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Abstract

Let T +
n be the set of connected bipartite tricyclic graphs with n vertices. Estrada

and Higham proposed an invariant of a graph G based on Taylor series expansion
of spectral moments EE(G, c) =

∑∞
k=0 ckMk(G). For ck = 1

k! (
1
nk ,

1
(n−1)k

, respec-

tively), EE(G, c) is the Estrada index EE(G) (Resolvent energy ER(G), Resolvent
Estrada index EEr(G), respectively) of G. The Kirchhoff index Kf(G) of G is
defined as Kf(G) =

∑
i<j rij , where rij is the effective resistance between vertices i

and j in G. In this paper, the extremal graphs in T +
n which have maximum, second-

maximum EE(G) (ER(G), EEr(G) and Kf(Ḡ), respectively) are determined.

1 Introduction

All graphs considered in this paper are finite and simple (i.e., without loops and multiple

edges). For a graph G, let V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em} denote

the vertex set and edge set of the graph G, respectively. If m = n−1+ c, then G is called

a c-cyclic graph. If c = 0, 1, 2 and 3, then G is a tree, unicyclic graph, bicyclic graph and

tricyclic graph, respectively. For graph-theoretical terms that are not defined here, we

refer to Bollobás’s book [1].

For a graph G, the adjacency matrix of G, denoted by A(G), is the sqare matrix

(aij) in which aij = 1 if the vertices vi and vj are adjacent, and aij = 0 otherwise. The

Laplacian matrix of G is the matrix L(G) = D(G) − A(G) where D(G) is a diagonal

matrix with (d1, . . . , dn) on the main diagonal in which di is the degree of the vertex vi.

The characteristic polynomial φ(G;x)) of G is defined as φ(G;x) = |xI −A(G)|, and the
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Laplacian characteristic polynomial of G is defined as σ(G;x) = |xI − L(G)|, where I is

the unit matrix. We denote the eigenvalues of A(G) and L(G) by λ1 ≥ λ2 ≥ . . . ≥ λn

and µ1 ≥ . . . ≥ µn−1 ≥ µn = 0, respectively. Let Mk(G) be the k-th spectral moment of

a graph G, i.e., Mk(G) =
∑n

i=1 λ
k
i . It is well known that Mk(G) is equal to the numbers

of closed walks of length k in G.

In 1993, Klein and Randić [5] introduced a distance function named resistance distance

on a graph. They view a connected graph G as an electrical network such that each edge

of G is assumed to be a unit resistor, then take the resistance distance between vertices vi

and vj to be the effective resistance between them, denoted by rij. The Kirchhoff index

Kf(G) of G [7] is defined as Kf(G) =
∑

i<j rij, and it is shown [4, 11] that

Kf(G) =
∑
i<j

rij = n

n−1∑
i=1

1

µi

.

The Kirchhoff index has been investigated extensively in both mathematical and chemical

literatures. For more information on the Kirchhoff index, the readers are referred to recent

papers [13, 14, 16, 27, 29] and references therein.

The Estrada index of G, put forward by Estrada [21], is defined as EE(G) =
∑n

i=1 e
λi ,

and according to the Taylor series expansion of ex, we have

EE(G) =
n∑

i=1

eλi =
∞∑
k=0

Mk(G)

k!
(1.1)

Although invented in year 2000, the Estrada index has already found numerous applica-

tions. It was used to quantify the degree of folding of long-chain molecules, especially pro-

teins [22, 24], and to measure the centrality of complex (communication, social, metabolic,

etc.) networks [23, 25]. In addition, a connection between the Estrada index and the con-

cept of extended atomic branching was found in [28]. Due to its extensive applications,

the Estrada index has also been extensively studied in mathematics, and various mathe-

matical properties of the Estrada index have been investigated (see [9, 10, 17, 18]).

The Resolvent Estrada index of G, proposed by Estrada and Higham in [26], is defined

as EEr(G) =
∑n

i=1
n−1

n−1−λi
, where G 6= Kn. From the Taylor expansion, it is easy to see

that

EEr(G) =
n∑

i=1

n− 1

n− 1− λi

=
∞∑
k=0

Mk(G)

(n− 1)k
(1.2)

Quite recently, in analogy with the Resolvent Estrada index, the Resolvent Energy ER(G)

of a graph G was introduced by I. Gutman et al. [12] as

ER(G) =
n∑

i=1

1

n− λi

=
∞∑
k=0

Mk(G)

nk+1
. (1.3)
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In 2010, Estrada and Higham [26] proposed a general formulation for the invariants of a

graph G based on Taylor series expansion of spectral moments

EE(G, c) =
∞∑
k=0

ckMk(G) .

Obviously, if the coefficient ck takes
1
k!
, 1
(n−1)k

and 1
nk+1 then EE(G, c) are the the Estrada

index, Resolvent Estrada index and resolvent energy, respectively. Various properties of

the Resolvent Estrada index and resolvent energy have been established [12, 19], and the

indices for some special kinds of graphs, such as, trees, unicyclic graphs, random graphs

etc., are also investigated.

In [15], Deng and Chen characterized the properties of the extremal connected bipartite

unicyclic graphs based on the Estrada index of themselves and the Kirchhoff index of their

complements. In [20], Huang et al. established the upper bound of the Estrada index and

the Kirchhoff index of the connected bipartite bicyclic graphs. Here we study the four

indices of the bipartite tricyclic graphs and wish to shed some light on the relationship

between them.

2 Preliminaries

A graph G is called bipartite if its vertex set can be partitioned into two subsets X and

Y so that every edge has one end in X and the other end in Y . Let Pn, Cn and Sn be

the path, the cycle and the star on n vertices, respectively. Denote by dG(v) = |NG(v)|
the degree of the vertex v of G. If E0 ⊂ E(G), we denote by G − E0 the subgraph of G

obtained by deleting the edges in E0. If E1 is the subset of the edge set of the complement

of G, G+E1 denotes the graph obtained from G by adding the edges in E1. Similarly, if

W ⊂ V (G), we denote by G−W the subgraph of G obtained by deleting the vertices of

W and the edges incident with them.

For any vertices u, v and w (not necessarily distinct) in G, we denote by Mk(G;u, v)

the number walks in G with length k from u to v. Denote by Wk(G;u, v) the walk set of

length k from u to v in G. Clearly Mk(G;u, v) = |Wk(G;u, v)|. Note that Mk(G;u, v) =

Mk(G; v, u) for any positive integer k [3].

Let G and H be two graphs with u1, v1 ∈ V (G), u2, v2 ∈ V (H). If Mk(G;u1, v1) ≤
Mk(H;u2, v2) for all positive integers k, then we write (G;u1, v1) � (H;u2, v2). If

(G;u1, v1) � (H;u2, v2) and there is at least one positive integer k0 such that

Mk0(G;u1, v1) < Mk0(H;u2, v2), then we write (G;u1, v1) ≺ (H;u2, v2).
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Let G be a simple graph with n vertices and m edges and put S(G) to be the subdi-

vision graph of G, that is, the graph obtained from G by inserting a new vertex in each

edge of G. By [2], we have

φ(S(G);x) = xm−nσ(G;x2) . (2.4)

Lemma 2.1. Let G(G 6= Kn) be a connected graph with n vertices, then

ER(G) =
φ′(G,n)

φ(G,n)
EEr(G) = (n− 1)

φ′(G,n− 1)

φ(G,n− 1)

where φ′(G, x) is the first derivative of φ(G, x).

Proof. Let λ1;λ2; · · · ;λn be the eigenvalues of G, then φ(G, x) = (x−λ1)(x−λ2) · · · (x−
λn). The equations follow from the definition (1.3) and (1.2) by taking into account x = n

and x = n− 1, respectively.

Lemma 2.2 ([16]). Let G be the connected complement graph of a graph G. Then

Kf(G) = n
σ′(G,n)

σ(G,n)
− 1

Lemma 2.3 ([16]). Let G be a bipartite graph with n(n ≥ 2) vertices and m edges. Then

Kf(G) =
n−m

2
+

1

2

∞∑
k=0

M2k(S(G))

nk
− 1 .

Let T +
n be the set of all bipartite tricyclic graphs with n vertices. For any graph

G ∈ T +
n , since G is a bipartite graph with m = n+ 2, from the Lemma 2.3, it follows

Kf(G) =
1

2

∞∑
k=0

M2k(S(G))

nk
− 2 (2.5)

Remark 1. In view of (1.1)-(1.3) and (2.5), EE(G), ER(G), EEr(G)and Kf(G) have

certain similarity. That is, for G,H ∈ T +
n (in this case M2k−1(G) = M2k−1(H) = 0), if

M2k(G) ≥ M2k(H) for all positive integers k, then EE(G) ≥ EE(H), ER(G) ≥ ER(H)

and EEr(G) ≥ EEr(H). Furthermore, with equality if and only if M2k(G) = M2k(H) for

all positive integers k, and the same thing is true for Kf(G) and Kf(H) by considering

the number of closed walks in S(G) instead of those in G.

Lemma 2.4 ([3]). Let v be a vertex of a graph G, and C(v) be the set of all cycles

containing v. Then the characteristic polynomial of G satisfies

φ(G;x) = xφ(G− v;x)−
∑

uv∈E(G)

φ(G− u− v;x)− 2
∑

Z∈C(v)

φ(G \ V (Z);x) .

here φ(G− u− v;x) = 1 if G is a single edge,and φ(G \ V (Z);x) = 1 if G is a cycle.
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Lemma 2.5 ([8]). Let H be a graph (not necessarily connected) with u, v ∈ V (H). Sup-

pose that wi ∈ V (H), and uwi, vwi /∈ E(H) for i = 1, 2, . . . , r, where r is a positive

integer. Let Eu = {uw1, uw2, . . . , uwr} and Ev = {vw1, vw2, . . . , vwr}. Let Hu = H + Eu

and Hv = H +Ev. If (H;u, u) ≺ (H; v, v) and (H;wi, u) � (H;wi, v) for 1 ≤ i ≤ r, then

Mk(Hu) ≤ Mk(Hv) for all positive integers k and it is strict for some positive integer k0.

The coalescence of two vertex-disjoint connected graphs G,H, denoted by G(u)◦H(w),

where u ∈ V (G) and w ∈ V (H), is obtained by identifying the vertex u of G with the

vertex w of H. Let A, B, C be three connected graphs, and each of which has at least

two vertices. Let u, v be two different vertices of C, u′ a vertex of A (v′ a vertex of B),

then we define

H = A(u′) ◦ C(u); G = H(v) ◦B(v′); G′ = H(u) ◦B(v′) ,

where the vertex u in H denotes the corresponding vertex of the coalescence of u′ in A

and u in C (see Fig.1). Then we have the following results.

Figure 1. The graphs G and G′ .

Lemma 2.6 ([15]). For the notation as above. Suppose that there exists an automorphism

ϕ of C such that ϕ(u) = v, then:

(i)(H;u, u) � (H; v, v), that is, Mk(H;u, u) ≥ Mk(H; v, v) for all positive integer k and

it is strict for some positive integer k0.

(ii)Mk(G
′) ≥ Mk(G)for positive integer k and it is strict for some positive integer k0.

Remark 2. It is clear that, if C is a path, then C naturally satisfies the condition of

Lemma 2.6, thus the application of Lemma 2.4 makes the number of closed walks of length

k increase, that is, Mk(G
′) ≥ Mk(G). Further, if A, B are trees and C is a path, then

G′ is just the graph obtained from G by a proper generalized tree shift(GTS) defined in

[6]. Therefore, a direct consequence of Lemma 2.6 is that the proper GTS increases the

number of closed walks of length k.

Lemma 2.7 ([18]). Let H1 be a connected graph containing two vertices u, v, and let H2

be a connected graph disjoint to H1, which contains a vertex w. Let H ′
2 be a copy of H2,

containing the vertex w′ corresponding to w of H2. Let G = (H1(u) ◦H2(w))(v) ◦H ′
2(w

′).
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(i) If there exists an automorphism σ of H1 such that it interchanges u and v, then

(G;u, t) = (G; v, σ(t)) for any vertex t.

(ii) If letting H̄1 be obtained from H1 by adding some edges incident with v but not u,

letting H̄2 be obtained from H ′
2 by adding some vertices or edges such that the resulting

graph is connected, and letting Ḡ be obtained from G by replacing H1 with H̄1 or H ′
2

with H̄2, then (Ḡ;u, t) ≺ (Ḡ; v, σ(t)).

3 Maximum indices of bipartite tricyclic graphs

In this section we find extremal graphs in T +
n for the Estrada index EE(G), Resolvent

Estrada index EEr(G), Resolvent Energy ER(G) and Kirchhoff index Kf(G), respec-

tively. For a graph G ∈ T +
n , the base of G, denoted by B(G), is the minimal connected

bipartite tricyclic subgraph of G. Obviously, B(G) is the unique bipartite tricyclic sub-

graph of G containing no pendant vertex, and G can be obtained from B(G) by planting

trees to some vertices of B(G). Since each tree can be transformed into a star by a se-

quence of applications of Lemma 2.6, and the k-th spectral moment Mk is monotone in

the course of the transformation. Therefore, the extremal graph with the maximal indices

is obtained from the graphs in which the attaching trees to the base are all stars. In the

following discussion, we consider the graphs of T +
n with the base by attaching pendent

vertices.

According to [30] and [31], we know that bipartite tricyclic graphs have many kinds

of bases. By applying Lemma 2.6 and Remark 2 repeatedly, we get the lemma.

Lemma 3.1. If G is an extremal graph with maximum EE(G) (EEr(G), ER(G) or

Kf(G)) in T +
n , then B(G) ∼= T j

n, j ∈ {1, 2, · · · , 7}. (see Fig.2).

ca

v4

v3

v2v1

Tn
7

Tn
6Tn

5Tn
4

Tn
3

Tn
2Tn

1

st

v

u

Cc

Cb

Figure 2. The graphs T j
n(j = 1, 2, 3, 4, 5, 6, 7) .
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Lemma 3.2. For any graph G with the base B(G) ∼= T 1
n , there exists a graph G′ with the

base B(G′) ∼= T 3
n such that EE(G) < EE(G′) EEr(G) < EEr(G

′), ER(G) < ER(G′),

Kf(G) < Kf(G′), respectively.

Proof. Let u, v, t, s be the vertices of G (as shown in Fig.2), without loss of generality, let

dG(u) ≥ dG(s), H = G− ts and G′ = H + us.

For any closed walk W ∈ Wk(H; t, t), if it does not go through the vertex v, then let

f(W ) be the walk obtained from W by replacing every t and its pendent vertices in W by

u and its corresponding pendent vertices, respectively. Otherwise, the closed walk W is

decomposed into three sections W1,W2,W3, where W1 is the shortest (t, v)-section at the

beginning of W , W2 is the longest (v, v)-section in the middle of W , and the remaining

(v, t)-section is W3. In this case, let f(W ) be the walk obtained from W by replacing

every t and its pendent vertices in W1 ∪W2 by u and its corresponding pendent vertices,

respectively, and W2 remain the same. Obviously, f(W ) ∈ Wk(H;u, u) and f is an

injection from Wk(H; t, t) to Wk(H;u, u), i.e., Mk(H; t, t) ≤ Mk(H;u, u). Furthermore,

M2(H; t, t) < M2(H;u, u). It implies that (H; t, t) ≺ (H; v, v).

For any walkW ′ ∈ Wk(H; t, s),W ′ can be decomposed into two sectionsW ′
1,W

′
2, where

W ′
1 is the shortest (t, v)-section of W ′, and W ′

2 is the remaining (v, s)-section. In this case,

let g(W ′) be the walk obtained from W ′ by replacing every t and its pendent vertices in

W ′
1 by u and its corresponding pendent vertices, respectively, and W ′

2 remain the same.

Obviously, g(W ′) ∈ Wk(H;u, s) and g is an injection from Wk(H; t, s) to Wk(H;u, s), i.e.,

Mk(H; t, s) ≤ Mk(H;u, s). Considering that G = H + ts and G′ = H + us, by Lemma

2.5 we have EE(G) < EE(G′) (EEr(G) < EEr(G
′), ER(G) < ER(G′)).

Let S(G) and S(G′) be the subdivisions of G and G′, respectively, and let B = S(G)−
tvts, where vts denotes the subdividing vertex of the edge ts. Note that S(G) = B+tvts and

S(G′) = B+uvts. Then in a similar way, applying Lemma 2.5, we have Kf(G) < Kf(G′).

Similar to the proof of Lemma 3.2, we have the following lemma.

Lemma 3.3. For any graph G with the base B(G) ∼= T i
n(i ∈ {2, 3}), there exists a graph G′

with the base B(G′) ∼= T j
n(j ∈ {4, 5, 6}) such that EE(G) < EE(G′) (EEr(G) < EEr(G

′),

ER(G) < ER(G′), Kf(G) < Kf(G′)).

Corollary 3.4. If G is an extremal graph with maximal EE(G) (EEr(G), ER(G) or

Kf(G)) in T +
n , then B(G) ∼= T j

n, j ∈ {4, · · · , 7}
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Lemma 3.5. If G ∈ T +
n is an extremal graph with maximum indices, and B(G) ∼= T j

n, j ∈
{4, · · · , 7}, then there are no three successive 2-degree vertices on each cycle of the base

B(G) of G.

Proof. Suppose there exist three successive 2-degree vertices on a cycle of the base B(G)

of G. Without loss of generality, let B(G) ∼= T 4
n and dG(v1) ≥ dG(v4) (as shown in Figure

2), where v2, v3, v4 are 2-degree vertices of B(G). Let H = G− v3v4, G
′ = H + v1v4.

For any closed walk W ∈ Wk(H; v3, v3), if it does not go through the vertex v2, then let

f(W ) be the walk obtained from W by replacing every v3 and its pendent vertices in W

by v1 and its corresponding vertices of NG(v1), respectively. Otherwise, the closed walk

W is decomposed into three sections W1,W2,W3, where W1 is the shortest (v3, v2)-section

at the beginning of W , W2 is the longest (v2, v2)-section in the middle of W , and the

remaining (v2, v3)-section is W3. In this case, let f(W ) be the walk obtained from W by

replacing every v3 and its pendent vertices in W1∪W3 by v1 and its corresponding vertices

of NG(v1), respectively, and W2 remain the same. Obviously, f(W ) ∈ Wk(H; v1, v1) and

f is an injection from Wk(H; v3, v3) to Wk(H; v1, v1), i.e., Mk(H; v3, v3) ≤ Mk(H; v1, v1).

Furthermore, M2(H; v3, v3) < M2(H; v1, v1). It implies that (H; v3, v3) ≺ (H; v1, v1).

For any walk W ′ ∈ Wk(H; v3, v4), W
′ can be decomposed into two sections W ′

1,W
′
2,

where W ′
1 is the shortest (v3, v2)-section of W ′, and W ′

2 is the remaining (v2, v4)-section.

In this case, let g(W ′) be the walk obtained from W ′ by replacing every v3 and its pendent

vertices in W ′
1 by v1 and its corresponding vertices of NG(v1), respectively, and W ′

2 remain

the same. Obviously, g(W ′) ∈ Wk(H; v1, v4) and g is an injection from Wk(H; v3, v4) to

Wk(H; v1, v4), i.e., Mk(H; v3, v4) ≤ Mk(H; v1, v4). Considering that G = H + v3v4 and

G′ = H + v1v4, by the lemma 2.5, we have EE(G) < EE(G′) (EEr(G) < EEr(G
′),

ER(G) < ER(G′)) and B(G′) ∼= T 4
n . This contradicts the condition of Lemma 3.5.

Similarly, Let S(G) be the subdivisions of G, and let H ′ = S(G)− v3v34 and S(G′) =

H + v1v34, where v34 denotes the subdividing vertex of the edge v3v4. Note that S(G) =

H ′ + v3v34. Applying the similar way, and by Lemma 2.5, we have Kf(G) < Kf(G′) ,

contradiction.

The internal path of G is a walk v0v1 . . . vs such that the vertices v0, v1, . . . , vs are

distinct, dG(v0) > 2, dG(vs) > 2, and dG(vi) = 2, whenever 0 < i < s.

Lemma 3.6. Let G ∈ T +
n , and B(G) ∈ T i

n(i = 4, 5, 6, 7), P k
u = uv1v2 and P l

u = uw1w2

be two internal path in B(G), where dB(G)(u) ≥ 3 (u ∈ B(G)), if v2 6= w2, then there

exists a graph G′(B(G′) ∈ T i
n(i = 4, 5, 6, 7)) such that |E(B(G))| − |E(B(G′))| = 1 and

EE(G) < EE(G′) (EEr(G) < EEr(G
′), ER(G) < ER(G′) or Kf(G) < Kf(G′)).
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Proof. Without loss of generality, let dG(w1) ≥ dG(v1), H = G − v1v2, and let G′ =

H + w1v2. By the same way mentioned above, we obtain (H; v1, v1) ≺ (H;w1, w1)

and Mk(H; v1, v2) ≤ Mk(H;w1, v2). Obviously, G′ is still bipartite tricyclic graph, and

|E(B(G))| − |E(B(G′))| = 1. According to the lemma 2.5, the result holds.

By the lemma 3.5 and lemma 3.6, we have the following result.

Corollary 3.7. If G is the graph with maximum EE(G)(EEr(G), ER(G) or Kf(G)),

and B(G) ∈ T i
n(i = 4, 5, 6, 7) . Then B(G) ∈ A1 ∪ A2 ( as shown in Fig. 3).

1
v

2
v

3
v

4
v

5
v

6
v

1
w

4
w

2
w

3
w

6
w

5
w

1
A

2
A

Figure 3. The graphs Aj(j = 1, 2) .

Lemma 3.8. If G is the graph with maximum EE(G) (EEr(G), ER(G) or Kf(G)) and

B(G) ∼= Ai, i ∈ {1, 2} (see Fig. 3), then G is obtained from Ai by attaching n − |V (Ai)|
pendent vertices at a vertex v1 with maximum degree in Ai(i ∈ {1, 2}).

Proof. For the case of B(G) ∼= A1, let {v1, v2, v3, v4, v5, v6} be the vertices of A1 as shown

in Fig 3, and let ni (ni ≥ 0) be the pendant vertices attached to vi in G, i = 1, 2, 3, 4, 5, 6.

For convenience, we denote G = A1(n1, n2, n3, n4, n5, n6).

First of all, it can be claimed that at least three numbers of n2, n3, n4, n5 are zero. If

not so, we put n2 > 0, n3 > 0, and let H be the graph obtained from A1(n1, n2, n3, 0, 0, n6)

by deleting n2 and n3 pendent vertices of v2 and v3, respectively. Then there exists an

automorphism of H which interchanges v2, v3 and preserves all other vertices. Based on

Lemma 2.6 (ii), we have

M2k(A1(n1, n2, n3, 0, 0, n6)) ≤ M2k(A1(n1, n2 + n3, 0, 0, 0, n6)) .

Let S(H) be the subdivision graph of H, similar to the analysis, one can easily obtain

the following result.

M2k(S(A1(n1, n2, n3, 0, 0, n6))) ≤ M2k(S(A1(n1, n2 + n3, 0, 0, 0, n6))) .

This contradicts the condition of Lemma 3.8. Similarly, we can confirm that at least one

number of n1, n6 is zero.
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Table 1. The Estrada index of graphs T1, T2 for 6 ≤ n ≤ 15.
n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15

EE(T1) 20.978 24.098 27.492 31.186 35.205 39.579 44.335 49.508 55.129 61.236

EE(T2) 21.990 24.827 27.914 31.275 34.934 38.916 43.251 47.967 53.097 58.675

Without loss of generality, let n3 = 0, n4 = 0, n5 = 0 and n6 = 0, then G =

A1(n1, n2, 0, 0, 0, 0). If both n1, n2 are nonzero, let H1 be the graph obtained from A1

by deleting the edges v1v3, v1v4 and the pendent vertices of v2 and v1, respectively. Then

there exists an automorphism which interchanges v1, v2 and preserves all other vertices,

and let H ′
1 be the graph obtained from H1 by adding the edges v1v3, v1v4 and the pendent

vertices of v1. It is clear that M2(H
′
1; v2, v2) = 2 < 4 + n1 = M2(H

′
1; v1, v1). By Lemma

2.6 (ii), we have (H ′
1; v2, v2) ≺ (H ′

1; v1, v1). Further by Lemma 2.5,

M2k(A1(n1, n2, 0, 0, 0, 0)) ≤ M2k(A1(n1 + n2, 0, 0, 0, 0)) .

By the same way, we can deduce the following inequality

M2k(S(A1(n1, n2, 0, 0, 0, 0))) ≤ M2k(S(A1(n1 + n2, 0, 0, 0, 0))),

this contradicts to the hypothesis of lemma 3.8. The proof is completed for the case of

B(G) ∼= A1. Similarly, we can prove the case for B(G) ∼= A2.

Let T1 = A1(n− 6, 0, 0, 0, 0, 0), T2 = A2(n− 6, 0, 0, 0, 0, 0), by Lemma 2.4, we have

φ(T1;x) = xn−4[x4 − (n+ 2)x2 + 4(n− 6)] = xn−4f1(x) ;

φ(T2;x) = xn−6[x6 − (n+ 2)x4 + (5n− 26)x2 − 2(n− 6)] = xn−6f2(x) .

Furthermore, from the Lemma 2.4 and the equation (2.4), it follows that

σ(T1;x) = (x− 2)2(x− 1)n−7[x5 − (n+ 7)x4 + (8n+ 8)x3

+(4− 16n)x2 + (6 + 8n)x− 6] = (x− 2)2(x− 1)n−7g1(x) ; (3.6)

σ(T2;x) = x(x− 1)n−7[x6 − (n+ 11)x5 + (13n+ 36)x4 − (62n+ 14)x3

+(133n− 5)x2 + (117− 123n)x+ 36n] = x(x− 1)n−7g2(x) . (3.7)

Theorem 3.9. Let G be a graph in T +
n ,

(i) If 6 ≤ n ≤ 9, then EE(G) ≤ EE(T2) with equality if and only if G ∼= T2; If n ≥ 10,

then EE(G) ≤ EE(T1) with equality if and only if G ∼= T1.
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(ii) For each n (n ≥ 6), ER(G) ≤ ER(T1) and EEr(G) ≤ EEr(T1) with equality if and

only if G ∼= T1.

(iii) For each n (n ≥ 6), Kf(G) ≤ Kf(T1) with equality if and only if G ∼= T1.

Proof. (i) Obviously, according to the table 1, the result holds for 6 ≤ n ≤ 9. For the

case n ≥ 10, by calculation using software Matlab, we can see that the result is true for

the integer n(10 ≤ n ≤ 100). In the following discussion, we let n > 100.

We know that the solutions of f1(x) = 0 are ±
√

n+2+
√
n2−12n+100
2

,±
√

n+2−
√
n2−12n+100
2

and the graph T1 − v1 has eigenvalues ±2, 0 with multiplicity n − 3. By interlacing

property of eigenvalues, λi(T1) ≥ λi(T1 − v1) for i = 2, 3, . . . , n− 1 [3]. Then

EE(T1) =
n∑

i=1

eλi(T1) > eλ1(T1) +
n−1∑
i=2

eλi(T1−v1) + eλn(T1)

> e

√
n+2+

√
n2−12n+100

2 + (n− 3) + e−2 + 1

> e
√
n−2 + (n− 2) + e−2 = H1

By a direct calculation, the graph T2−v1 has eigenvalues ±
√

5+
√
17

2
,±
√

5−
√
17

2
, 0 with

multiplicity n− 5. For n ≥ 101,

f2

(√
n− 5

2

)
=

1

2

(
n2 − 36n+

391

4

)
> 0 , f2(

√
n− 3) = −13n− 45 < 0

Because of the fact λ1(T2) ≥ λ1(T2 − v1), we have
√

5+
√
17

2
≤ λ1(T2) <

√
n− 5

2
. By

interlacing property of eigenvalues of T2 − v1 and T2, λi(T2) ≤ λi−1(T2 − v1) for i =

2, 3, . . . , n, then

EE(T2) =
n∑

i=1

eλi(T2) ≤ eλ1(T2) +
n−1∑
i=1

eλi(T2−v1)

< e

√
n− 5

2 + (n− 5) + e

√
5+

√
17

2 + e−
√

5+
√

17
2 + e

√
5−

√
17

2 + e−
√

5−
√

17
2 = H2 .

Note that e
√
n−2−e

√
n− 5

2 +e−2+1−e

√
5+

√
17

2 −e

√
5−

√
17

2 > 0 for n ≥ 32, then H1−H2 > 0.

Therefore EE(T1) > EE(T2).

(ii) By Lemma 2.1, it follows that

ER(T1)− ER(T2) =
φ′(T1, n)

φ(T1, n)
− φ′(T2, n)

φ(T2, n)

=
φ′(T1, n)φ(T2, n)− φ′(T2, n)φ(T1, n)

φ(T1, n)φ(T2, n)

=
(n− 2)(4n6 − 2n5 − 16n4 + 56n3 + 80n2 + 48n+ 288)

nf1(n)f2(n)
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The real roots of the polynomials f1(n) = n4 − n3 − 2n2 + 4n − 24 and f2(n) =

n6 − n5 − 2n4 +5n3 − 26n2 − 2n+12 are less than 3, thus the denominator is positive for

n ≥ 3. On the other hand, the polynomial p(n) = 4n6−2n5−16n4+56n3+80n2+48n+288

does not have any real roots, therefore, the numerator is positive for n ≥ 3. It implies

that ER(T1) ≥ ER(T2).

Similarly, from the Lemma 2.1, it follows that

EEr(T1)− EEr(T2) = (n− 1)(
φ′(T1, n− 1)

φ(T1, n− 1)
− φ′(T2, n− 1)

φ(T2, n− 1)
)

= (n− 1)(
φ′(T1, n− 1)φ(T2, n− 1)− φ′(T2, n− 1)φ(T1, n− 1)

φ(T1, n− 1)φ(T2, n− 1)
)

=
4n7 − 34n6 + 104n5 − 76n4 − 212n3 + 342n2 + 72n− 600

f1(n− 1)f2(n− 1)

Where f1(n−1) = n4−5n3+6n2+3n−25, f2(n−1) = n6−7n5+17n4−13n3−29n2+56n−15,

since the real roots of the polynomials f1(n − 1) and f2(n − 1) are less than 4, then the

denominator is positive for n ≥ 4. In the meantime, the numerator is positive for n ≥ 3.

It follows that EEr(T1) ≥ EEr(T2).

(iii) From Lemma 2.2, Eqs.(3.6) and (3.7), we have

Kf(T1)−Kf(T2) = n(
σ′(T1, n)

σ(T1, n)
− σ′(T2, n)

σ(T2, n)
)

= n(
σ′(T1, n)σ(T2, n)− σ′(T2, n)σ(T1, n)

σ(T1, n)σ(T2, n)
)

=
n11 − 32n10 + 412n9 − 2678n8 + 9445n7 − 17942n6 + · · ·+ 3240

(n− 1)(n− 2)g1(n)g2(n)

Where g1(n) = n4−8n3+12n2+6n−6, g2(n) = 2n5−26n4+119n3−128n2+153n, since

the real roots of the polynomials g1(n) and g2(n) are less than 6, then the denominator is

positive for n ≥ 6. By direct calculation, the numerator is positive for n ≥ 3. It follows

that Kf(T1) ≥ Kf(T2).

This completes the proof.

4 The second maximum indices of bipartite tricyclic

graphs

In this section, we will consider the graphs with the second maximum EE(G), ER(G),

EEr(G) or Kf(G) among T+
n . By Corollary 3.7, Lemma 2.6 and Theorem 3.9, one can

conclude that G which has the second maximum indices of bipartite tricyclic graphs must

be one of the graphs A1(n1, n2, 0, 0, 0, 0), A1(n1, 0, 0, 0, 0, n6), T5, T6, T7 (as shown in Fig.4)

and T2.
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Figure 4. The graphs Tj(j = 4, 5, 6, 7) .

Lemma 4.1. For the graphs T4, T5, T6 and T7 (as shown in Fig.4), T4 is the one with

maximum EE(G)(EEr(G), ER(G) or Kf(G)).

Proof. For the graph T7, let H7 = T7 − {v8v9, · · · , v8vn}. For any closed walk W ∈
W2k(H7; v8, v8), if W does not reach the the vertex v1, then let f(W ) be the walk ob-

tained from W by replacing v7 and v8 by v5 and v1, respectively; Otherwise, W can

be decomposed three sections W1, W2, W3, denoted by W = W1W2W3, where W1 is the

shortest (v8, v1)-section at the beginning of W , W2 is the longest (v1, v1)-section of W , and

W3 is the remaining (v1, v8)-section. We will construct an injection f from W2k(H7; v8, v8)

to W2k(H7; v1, v1). Let vi be the predecessor of the last vertex v1 on W2, and vj be a

vertex taken from {v2, v3, v4, v5} but distinct from vi. We define f1(W1) and f3(W3) are

the walk obtained from W1 and W3 by replacing v8 and v7 by vj and v6, respectively. Let

f(W ) = W2f3(W3)f1(W1), then f(W ) ∈ W2k(H7; v1, v1) and f is an injection. Further,

M2(H7; v8, v8) = 2 < 5 = M2(H7; v1, v1). Therefore (H7; v8, v8) ≺ (H7; v1, v1). Note that

T6 = H7 + {v1v9, · · · , v1vn} and T7 = H7 + {v8v9, · · · , v8vn}, by Lemma 2.5, we have

M2k(T7) < M2k(T6).

For the graph T6, let H6 = T6 − v7v8, for any closed walk W ∈ W2k(H6; v8, v8),

let W = v8v1W
′v1v8, where W ′ is the (v1, v1) closed walk of H6. We let f(W ) =

v2v1W
′v1v2, obviously, f(W ) ∈ W2k(H6; v2, v2) and f is an injection. By M2(H6; v8, v8) =

1, M2(H6; v2, v2) = 2, therefore (H6; v8, v8) ≺ (H6; v2, v2). Considering that T4 = H6+v2v7

and T6 = H6 + v8v7, by Lemma 2.5, we have M2k(T6) < M2k(T4).

For the graph T5, let H5 = T5 − v2v8, v2v9, · · · , v2vn, H ′
5 = H5 − v1v3. Then there

exists an automorphism σ of H ′
5 which interchange v1 and v2, and preserves all other

vertices. By Lemma 2.7, We have M2k(H5; v2, v2) < M2k(H5; v1, v1). Note that T4 =

H5+{v1v8, · · · , v1vn} and T5 = H5+{v2v8, · · · , v2vn}, by Lemma 2.5, we have M2k(T5) <

M2k(T4).

According to the same way, we can verify that M2k(S(T4)) is the biggest number

among M2k(S(T4)), M2k(S(T5)), M2k(S(T6)), M2k(S(T7)). By Eqs.(1.1)-(1.3),(2.5), the

lemma holds.
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Lemma 4.2. If G ∈ T +
n is the graph with the second maximum EE(G)(EEr(G), ER(G)

or Kf(G)) and B(G) ∼= A1, then G ∼= A1(n− 7, 0, 0, 0, 0, 1).

Proof. (i) For the case A1(n1, n2, 0, 0, 0, 0), let H be the graph obtained from it by deleting

the edges v3v1, v4v1, n1 − 1 pendent vertices attached at v1 and n2 − 1 pendent vertices

attached at v2. Then there exists an automorphism σ of H which interchange v1 and v2

and preserves other vertices. Let H ′ be the graph obtain from H by adding the edges

v3v1, v4v1, n2 − 1 pendent vertices attached at v2. It is clear that M2(H
′; v2, v2) = 3 <

4 + n1 = M2(H
′; v1, v1). By Lemma 2.7 (ii), we have

(H ′; v2, v2) ≺ (H ′; v1, v1) .

Further by Lemma 2.5, it follows that

M2k(A1(n1, n2, 0, 0, 0, 0)) ≤ M2k(A1(n1 + n2 − 1, 1, 0, 0, 0, 0)) .

Let T4 = A1(n−7, 1, 0, 0, 0, 0) and T3 = A1(n−7, 0, 0, 0, 0, 1). We put H1 be the graph

obtained from T4 by deleting the edges v3v6, v4v6 and the pendent vertex of v2, and let

H ′
1 = H1 + (v3v6, v4v6). There exists an automorphism σ′ of H1 such that σ′(v2) = v6.

From Lemma 2.7 (ii), it follows that (H ′
1; v2, v2) ≺ (H ′

1; v6, v6). Then, by Lemma 2.5, we

have M2k(T4) ≤ M2k(T3).

(ii) For the case A1(n1, 0, 0, 0, 0, n6), it is trifle for n1 = 1 or n6 = 1, thus we put

n1 ≥ 2, n6 ≥ 2. Let A = K1,n1−1, B = K1,n6−1 and C be the graph obtained from

A1(n1, 0, 0, 0, 0, n6) by deleting n1−1 and n6−1 pendent vertices of v1 and v6,respectively,

by Lemma 2.6 (ii), it follows that

M2k(A1(n1, 0, 0, 0, 0, n6)) ≤ M2k(T3) .

Therefor, the Lemma is true for the indices EE(G),EEr(G) and ER(G).

By a similar discussion mentioned above, we can show that Kf(G) ≤ Kf(T3), which

is omitted here.

From Theorem 3.9 and Lemma 4.2, we obtain the following corollary.

Corollary 4.3. If G ∈ T +
n is the graph with the second maximum EE(G)(EEr(G),

ER(G) or Kf(G)), then G ∈ {T2, T3}.

By Lemma 2.3, we calculate the characteristic polynomial of T3 as the following

φ(T3;x) = xn−4[x4 − (n+ 2)x2 + 5n− 31] = xn−4f3(x)
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From Lemma 2.3 and the equation 2.5, it follows that

σ(T3;x) = x(x− 1)n−8[x7 − (n+ 12)x6 + (14n+ 44)x5 − (72n+ 40)x4

+ (180n− 96)x3 − (232n− 24)x2 + (144n− 128)x− 32n]

= x(x− 1)n−8g3(x) .

Theorem 4.4. Let G be a bipartite tricyclic graph with n ≥ 8, and G � T1, then

(i) EE(G) ≤ EE(T2), Kf(G) ≤ Kf(T2) with equality if and only if G ∼= T2.

(ii) ER(G) ≤ ER(T3) and EEr(G) ≤ EEr(T3) with equality if and only if G ∼= T3.

Proof. (i) By Corollary 4.2, we just determine the graph between T2 and T3. By calculation

using software Matlab, we have EE(T2) > EE(T3) when 8 ≤ n ≤ 35. In the following

discussion, we let n ≥ 36.

The solutions of f3(x) = 0 are ±
√

n+2+
√
n2−24n+128
2

,±
√

n+2−
√
n2−24n+128
2

and the graph

T3 − v1 has eigenvalues ±
√
5, 0 with multiplicity n − 3. By interlacing property of

eigenvalues of T3 − v1 and T3, λi(T3) ≤ λi−1(T3 − v1) for i = 2, 3, . . . , n [3]. Then

EE(T3) =
n∑

i=1

eλi(T3) ≤ eλ1(T3) +
n∑

i=2

eλi−1(T3−v1)

= e

√
n+2+

√
n2−24n+128

2 + (n− 3) + e
√
5 + e−

√
5

< e

√
n+2+

√
n2−23n+132.25

2 + (n− 3) + e
√
5 + e−

√
5

= e

√
n− 19

4 + (n− 3) + e
√
5 + e−

√
5

For n ≥ 36,

f2(
√
n− 3) = −13n− 45 < 0, f2(

√
n− 5

2
) =

1

2
(n2 − 36n+

391

4
) > 0

we have λ1(T2) >
√
n− 3. The graph T2 − v1 has eigenvalues ±

√
5+

√
17

2
,±
√

5−
√
17

2
, 0

with multiplicity n− 5, by interlacing property of eigenvalues of T2 − v1 and T2, λi(T2) ≥
λi(T2 − v1) for i = 2, 3, . . . , n− 1, then

EE(T2) =
n∑

i=1

eλi(T2) ≥ eλ1(T2) +
n−1∑
i=2

eλi(T2−v1)

> e
√
n−3 + (n− 5) + e−

√
5+

√
17

2 + e

√
5−

√
17

2 + e−
√

5−
√
17

2 .

Note that e
√
n−3 − e

√
n− 9

4 > 2 + e
√
5 for n ≥ 22, then EE(T2) > EE(T3).

According to the way mentioned above, we have

Kf(T3)−Kf(T2) = n(
σ′(T3, n)

σ(T3, n)
− σ′(T2, n)

σ(T2, n)
)

=
n2(−n9 + 145n8 − 1203n7 + 3511n6 + · · ·+ 864)

(n− 1)g3(n)g2(n)
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Because of the fact that the denominator is positive and the numerator is negative on

n ≥ 8, it follows that Kf(T2) > Kf(T3).

(ii) By Lemma 2.1, we have

ER(T3)− ER(T2) =
φ′(T3, n)

φ(T3, n)
− φ′(T2, n)

φ(T2, n)

=
20n6 − 22n5 + 60n4 − 32n3 − 116n2 + 244n− 744

nf2(n)f3(n)

The real roots of the polynomials f3(n) = n4 − n3 − 2n2 +5n− 31 and f2(n) = n6 − n5 −
2n4+5n3− 26n2− 2n+12 are less than 3, thus the denominator is positive on n ≥ 3. On

the other hand, the polynomial p(n) = 20n6 − 22n5 + 60n4 − 32n3 − 116n2 + 244n− 744

is positive on n ≥ 3. It implies that ER(T3) > ER(T2).

Similarly, by Lemma 2.1, it follows that

EEr(T3)− EEr(T2) = (n− 1)(
φ′(T3, n− 1)

φ(T3, n− 1)
− φ′(T2, n− 1)

φ(T2, n− 1)
)

=
20n6 − 142n5 + 448n4 − 788n3 + 656n2 + 54n− 768

f1(n− 1)f2(n− 1)

the numerator is positive for n ≥ 4, and the real roots of the polynomials f1(n − 1) and

f2(n−1) are less than 4, thus the valuation of the fraction is positive for n ≥ 4. It follows

that EEr(T3) ≥ EEr(T2).

Remark 3. We would like to point out that the set T +
n is a special case of the set

T c
n (c = 0, 1, 2, 3 · · · ), i.e. the set of connected bipartite c-cyclic graphs. The extremal

bipartite c-cyclic graphs for c = 0, 1, 2 have been characterized according to the Estrada

index, for the details, the readers may refer to [15,20,32]. For solving the same problem

on the set T c
n , c ≥ 4, our approach would need to be modified, it would be interesting to

continue studying the extremal graphs.
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