical model, we obtain a linear optimization model, that is a 
polynomial problem to find a lower bound for the saturation number of general graphs. 

1  Introduction 

Given a graph �, a matching � is a set of edges which are pairwise non-adjacent. If every 

vertex � ∈  
 is incident with an edge � ∈ �, we say that the matching � is perfect. A 

matching is said to be maximal if no other edge can be added to it while keeping the property 

of it being a matching. A matching � of � is maximum if |�| ≥ |�| for any other matching 

� in �. Vertices contained in edges of a matching are said to be saturated by this matching. A 

vertex which is not saturated by a matching is called exposed. The saturation number of a 

graph � is the cardinality of any smallest maximal matching of �, and it is denoted by �(�).  

Finding the saturation number of a graph is NP-hard in general. In [17], Yannakakis and 

Gavril show that the problem is NP-hard for several classes of graphs including bipartite (or 
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planar) graphs with maximum degree 3. In [10], Horton and Kilakos extended these results by 

showing the NP-hardness of the saturation number problem in planar bipartite graphs and 

planar cubic graphs.  

On the other hand, polynomial time algorithms for the saturation number problem are 

designed for trees [13], for series-parallel graphs [14], for bipartite permutation graphs and 

cotrianglated graphs [16] and for clique-width bounded graphs [9]. 

The saturation number and its associated structure of a fullerene and benzenoid play a key 

role in molecular energy and stability [2]. 

In this paper, we propose a mathematical programming model for determining the 

saturation number of a graph. Then we obtain the saturation number of two class of 

chemically relevant graphs known as fullerene and benzenoid graphs by proposed model. In 

particular, we will give an explicit sharp bound on this quantity for some classes of benzenoid 

and related graphs.  

This paper is organized as follows: First, we present a tight asymptotic bound on the 

saturation number of benzenoid parallelogram graph. Then we obtain the saturation number 

for three classes of benzenoid graphs by the mathematical model in section 3. Section 4 is 

devoted to obtaining the saturation number for some isomers of fullerenes by the 

mathematical model and finally, the conclusion part follows. 

2  Saturation number of benzenoid graphs 

A benzenoid system is a subset (with 1-connected interior) of a regular tiling of the plane by 

hexagonal tiles. To each benzenoid system, we can assign a graph, taking the vertices of 

hexagons as the vertices, and the sides of hexagons as the edges of the graph. The resulting 

simple, plane and bipartite graph is called a benzenoid graph [5]. 

All faces of a benzenoid graph except the unbounded one are hexagons. The vertices lying 

on the border of the non-hexagonal face of a benzenoid graph are called external; other 

vertices, if any, are called internal. A benzenoid graph without internal vertices is called 

catacondensed. If no hexagon in a catacondensed benzenoid is adjacent to three other 

hexagons, we say that the benzenoid is a chain. In each benzenoid chain, there are exactly two 

hexagons adjacent to one other hexagon. 

A benzenoid in a parallelogram-like shape called the benzenoid parallelogram and denoted 

by ��,�, consists of � ×  � benzene rings, arranged in � rows, each row containing � benzene 
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rings, shifted by a half benzene ring to the right from the row immediately below. Clearly 

��,� is the same as ��,� , so  ����,�� is equal to ����,��. 

The saturation number of the benzenoid graph was studied by Došlić in [5], where the 

following bounds were established. 

Theorem 1. [5] Let ��� be a catacondensed benzenoid with ℎ hexagons. Then  

�(���) ≥ ℎ + 2 . 

Theorem 2. [5] Let �� be a benzenoid chain on ℎ hexagons. Then 

ℎ + 1 ≤ �(��) ≤  !�
" #. 

Theorem 3. [5] Let ��,� be a benzenoid parallelogram. Then 

����,�� ≤  "�$%
! # � + �. 

In what follows we construct maximal matching that provides an upper bound on the 

saturation number of benzenoid parallelograms for tightening the upper bound presented by 

Došlić in  [5].  

Theorem 4. Let ��,� be a benzenoid parallelogram and  &, &' ∈ ℕ. Then 

 

����,�� ≤  
)*
+ (2& − 1)(� + 1)                   � = 3& − 2, � = 3&' − 2, � ≥ � ; (2& − 1)(� + 1)                  � = 3& − 2, � ≠ 3&' − 2 ;              2&(� + 1)                             � = 3& − 1, � ≠ 3&' − 2 ;                2&(� + 1) + �                      � = 3&, � = 3&', � ≥ � .                    

 

 

Proof. 

If   ( � = 3& − 2, � = 3&' − 2, � ≥ �) or (� = 3& − 2, � ≠ 3&' − 2), since the matching M 

shown in bold in Figure 1.a is maximal, then ����,� � ≤ (2& − 1)(� + 1). If (� = 3& −
1, � ≠ 3&' − 2), therefore ����,�� ≤ 2&(� + 1) (Figure 1.b). Similarly, if (� = 3& , � = 3&'), 
then ����,�� ≤ 2&(� + 1) + � (Figure 1.c). 

 

 

 

 

-739-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The upper bound on the saturation number and corresponding structure of ��, �. 

 

a. ( � = 3& − 2, � = 3&' − 2, � ≥ �) 
Or (� = 3& − 2, � ≠ 3&' − 2)       

b.  (� = 3& − 1, � ≠ 3&' − 2) 

c.  (� = 3&, � = 3&', � ≥ �) 
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Conjecture 1. The upper bound presented in theorem 4, for ��,� with ( � = 3& − 2, � =
3&' − 2, � ≥ �) or (� = 3& − 2, � ≠ 3&' − 2) that &, &' ∈ ℕ, is the saturation number of ��,�, 

i.e., 

����,�� = (2& − 1)(� + 1). 

Theorem 5. Our upper bound for the saturation of a benzenoid parallelogram in theorem 4 is 

sharper than the upper bound obtained by Došlić in [5]. 

Proof. Taking into account different values for � and �, proof is straightforward. 

 

3 Mathematical programming formulation for finding the 

saturation number 

In this section, we formally define the problem considered in this paper. Here we denote by 

12×2 the adjacency matrix describing graph �. Let 34 degree of vertex 5 and for each edge 

(5, 6), joining the vertices 5 and 6, a binary variable 748 is associated. Given a maximal 

matching as a set of edges, the 748 in which participated take the value 1 and otherwise 0. 

With respect to the above parameters and variables definition, the mathematical binary 

integer linear programming problem (BILP) for finding the saturation number of a graph 

would be as follows: 

Minimize @ 748
(4,8)∈A

                                                                                              (1) 

                                   Subject to 

@ 748
(4,8)∈A

≤ 1                                   ∀5 ∈ 
                                     (2) 

34 @ 748(4,8)∈A
+ @ 78C(4,8)∈A,(C,8)∈A

≥ 34   ∀5 ∈ 
                                          (3) 

748 ∈ D0,1E                                   ∀(5, 6) ∈ F                               (4) 

Having in mind the definition of 748, constraints (2) ensures that no two edges of � have a 

vertex in common. Therefore, it is easy to see that edges of � satisfying the first group of 

constraints forms a matching of �.  Constraints (3) guarantees that node 5 will not be covered 

by matching obtained by the constraints (2) if and only if each vertex adjacent to node 5 are 

covered by matching �. It is clear that constraints (2), (3) ensure that matching obtained by 

the constraints (2) is a maximal matching. The feasible solution space of the above 
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mathematical programming problem, determined by inequality constraints (2) and (3), is a set 

of all possible maximal matching of graph �.  

The model proposed in this paper minimize the number of edges over all maximal 

matching of graph �. Considering the above stated, it is clear that the optimal value of the 

objective function is the saturation number of a graph.  

Summarizing these results we have the following theorem. 

Theorem 6. There is a one-to-one correspondence between the saturation number as well as 

its associated maximal matching of graph � and the optimal objective value and optimal 

solution of the binary integer linear programming problem, respectively. 

Since the degree of vertices in benzenoid graph is 2 or 3, to obtain the saturation number of 

benzenoid graph, the constraints (3) of the model presented becomes as follows: 

 

3 @ 748
(4,8)∈A

+ @ 78C
(4,8)∈A,(C,8)∈A

≥ 3          ∀5 ∈ 
                                            (5) 

2 @ 748
(4,8)∈A

+ @ 78C
(4,8)∈A,(C,8)∈A

≥ 2           ∀5 ∈ 
                                           (6) 

We obtain the saturation number for three classes of benzenoid graphs by the 

mathematical model. For example, three structures of the benzenoid graph 

corresponding to its saturation number are illustrated in Figures 2 and 3. 

 

a.  �(�JK) = 70                                     b.    �(��JL) = 71                  

Figure 2. The saturation number and corresponding structures of �JK, ��JL 
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                                              Figure 3.  ���N,N� = 53 

Although binary integer linear programming problem is an NP-hard problem in general, but 

by relaxation the mathematical model, we obtain a linear programming model as follows, that 

can also be solved in polynomial time and allows the computation of strong lower bounds for 

the saturation number problems. 

Minimize @ 748
(4,8)∈A

                                                                          
                              Subject to 

 @ 748
(4,8)∈A

≤ 1                                               ∀5 ∈ 
 

34 @ 748
(4,8)∈A

+ @ 78C
(4,8)∈A,(C,8)∈A

≥ 34            ∀5 ∈ 
  
         0 ≤ 748 ≤ 1                                ∀(5, 6) ∈ F 

4 Saturation number of a fullerene graph 

A fullerene is a 3-regular plane graph consisting only of pentagonal and hexagonal faces. The 

vertices of the graph represent carbon atoms and edges represent chemical bonds between 

them. As a direct consequence of Euler’s formula, every fullerene �2 has exactly 12 

pentagons and O = P/2 − 10 hexagons [8]. It is well known that �2 exists for any even P ≥
20 except P = 22 [6]. For small n, a constructive enumeration of fullerene isomers with n 

vertices was given [7]. Fullerenes have wide application in various fields including electronic 

and optic engineering [7], medical science and biotechnology and have received a lot of recent 

chemists and mathematicians’ attention [1, 11, 12,15]. 
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The saturation number of fullerene graph was studied in [2, 3, 6, 8], where the following 

bounds were established. 

Theorem 7. [8] Let G be a fullerene graph on � vertices. Then 

 �4 + 1# ≤ �(�) ≤ �2 − 2. 
Theorem 8. [8] Let � be a 3-regular graph. Then the size of any maximal matching in � is at 

most R2 − %
ST �(�). 

Theorem 9. [6] Let � be a fullerene graph on � vertices. Then      

�(�) ≥  3�10 

Theorem 10. [3] Let � be a fullerene graph on � vertices. Then                                                 

  �3 − 2 ≤  �(�) ≤ �3 + U(V�). 
Theorem 11. [4] Let � be a fullerene graph on � vertices. Then 

 W(�) ≤ �2 − 14 (35XO(�) − 2). 
In particular, 

W(�) ≤ �2 − V24� − 15 − 1524 . 
Since the fullerene graph is a 3-regular graph, to obtain the saturation number of fullerene 

graph, the constraint (3) of the model presented in section3 becomes as follows: 

 

3 @ 748
(4,8)∈A

+ @ 78C
(4,8)∈A,(C,8)∈A

≥ 3               ∀5 ∈ 
                                             (7) 

 

We obtained the saturation number for all isomers of fullerenes �"Y − �NY and one isomer 

of each fullerene �N" − �%LY , �%NY and �%Z" from our model using CPLEX 12.6 under Matlab 

(R2013 a) on an Intel Pentium Core i2 CPU running at 2.2 GHz with 4 KB cache and 4 GB 

RAM under the Windows 7 operating system (64-bit). The results are reported in Table 1 and 

Table 2. 
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Table 1. The saturation number for fullerene isomers �"[ − �NY. 

In Table 1, column ‘Min’ is the minimum saturation number over all isomers of fullerene 

graph. Similarly, column ‘Max’ represents the maximum saturation number over all isomers 

of fullerene graph. Column ‘average time’ is average CPU time for computing the saturation 

number over all isomers of fullerene graph. Since there are too many isomers for each 

fullerene �2, P ≥ 82, we obtained the saturation number for one isomer of each fullerene 

�N" − �%LY and �%NY, �%Z". The results are illustrated in Table 2. 

fullerene 
Saturation 

number 
CPU time  fullerene 

Saturation 

number 
CPU time  fullerene 

Saturation 

number 

CPU time 

(sec.) 

�N" 27 0.235  �%%Y 37 5.891  �%!N 46 118.094 �N[ 28 0.469  �%%" 37 3.719  �%[Y 47 226.266 �NL 29 0.985  �%%[ 38 7.985  �%[" 47 113.735 �NN 29 0.344  �%%L 38 5.985  �%[[ 48 131.266 �ZY 30 0.875  �%%N 39 9.938  �%[L 49 134.546 �Z" 30 0.500  �%"Y 40 9.906  �%[N 49 121.344 �Z[ 31 0.843  �%"" 41 57.328  �%JY 50 214.25 �ZL 32 2.078  �%"[ 41 14.265  �%J" 50 56.672 �ZN 33 5.093  �%"L 42 42.891  �%J[ 51 273.110 �%YY 33 0.954  �%"N 42 11.156  �%JL 52 280.120 �%Y" 34 5.984  �%!Y 43 11.063  �%JN 52 296.656 �%Y[ 34 1.141  �%!" 44 54.328  �%LY 53 185.735 �%YL 35 2.187  �%![ 45 126.141  �%NY 58 201.240 

�%YN 36 6.375  �%!L 45 33.516  �%Z" 62 258.010 

Table 2. The saturation number for some fullerene isomers �N" − �%LY and �%NY, �%Z" 

fullerene 
Number of 

isomers 
Max Min 

Average 

time (sec.) 
 fullerene 

Number of  

isomers 
Max Min 

Average 

time (sec.) 

�"Y 1 6 6 0.030  �J" 437 17 16 0.150 

�"[ 1 8 8 0.031  �J[ 580 18 17 0.181 

�"L 1 9 9 0.031  �JL 924 18 18 0.173 

�"N 2 9 9 0.048  �JN 1205 19 18 0.178 

�!Y 3 10 10 0.031  �LY 1812 20 18 0.177 

�!" 6 11 10 0.047  �L" 2385 21 19 0.171 

�![ 6 11 11 0.068  �L[ 3465 21 20 0.174 

�!L 15 12 11 0.046  �LL 4478 22 21 0.181 

�!N 17 13 12 0.136  �LN 6332 23 21 0.181 

�[Y 40 13 12 0.098  �KY 8149 23 22 0.184 

�[" 45 14 13 0.106  �K" 11190 24 22 0.190 

�[[ 89 15 14 0.158  �K[ 14246 25 23 0.194 

�[L 116 15 14 0.126  �KL 19151 25 24 0.200 

�[N 199 16 15 0.176  �KN 24109 26 25 0.212 

�JY 271 17 15 0.166  �NY 31924 27 25 0.197 
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The saturation number and their corresponding structure for some isomers of fullerenes 

computed by solving our model are illustrated in Figure 4. 

 

a.    �(�LY) = 18                     b.  �(�%NY) = 58                             c.    �(�%Z") = 62 

Figure 4. The saturation number and corresponding structures of �LY, �%NY and �%Z". 

5 Conclusion  

In this paper, we presented a tight asymptotic bound on the saturation number of benzenoid 

parallelogram graph and proposed a mathematical programming model for determining the 

saturation number of a graph. The results show that our mathematical model is able to find the 

saturation number of relatively large size instances of fullerene and benzenoid graphs. 

References 

[1] M. B. Ahmadi, E. Farhadi, V. Amiri Khorasani, On computing the Clar number of a 

fullerene using optimization techniques, MATCH Commun. Math. Comput. Chem. 75 

(2016) 695–701. 

[2] V. Andova, F. Kardoš, R. Škrekovski, Fullerene graphs and some relevant graph 

invariants, in: I. Gutman (Ed.), Topics in Chemical Graph Theory, Univ. Kragujevac, 

Kragujevac, 2014, pp. 39–54. 

[3] V. Andova, F. Kardoš, R. Škrekovski, Sandwiching the saturation number of fullerene 

graphs, MATCH Commun. Math. Comput. Chem. 73 (2015) 501–518. 

[4] V. Andova, T. Došlić, M. Krnc, B. Lužar, R. Škrekovski, On the diameter and some 

related invariants of fullerene graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 

109–130. 

-746-



 

[5] T. Došlić, I. Zubac, Saturation number of benzenoid graphs, MATCH Commun. Math. 

Comput. Chem. 73 (2015) 491–500. 

[6] T. Došlić, Saturation number of fullerene graphs, MATCH Commun. Math. Comput. 

Chem. 43 (2008) 647–657. 

[7] T. Došlić, Fullerene graphs with exponentially many perfect matchings, J. Math. Chem. 41 

(2007) 183–192. 

[8] T. Došlić, On some structural properties of fullerene graphs, J. Math. Chem. 31 (2002) 

187–195.  

[9] W. Espelage. F. Gurski, E. Wanke, How to solve NP-hard graph problems on clique–

width bounded graphs in polynomial time, in: A. Brandstädt, V. B. Le (Eds.), Graph–

Theoretic Concepts in Computer Science, Springer, Berlin, 2001, pp. 117–128. 

[10] J. D. Horton, K. Kilakos, Minimum edge dominating sets, SIAM J. Discr. Math. 6 (1993) 

375–387.  

[11] F. Kardoš, D. Král’, J. Miškufa, J. S. Sereni, Fullerene graphs have exponentially many 

perfect matchings, MATCH Commun. Math. Comput. Chem. 46 (2009) 443–447. 

[12] K. Kutnar, D. Marušič, On cyclic edge–connectivity of fullerenes, Discr. Appl. Math. 156 

(2008) 1661–1669.  

[13] S. L. Mitchell, S. T. Hedetniemi, Edge domination in trees, Congr. Numer. 19 (1977) 

489–509.  

[14] M. B. Richey, R. G. Parker, Minimum–maximal matching in series-parallel graphs, Eur. 

J. Oper. Res. 33 (1988) 98–105.  

[15] M. Salami, M. B. Ahmadi, A mathematical programming model for computing the Fries 

number of a fullerene, Appl. Math. Model. 39 (2015) 5473–5479. 

[16] A. Srinivasan, K. Madhukar, P. Nagavamsi, C. Pandu Rangan, M. S. Chang, Edge 

domination on bipartite permutation graphs and cotriangulated graphs, Inf. Process. Lett. 

56 (1995) 165–171.  

[17] M. Yannakakis, F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math. 38 

(1980) 364–372. 

-747-


