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Abstract

A fullereneG is a 3-regular 3-connected plane graph consisting of only pentagonal
and hexagonal faces. The resonance graph R(G) of G reflects the structure of the set
of its perfect matchings. In this paper we show that if a connected component of the
resonance graph of a fullerene is not a path, then this component without vertices
of degree one (its 2-core) is 2-connected, extending thus analogous results already
established for benzenoid systems [14] and later for open-ended carbon nanotubes
[11].

1 Introduction

The concept of the resonance graph appears quite naturally in the study of perfect match-

ings of molecular graphs of hydrocarbons that represent Kekulé structures of correspond-

ing hydrocarbon molecules. The resonance graph of a molecular graph carries many

important information on Kekué structures. For example, the maximum degree of the

resonance graph is the Fries number of the molecule. Therefore, it is not surprising that

it has been independently introduced in the chemical [3, 4] as well as in the mathematical

literature [14] (under the name Z-transformation graph) and then later rediscovered in
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[9, 8]. Some basic properties of resonance graphs were shown for benzenoid systems in

[14] and for open-ended carbon nanotubes (tubulenes) in [11]. For a survey on resonance

graphs see also [13].

Resonance graphs of fullerenes were introduced in [10] and their basic properties were

investigated in [12]. The established properties were found to be similar to the properties

of resonance graphs of benzenoid systems and tubulenes, except that the problem of

2-connectedness of their components remained unsolved. The aim of this paper is to

settle this problem by showing that if a connected component of the resonance graph of a

fullerene is not a path, then this component without vertices of degree one is 2-connected.

In the next section some basic definitions are given. In Section 3 the main result is

proved, followed by two examples showing the necessity of conditions in the main theorem.

2 Preliminaries

A benzenoid system consists of a cycle C of the infinite hexagonal lattice together with all

hexagons inside C. A benzenoid graph is the underlying graph of a benzenoid system.

A fullerene G is a 3-connected 3-regular plane graph such that every face is bounded

by either a pentagon or a hexagon. By Euler’s formula, it follows that the number of

pentagonal faces of a fullerene is exactly 12. For more information on fullerenes see [1].

A 1-factor of a graph G is a spanning subgraph of G such that every vertex has degree

one. The edge set of a 1-factor is called a perfect matching of G, which is a set of

independent edges covering all vertices of G. In chemical literature, perfect matchings

are known as Kekulé structures (see [5] for more details). Petersen’s theorem states that

every bridgeless 3-regular graph always has a perfect matching [6]. Therefore, a fullerene

always has at least one perfect matching.

Let M be a perfect matching of G. A hexagon h of G is M-alternating if the edges of h

appear alternately in and out the perfect matching M . Such a hexagon h is also called a

sextet.

Let G be a fullerene or a benzenoid graph. The resonance graph R(G) is the graph whose

vertices are the perfect matchings of G, and two perfect matchings are adjacent whenever

their symmetric difference forms a hexagon of G.
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Let G be a connected graph and v ∈ V (G). Vertex v is a cut-vertex if its removal

disconnects G. A connected graph with at least three vertices is 2–connected if it does

not contain a cut-vertex.

For a graph G let V1(G) be the set of all vertices in G that have degree one. The graph

induced by V (G)− V1(G) is called the 2-core of G.

A graph G is cyclically k-edge-connected if G can not be separated into two components,

each containing a cycle, by deleting at most k−1 edges. Došlić [2] has proved the following

theorem about cyclic edge-connectivity of fullerenes (see also [7]).

Theorem 2.1 ([2] and [7]) Every fullerene G is cyclically 5-edge-connected.

3 Main result

In this section we prove that if a connected component of the resonance graph of a fullerene

is not a path, then the 2-core of this component is 2-connected. The following technical

lemma (Lemma 3.2 in [12]) will be used in the proof of our main result.

Lemma 3.1 ([12]) Let G be a fullerene and H a connected component of its resonance

graph R(G) such that H is not a path. If M ∈ V (H) − V1(H), then we can find in the

fullerene G at least two disjoint hexagons which are M-alternating cycles.

Now we can prove the main result of this paper.

Theorem 3.2 Let G be a fullerene, and H be a connected component of the resonance

graph R(G) such that H is not a path. Then the 2-core of H is 2-connected.

Proof. Let U = H − V1(H). Since H is connected and all vertices in V1(H) have degree

one, it follows that U is connected. Note that, if U has a cut-vertex M , then any path

joining two vertices from different components of U −M must contain M . Therefore, in

order to prove the 2-connectedness of U , it is enough to prove the following:

For any path M1M2M3 of length 2 in U , there is another path M1M
′
2 . . .M3 which is

internally vertex-disjoint from M1M2M3.

Let M1M2M3 be a path. Suppose that h1 and h2 are such hexagons of G that M2 =

M1 ⊕ E(h1) and M3 = M2 ⊕ E(h2). So h1 is an M1–alternating cycle and h2 is an
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M2–alternating cycle. If h1 and h2 are edge disjoint, then there exists another perfect

matching M ′
2 of G such that M ′

2 = M1 ⊕ E(h2) and M3 = M ′
2 ⊕ E(h1). Hence M1M

′
2M3

and M1M2M3 are two internally vertex-disjoint paths joining M1 and M3.

So in the following assume that h1 and h2 share edges. Since G is a fullerene and

hence 3-connected, h1 and h2 share exactly one edge. By Lemma 3.1, G has two disjoint

M1-alternating hexagons since M1 ∈ V (H) − V (H1). Without loss of generality, assume

that one of the two M1-alternating hexagons is h1 and the other is h3. Consider the

following cases:

Case 1. E(h2) ∩ E(h3) = ∅.

Let M ′
2 = M1⊕E(h3), M

′
3 = M ′

2⊕E(h1), M
′
4 = M ′

3⊕E(h2) and M3 = M ′
4⊕E(h3).

ThenM1M
′
2M

′
3M

′
4M3 is another path joiningM1 andM3, which is internally disjoint

from M1M2M3. (See Figure 1.) So the theorem holds.

Figure 1. A part of the resonance graph of a fullerene in Case 1.

Case 2. E(h2) ∩ E(h3) 6= ∅.

Then h2 and h3 have exactly one edge in common. Since M3 ∈ V (H) − V (H1),

Lemma 3.1 implies that G has another M3-alternating hexagon disjoint from h2,

say h4.

Subcase 2.1. E(h1) ∩ E(h4) = ∅.

Since h4 is disjoint from both h1 and h2, it follows that h4 is also an M1-

alternating hexagon. Let M ′
2 = M1 ⊕ E(h4), M

′
3 = M ′

2 ⊕ E(h1), M
′
4 = M ′

3 ⊕

E(h2) and M3 = M ′
4 ⊕ E(h4). Then M1M

′
2M

′
3M

′
4M3 is another path joining

M1 and M3, which is internally vertex-disjoint from M1M2M3.

Subcase 2.2. E(h1) ∩ E(h4) 6= ∅.
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Then h1 and h4 have exactly one edge in common. If E(h3)∩E(h4) 6= ∅, then

the four edges in E(h1)∩E(h2), E(h1)∩E(h4), E(h2)∩E(h3) and E(h3)∩E(h4)

form a cyclic edge-cut of G, a contradiction to Theorem 2.1. So in the following

assume that E(h3) ∩ E(h4) = ∅.

Recall that h1 and h3 are disjoint, and h2 and h4 are disjoint. Note that both

h1 and h3 are M1-alternating, and both h2 and h4 are M3-alternating, where

M3 = M1 ⊕ E(h1) ⊕ E(h2). Hence, the subgraph Q induced by h1, h2, h3 and

h4 has to be one of the two configurations in Figure 2.

Figure 2. Possible configurations of hexagons h1, h2, h3 and h4 in Subcase 2.2.

Let M ′
1 = M1 ⊕ E(h3), M

′
2 = M ′

1 ⊕ E(h1), M
′
3 = M ′

2 ⊕ E(h4), M
′
4 = M ′

3 ⊕

E(h3) and M ′
5 = M ′

4 ⊕ E(h2). Then M3 = M1 ⊕ E(h1) ⊕ E(h2) = M ′
5 ⊕

E(h4). Therefore, H − V (H1) has another path M1M
′
1M

′
2M

′
3M

′
4M

′
5M3 joining

M1 and M3, which is internally vertex-disjoint from M1M2M3. (For example,

see Figure 3.) This completes the proof of Case 2.

Figure 3. A perfect matching M1 and a part of the resonance graph in Subcase
2.2.
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Combining Case 1 and Case 2, we can conclude that the graph U = H − V1(H) does

not contain a cut-vertex. Therefore, H − V1(H) is 2–connected. �

To see that the conditions in Theorem 3.2 are really necessary, we first show an

example of a fullerene G and a connected component H1 of its resonance graph R(G)

such that H1 is a path with more than two vertices. Let G be a fullerene in Figure 4 and

let N1 be its perfect matching.

Figure 4. A fullerene G with a perfect matching N1.

Moreover, let H1 be the connected component of R(G) containing N1. Obviously, going

through H1 we can rotate only hexagons h1, h2, h3, and h4, since the edges of the other

hexagons that are in the perfect matchings of H1 must be fixed. Hence, graph H1 is

isomorphic to the resonance graph of a benzenoid graph, formed by these four hexagons.

Therefore, H1 is isomorphic to P5 (see Figure 5).

Figure 5. Connected component H1 of the resonance graph R(G).

It is also natural to ask whether there exists a fullerene G such that one component

of its resonance graph R(G) is not a path and contains a vertex of degree one. Otherwise

the restriction on vertices of degree more than one in non-path component of R(G) in

Theorem 3.2 would not be necessary. The next example shows that the answer to the

question is positive.
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Let G be a fullerene as in Figure 4 and let M1 be its perfect matching, see Figure 6.

Obviously, in M1 only hexagon h3 is a sextet, therefore, the degree of M1 in R(G) is one.

Figure 6. A fullerene G with a perfect matching M1.

Furthermore, let H2 be a connected component of R(G) containing M1. Obviously, going

through H2 we can rotate only hexagons h2, h3, h5, and h6, since the edges of the other

hexagons that are in the perfect matchings of H2 must be fixed. Hence, graph H2 is

isomorphic to the resonance graph of a benzenoid graph, formed by these hexagons.

Therefore, graph H2 can be easily obtained (see Figure 7). Clearly, H2 is not a path and

contains vertices of degree one.

Figure 7. Connected component H2 of the resonance graph R(G).
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