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Abstract

Let Pn−1(a) be the tree obtained by attaching a pendent vertex at position a of
the (n−1)-vertex path Pn−1. We prove here a conjecture of Gutman et al. [MATCH
Commun. Math. Comput. Chem. 73 (2015), 267–270] that Pn−1(a) has the a-th
smallest resolvent Estrada index among all trees of order n, for 2 ≤ a ≤ bn/2c, and
show that the analogous result also holds for the resolvent energy.

1 Introduction

Let G = (V,E) be a simple graph. A walk of length k in G is a sequence of its vertices

W : v0, . . . , vk such that vivi+1 is an edge of G for each i = 0, . . . , k − 1. A walk W is

closed if v0 = vk. Let Mk(G, v) denote the number of closed walks of length k starting and

ending at a vertex v of G. The sequence of numbers Mk(G, v), k ≥ 2, provides a certain

glimpse into the density of edges in the vicinity of v. For example, M2(G, v) is equal to

the degree of v, M3(G, v) is equal to twice the number of triangles containing v, while

for larger values of k, Mk(G, v) counts a mix of closed walks going up to the distance

bk/2c from v. Since for practical purposes one usually wants to have a single numerical

descriptor instead of an infinite sequence, Estrada and Highman [1, Section 3] proposed

the use of a weighted series of the closed walk counts

fc(G, v) =
∑
k≥0

ckMk(G, v) ,
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where (ck)k≥0 is a predefined sequence of nonnegative weights that makes the above series

convergent. Values fc(G, v) may then be considered as the closed walk based measure of

vertex centrality, while

fc(G) =
∑
v∈V

fc(G, v) =
∑
k≥0

ckMk(G) , (1)

where Mk(G) =
∑

v∈V Mk(G, v) is the total number of closed walks of length k in G,

represents a cumulative closed walk based descriptor of a graph.

The value fc(G) is closely related to the adjacency spectrum of G. Let A(G) be

the adjacency matrix of G, and let λ1(G) ≥ · · · ≥ λn(G) be its eigenvalues. It is a

folklore result that the number of walks of length k between the vertices u and v is equal

to Ak(G)u,v, easily proved by induction on k. Hence the number Mk(G) of closed walks of

length k represents the trace of Ak(G), which is further equal to the k-th spectral moment∑n
i=1 λ

k
i (G), so that (1) may be rewritten as

fc(G) =
n∑

i=1

∑
k≥0

ckλ
k
i (G) . (2)

Estrada’s original suggestion [2] for the sequence (ck)k≥0 was ck = 1/k!, which puts more

emphasis on shorter closed walks and ensures the convergence as

fc(G) =
n∑

i=1

∑
k≥0

λk
i (G)

k!
=

n∑
i=1

eλi(G) .

This so-called Estrada index EE(G) =
∑n

i=1 e
λi(G) has been initially applied in measur-

ing the degree of protein folding [2, 3, 4], the centrality of complex networks [5] and the

branching of molecular graphs [6, 7]. It has been steadily gaining popularity in mathe-

matical chemistry community, as Zentralblatt now reports more than a hundred research

articles on the Estrada index.

A more recent suggestion for (ck)k≥0 was made in [1]. In order to downweight shorter

closed walks, Estrada and Highman suggested the use of ck = 1/(n− 1)k, inspired by the

ratio of the numbers of closed walks of length k between the pairs of vertices in G and in

the complete graph Kn. This latter choice defines the so-called resolvent Estrada index

EEr(G) =
∑
k≥0

Mk(G)

(n− 1)k
, (3)

which can also be represented in terms of eigenvalues as

EEr(G) =
n∑

i=1

n− 1

n− 1− λi(G)
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when G is not a complete graph. Some bounds on EEr(G) have been obtained in [8]

and [9]. Chen and Qian [10] showed that the star Sn has the maximum resolvent Estrada

index among trees of order n, followed by a number of trees similar to the star, and on

the other hand, Gutman et al. [11] showed that the path Pn has the minimum resolvent

Estrada index among trees of order n. Let Pn−1(a) be the tree obtained by attaching

a pendent vertex at position a of the (n − 1)-vertex path Pn−1. Gutman et al. [11]

further showed that Pn−1(2) has the second smallest resolvent Estrada index for n ≥ 4,

while Pn−1(3) has the third smallest resolvent Estrada index for n ≥ 6, and proposed the

following conjecture.

Conjecture 1 ([11]). For 2 ≤ a ≤ bn/2c, the tree Pn−1(a) has the a-th smallest resolvent

Estrada index among trees of order n.

Another suggestion ck = 1/nk+1 appears in [12, 13], where it defines the closely related

resolvent energy

ER(G) =
1

n

∑
k≥0

Mk(G)

nk
, (4)

which can also be represented in terms of eigenvalues as

ER(G) =
n∑

i=1

1

n− λi(G)
.

Gutman et al. [12, 13] establish a number of bounds on the resolvent energy and charac-

terize trees, unicyclic and bicyclic graphs with smallest and largest resolvent energies.

While researching Estrada index with a former PhD student [15], one of the present

authors made a conjecture analogous to Conjecture 1 about trees with smallest Estrada

indices, although it had not been published. Motivated by similarity in conjectured struc-

ture of trees with smallest Estrada and resolvent Estrada indices, and the fact that both

of these indices are defined in terms of the numbers of closed walks, we now turn our

attention to the following partial order of graphs.

Definition 2. For two graphs G and H we write G � H if Mk(G) ≤ Mk(H) for each

k ≥ 0. Further, G ≺ H if G � H and there exists k′ ≥ 0 such that Mk′(G) < Mk′(H).

Thus

G � H =⇒ EE(G) ≤ EE(H), EEr(G) ≤ EEr(H) and ER(G) ≤ ER(H) , (5)
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while

G ≺ H =⇒ EE(G) < EE(H), EEr(G) < EEr(H) and ER(G) < ER(H) . (6)

The partial order � enables the comparison of spectral radii of graphs as well. The

Perron-Frobenius theorem [16] states that λ1(G) = maxi |λi(G)|, so that

λ1(G) = lim
k→∞

2k
√

M2k(G) .

(We include only closed walks of even length above, as bipartite graphs do not have closed

walks of odd length.) Thus

G � H =⇒ λ1(G) ≤ λ1(H) . (7)

However, due to the appearance of the limit above, G ≺ H does not necessarily imply

λ1(G) < λ1(H).

Certainly, not all trees are comparable by �: one of the smallest pairs of incomparable

trees is depicted in Fig. 1. Nevertheless, we will show that trees Pn−1(j) precede almost

all other trees in �-order.

Figure 1. A pair of trees incomparable by �.

Let us now define a few further trees. First, let Fn be the tree obtained from the

path Pn−2 by attaching a pendent path of length two at position 3 in Pn−2 (see Fig. 2 for

an example).

Figure 2. The tree Fn for n = 12.

Next, let Qn denote the set of trees of order n that may be obtained from the path Pk

for some k ≤ n by attaching at most three new pendent edges to the leaves of Pk and at
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most one new pendant edge to its internal vertices. Note that this implies that Qn also

contains Pn, Pn−1(2), Pn−1(3), . . . , Pn−1

(⌊
n
2

⌋)
. In order to distinguish them from other

trees in Qn, we further denote Q∗
n = Qn \ {Pn, Pn−1(2), Pn−1(3), . . . , Pn−1

(⌊
n
2

⌋)
}. Fig. 3

illustrates a few trees from Q∗
12 in which the attached pendent edges are shown in red

(dashed line).

Figure 3. A few trees from Q∗
12.

The rest of the paper may be summarized as follows. In the next section we show that

Pn ≺ Pn−1(2) ≺ Pn−1(3) ≺ · · · ≺ Pn−1

(⌊n
2

⌋)
≺ Fn

and further that

Fn � T ,

whenever T is a tree of order n such that T /∈ Qn. Due to (6), this shows that

Pn−1(2), Pn−1(3), . . . , Pn−1

(⌊
n
2

⌋)
have smaller resolvent Estrada indices (and ordinary

Estrada indices and resolvent energies) than any tree not in Qn. Trees in Q∗
n need not

be �-comparable to Pn−1(2), Pn−1(3), . . . , Pn−1

(⌊
n
2

⌋)
—see the example of incomparable

trees depicted in Fig. 1. In Section 3 we bound the contribution of longer closed walks

to the resolvent Estrada index and resolvent energy in terms of the spectral radius. The

small spectral radius of trees in Q∗
n will then enable us to focus on short closed walks to

show that trees in Q∗
n have larger resolvent Estrada indices and resolvent energies than

Pn−1

(⌊
n
2

⌋)
, thus completing the proof of Conjecture 1 and proving an analogous result

for the resolvent energy.

2 Trees not in Qn

The following lemma appears as Theorem 3.2 in [15].

Lemma 3. Let u be a vertex of a nontrivial connected graph G, and for nonnegative

integers p and q let G(u; p, q) denote the graph obtained from G by attaching two pendent

paths of lengths p and q, respectively, at u. If 1 ≤ p ≤ q, then

G(u; p− 1, q + 1) ≺ G(u; p, q) .
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Repeated application of Lemma 3 further shows that

G(u; 0, p+ q) ≺ G(u; p, q) , (8)

where G(u; 0, p+q) is the result of replacing two pendent paths of lengths p and q attached

at u with a single path of length p+ q.

Corollary 4. For each n ≥ 4,

Pn ≺ Pn−1(2) ≺ Pn−1(3) ≺ Pn−1

(⌊n
2

⌋)
. (9)

Proof. Let u be a vertex of the path P2 on two vertices. Then

Pn
∼= P2(u; 0, n− 2) ,

Pn−1(2) ∼= P2(u; 1, n− 3) ,

Pn−1(3) ∼= P2(u; 2, n− 4) ,

. . .

Pn−1

(⌊n
2

⌋)
∼= P2

(
u;
⌊n
2

⌋
− 1,

⌈n
2

⌉
− 1

)
.

The chain of inequalities (9) now follows from Lemma 3.

We will now extend the chain (9) with an additional term. Note that we exclude the

case n = 6 below, as P5(3) = F6.

Lemma 5. For each n ≥ 7,

Pn−1

(⌊n
2

⌋)
≺ Fn . (10)

Proof. We calculate characteristic polynomials of Pn−1

(⌊
n
2

⌋)
and a subgraph of Fn in

order to derive an important relation between their spectral moments. For this task we

use the result of Schwenk [14], who has shown that

φ(G, λ) = φ(G− uv, λ)− φ(G− u− v, λ) (11)

whenever uv is a cut edge of G.

Case 1. Suppose that n is even, n = 2b, b ≥ 4, so that Pn−1

(⌊
n
2

⌋) ∼= P2(u; b−1, b−1).

We also have Fn
∼= P3(v; 2, 2b − 5), where v is the vertex of degree three in Fn. Let

P3(v; 2, b− 2) denote a subgraph of Fn, obtained by deleting the farthest b− 3 edges from

the branch of Fn of length 2b− 5. (Examples of P2(u; b− 1, b− 1) and P3(v; 2, b− 2) are

depicted in Fig. 4.)
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Figure 4. Trees P2(u; b− 1, b− 1) and P3(v; 2, b− 2).

Let u′ be a neighbor of u on one of the branches of length b− 1 in P2(u; b− 1, b− 1).

Then by (11)

φ(P2(u; b− 1, b− 1), λ) = φ(P2(u; b−1, b−1)−uu′, λ)−φ(P2(u; b−1, b−1)−u−u′, λ)

= φ(Pb+1, λ)φ(Pb−1, λ)− φ(P1, λ)φ(Pb−1, λ)φ(Pb−2, λ)

= φ(Pb−1, λ) [φ(Pb+1, λ)− λφ(Pb−2, λ)] .

On the other hand, denoting by v′ a neighbor of v on one of the branches of length two

in P3(v; 2, b), we get

φ(P3(v; 2, b− 2), λ) = φ(P3(v; 2, b−2)−vv′, λ)−φ(P3(v; 2, b−2)−v−v′, λ)

= φ(P2, λ)φ(Pb+1, λ)− φ(P1, λ)φ(P2, λ)φ(Pb−2, λ)

= φ(P2, λ) [φ(Pb+1, λ)− λφ(Pb−2, λ)] .

Hence the characteristic polynomials φ(P2(u; b − 1, b − 1), λ) and φ(P3(v; 2, b − 2), λ)

have a common factor φ(Pb+1, λ) − λφ(Pb−2, λ). If Sp(φ) denotes the set of roots of the

polynomial φ, this implies

Sp(φ(P2(u; b− 1, b− 1), λ)) = Sp(φ(Pb−1, λ)) ∪ Sp(φ(Pb+1, λ)− λφ(Pb−2, λ)) ,

Sp(φ(P3(v; 2, b− 2), λ)) = Sp(φ(P2, λ)) ∪ Sp(φ(Pb+1, λ)− λφ(Pb−2, λ)) ,

and consequently, for each k ≥ 0,

Mk(P2(u; b− 1, b− 1)) = Mk(Pb−1) +
∑

λ∈Sp(φ(Pb+1,λ)−λφ(Pb−2,λ))

λk ,

Mk(P3(v; 2, b− 2)) = Mk(P2) +
∑

λ∈Sp(φ(Pb+1,λ)−λφ(Pb−2,λ))

λk .

Thus

Mk(P2(u; b− 1, b− 1))−Mk(P3(v; 2, b− 2)) = Mk(Pb−1)−Mk(P2) . (12)

Suppose now that one pendent edge of Pb−1 is colored green, while the remaining

b − 3 edges are colored red. The expression Mk(Pb−1) − Mk(P2) then represents the

number of closed walks of length k in Pb−1 that contain at least one red edge.
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Suppose further that the edges of Fn = P3(v; 2, 2b−5) are also colored (see Fig. 5): the

last b− 3 edges of the branch of length 2b− 5 are colored red (dashed line), the preceding

edge of that branch is colored green (dotted line), while the remaining edges are colored

black. The subgraph induced by the black and green edges is then P3(v; 2, b − 2), while

the subgraph determined by the green and red edges is Pb−1. The closed walks of length k

Figure 5. The black and green edges of Fn induce P3(v; 2, b − 2), while the green
and red edges induce Pb−1 .

in Fn may now be partitioned into those closed walks that belong to the black-green

subgraph P3(v; 2, b − 2) and those that contain at least one red edge. The closed walks

that contain at least one red edge may be further partitioned into Mk(Pb−1) − Mk(P2)

walks that contain only green and red edges and those that contain both black and red

edges. Thus from (12) we see that for each k ≥ 0,

Mk(Fn) ≥ Mk(P3(v; 2, b− 2) + (Mk(Pb−1)−Mk(P2)) = Mk(P2(u; b− 1, b− 1)) . (13)

Moreover, strict inequality holds for k ≥ 6 as Fn then contains closed walks with both

black and red edges. Hence

Pn−1

(⌊n
2

⌋)
= P2(u; b− 1, b− 1) ≺ Fn

holds for even n.

Case 2. Now let n be odd, n = 2b− 1, b ≥ 4, so that Pn−1

(⌊
n
2

⌋) ∼= P2(u; b− 1, b− 2),

while Fn
∼= P3(v; 2, 2b− 6). Similarly as in the previous case, we can see that

Mk(P2(u; b− 1, b− 1)) ≥ Mk(P2(u; b− 1, b− 2)) + (Mk(Pb−1)−Mk(Pb−2)) (14)

by coloring a pendent edge of one of the branches of length b− 1 in P2(u; b− 1, b− 1) in

red (dashed line), the preceding b−3 edges of the same branch in green (dotted line), and

the remaining edges in black (see Fig. 6). The closed walks of length k of P2(u; b−1, b−1)

may then be partitioned into the closed walks contained within the black-green subgraph
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Figure 6. The black and green edges induce P2(u; b− 1, b− 2), while the green and
red edges induce Pb−2.

P2(u; b−1, b−2) and the closed walks than contain at least one red edge. The latter may

further be partitioned into the Mk(Pb−1)−Mk(Pb−2) closed walks that contain green and

red edges only and the remaining closed walks that contain both red and black edges.

The inequality in (14) is strict for k ≥ 2(b−1) when closed walks with both red and black

edges start to appear in P2(u; b− 1, b− 1).

Now from (12) and (14) we get

Mk(P2(u; b−1, b−2)) ≤ Mk(P2(u; b−1, b−1))−Mk(Pb−1)+Mk(Pb−2)

= [Mk(P3(v; 2, b−2))+Mk(Pb−1)−Mk(P2)]−Mk(Pb−1)+Mk(Pb−2)

= Mk(P3(v; 2, b− 2))+Mk(Pb−2)−Mk(P2) .

By adapting the proof of (13) from the case of Fn
∼= P3(v; 2, 2b− 5) for even n to the case

of Fn
∼= P3(v; 2, 2b− 6) for odd n, we see that

Mk(P3(v; 2, b− 2)) +Mk(Pb−2)−Mk(P2) ≤ Mk(P3(v; 2, 2b− 6)) ,

which finally yields

Mk

(
Pn−1

(⌊n
2

⌋))
= Mk(P2(u; b− 1, b− 2)) ≤ Mk(P3(v; 2, 2b− 6)) = Mk(Fn)

with strict inequality for k ≥ 6. Hence

Pn−1

(⌊n
2

⌋)
≺ Fn

holds for odd n as well.

Remark. As a consequence of walk counting in Lemma 5 we easily get that

λ1

(
Pn−1

(⌊n
2

⌋))
≤ λ1(Fn) .

Note that it would be very hard to obtain this inequality in a different way, due to the

diminishing difference between these two spectral radii and the fact that both are bounded
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from above by
√

2 +
√
5 ≈ 2.058171027271492 (see [17, 18]). For example, already for

n = 75 we have an agreement in the first eight of their digits after the decimal point:

λ1

(
Pn−1

(⌊n
2

⌋))
≈ 2.05817102402

λ1(Fn) ≈ 2.05817102727.

Corollary 4 and Lemma 5 yield the chain of inequalities

Pn ≺ Pn−1(2) ≺ Pn−1(3) ≺ Pn−1

(⌊n
2

⌋)
≺ Fn . (15)

The fact that Pn, Pn−1(2), Pn−1(3), . . . , Pn−1

(⌊
n
2

⌋)
have smaller resolvent Estrada indices

(and ordinary Estrada indices and resolvent energies) than trees not in Qn now follows

from (5), (15) and the following theorem.

Theorem 6. If T is a tree of order n ≥ 6 such that T 6∈ Qn, then Fn � T .

Proof. If T has no vertices of degree larger than two, then T is the path Pn which belongs

to Qn, yielding a contradiction. Hence T has at least one vertex of degree at least three.

Let v be a vertex of degree d ≥ 3, and let T1, . . . , Td be the connected components

of T − v. Let ni be the order of the subtree Ti, i = 1, . . . , d. Within each subtree Ti

we may repeatedly replace any two paths of lengths p and q attached at a vertex of

degree at least three at the largest distance from v with a single path of length p + q,

until the subtree Ti itself becomes the path Pni
. Due to (8), each such path replacing

transformation produces a smaller tree in ≺-order. After all the subtrees Ti become paths,

this sequence of transformations produces a tree T ′ such that T ′− v = Pn1 ∪ · · ·∪Pnd
and

T ′ � T .

If d > 3, we may continue applying this transformation in T ′ by replacing any pair

of paths Pni
and Pnj

attached at v with a single path Pni+nj
, until the degree of v

becomes three. This sequence of transformations then produces a tree T ′′ such that

T ′′ − v = Pm1 ∪ Pm2 ∪ Pm3 for some m1 ≤ m2 ≤ m3 and T ′′ � T ′. (If d = 3, then set

T ′′ = T ′.) Here the numbers m1, m2 and m3 represent the sums of the three subsets that

partition the set {n1, . . . , nd}, depending on which paths have been replaced together. In

addition, note that T ′′ may be equivalently denoted as Pm1+1(v;m2,m3), Pm2+1(v;m1,m3)

or Pm3+1(v;m1,m2).
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If 2 ≤ m1 then from the repeated application of Lemma 3 we have

Pm1+1(v; 2,m2 +m3 − 2) � Pm1+1(v;m2,m3) = T ′′ ,

P3(v;m1,m2 +m3 − 2) = Pm1+1(v; 2,m2 +m3 − 2) ,

Fn
∼= P3(v; 2,m1 +m2 +m3 − 2) � P3(v;m1,m2 +m3 − 2) .

Hence Fn � T ′′ � T ′ � T .

Let us now consider when we can direct path replacing transformations so as to arrive

at 2 ≤ m1. Suppose, without loss of generality, that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nd. First, if

d ≥ 6 then we can set m1 = n1 + n2 ≥ 2, m2 = n3 + n4 ≥ 2 and m3 = n5 + · · ·+ nd ≥ 2.

Next, if d = 5 and n5 ≥ 2 then we can similarly set m1 = n1 + n2 ≥ 2, m2 = n3 + n4 ≥ 2

and m3 = n5 ≥ 2. The remaining case n1 = · · · = n5 = 1 corresponds to T ′′ being a star,

which has the largest number of closed walks of any even length among all trees of the

given order [19], so that necessarily Fn � T ′′. Further, if d = 4 and 2 ≤ n3 then we can

set m1 = n1 + n2 ≥ 2, m2 = n3 ≥ 2 and m3 = n4 ≥ 2. Finally, if d = 3 then m1 = n1,

m2 = n2, m3 = n3, so that 2 ≤ m1 is equivalent to 2 ≤ n1.

From the previous paragraph we see that we have Fn � T ′′ unless it happens that

for each vertex of degree at least three in T holds either d = 3 and n1 = 1 or d = 4

and n1 = n2 = n3 = 1. Since ni = 1 corresponds to a pendent edge, we see that the

tree obtained after removing all pendent edges from such T necessarily results in some

path Pk: vertices of degree three in T have their degree reduced to two, while vertices of

degree four have their degree reduced to one (and consequently there may be at most two

vertices of degree four in T ). This, however, implies that T ∈ Qn, which is contradictory

to the assumption of this theorem.

3 Trees in Qn

As we can see from the example depicted in Fig. 1, trees in Q∗
n need not be �-comparable

to Pn−1

(⌊
n
2

⌋)
, so that Conjecture 1 has to be tackled in a different way for them. Thanks

to the fact that trees in Qn have small spectral radius, the following simple bound turns

out to be sufficient for its resolution.

Lemma 7. For graphs G and H of order n, let max{λ1(G), λ1(H)} ≤ Λ. Then∣∣∣∣∣∑
k≥k0

Mk(G)−Mk(H)

(n− 1)k

∣∣∣∣∣ ≤ n(n− 1)

n− 1− Λ

(
Λ

n− 1

)k0

. (16)
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Proof. Since |λi(G)| ≤ λ1(G) ≤ Λ for each i = 1, . . . , n, we have that

|Mk(G)| =

∣∣∣∣∣
n∑

i=1

λi(G)k

∣∣∣∣∣ ≤
n∑

i=1

|λi(G)|k ≤ nΛk

and, similarly, |Mk(H)| ≤ nΛk. Since both Mk(G) and Mk(H) are nonnegative, we get

−nΛk ≤ −Mk(H) ≤ Mk(G)−Mk(H) ≤ Mk(G) ≤ nΛk .

Hence∣∣∣∣∣∑
k≥k0

Mk(G)−Mk(H)

(n− 1)k

∣∣∣∣∣ ≤
∑
k≥k0

|Mk(G)−Mk(H)|
(n− 1)k

≤ n
∑
k≥k0

(
Λ

n− 1

)k

=
n(n− 1)

n− 1− Λ

(
Λ

n− 1

)k0

.

A tree is a bipartite graph which does not contain closed walks of odd length, so that

its resolvent Estrada index is equal to

EEr(T ) = n+
2(n− 1)

(n− 1)2
+

M4(T )

(n− 1)4
+

M6(T )

(n− 1)6
+
∑
k≥8

Mk(T )

(n− 1)k
,

thanks to M0(T ) = n and M2(T ) = 2(n − 1). For two trees T and S of order n we

therefore have

EEr(T )− EEr(S) =
M4(T )−M4(S)

(n− 1)4
+

M6(T )−M6(S)

(n− 1)6
+
∑
k≥8

Mk(T )−Mk(S)

(n− 1)k
.

If Λ is a common upper bound for the spectral radii of T and S, we get from Lemma 7

that

EEr(T )− EEr(S) ∈

[
M4(T )−M4(S)

(n− 1)4
+

M6(T )−M6(S)

(n− 1)6
− n(n− 1)

n− 1− Λ

(
Λ

n− 1

)8

,

M4(T )−M4(S)

(n− 1)4
+

M6(T )−M6(S)

(n− 1)6
+

n(n− 1)

n− 1− Λ

(
Λ

n− 1

)8
]

.

This yields the following useful lemma.

Lemma 8. Let T and S be two trees of order n such that Λ ≥ max{λ1(T ), λ1(S)}. If

(n− 1)2[M4(T )−M4(S)] + [M6(T )−M6(S)] >
nΛ8

(n− 1)(n− 1− Λ)
,

then EEr(T ) > EEr(S).
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Similarly to Lemmas 7 and 8, we can prove the following two lemmas on the resolvent

energy.

Lemma 9. For graphs G and H of order n, let max{λ1(G), λ1(H)} ≤ Λ. Then∣∣∣∣∣∑
k≥k0

Mk(G)−Mk(H)

nk+1

∣∣∣∣∣ ≤ n

n− Λ

(
Λ

n

)k0

. (17)

Lemma 10. Let T and S be two trees of order n such that Λ ≥ max{λ1(T ), λ1(S)}. If

n2[M4(T )−M4(S)] + [M6(T )−M6(S)] >
Λ8

n− Λ
,

then ER(T ) > ER(S).

Next we have to provide an upper bound on the spectral radius of trees in Qn. We

first observe that, as a tree obtained by attaching at most three new pendent edges to

the leaves of a path and at most one new pendant edge to its internal vertices, every tree

in Qn is an induced subgraph of the tree Q depicted in Fig. 7. To bound the spectral

Figure 7. A tree containing all trees in Q∗
n as its subtrees.

radius of Q, we will resort to the following result from [20], restated in more familiar

terms.

Theorem 11 ([20]). If G is a connected graph with adjacency matrix A, then the system

of inequalities

Ax ≤ Λx (18)

has a solution for real Λ and non-negative x if and only if λ1(G) ≤ Λ.

Let A be the adjacency matrix of Q and recall that for each vertex u of Q

(Ax)u =
∑
v∼u

xv ,

where the sum goes over all neighbors of u in Q. It is straightforward to check that the

system (18) is satisfied for Λ = 1 +
√
2 and the vector x, whose components are depicted
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in Fig. 7. As a matter of fact, equality holds in (18) for each vertex of Q, except for the

two vertices of degree four for which we have strict inequality. Hence

λ1(Q) ≤ Λ ,

and since the spectral radius is edge-monotone, also λ1(T ) ≤ Λ for each tree T ∈ Qn.

Now that we have a common upper bound on the spectral radius of trees in Qn, we

can move on to estimate their numbers of closed walks of lengths 4 and 6. From [21] we

have that

M4(G) = 2
∑

u∈V (G)

d2u − 2m+ 8q , (19)

where du is the degree of the vertex u, m is the number of edges and q is the number

of quadrangles in G. Certainly, m = n − 1 and q = 0 in a tree T , so that (19) for trees

reduces to

M4(T ) = 2

 ∑
u∈V (G)

d2u − n+ 1

 .

Closed walks of length six may, in general, go over the cycles of length 4 and 6 in a

graph. However, as we are interested in trees only, each closed walk u = u0, u1, . . . , u6 = u

may have only one of the forms depicted in Fig. 8. They are classified according to whether

the vertices u2 and u4 are equal to u and to each other (vertices that are not specified

beneath each drawing may be mutually equal even if they are depicted as different in the

drawing).

Figure 8. Five types of closed walks of length six in trees.

Clearly, there are
∑

u∈V (T ) d
3
u walks of the first type u2 = u = u4. Walks of the second

type u2 = u 6= u4 are most easily counted with the help of adjacent vertices u and u3:
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there are du choices for u1 and since u4 6= u, there are du3 − 1 choices for the vertex u4,

so that the total number of walks of this type is∑
u∈V (T )

∑
{u3 : uu3∈E(T )}

du(du3 − 1) = 2
∑

uu3∈E(T )

dudu3 −
∑

u∈V (T )

d2u .

as each edge of T gets counted twice in the first double sum—once as (u, u3) and once

as (u3, u), while each degree du gets subtracted du times. In the same way, counting over

the pairs of adjacent vertices u and u1 (instead of u3), we see that there are also

2
∑

uu1∈E(T )

dudu1 −
∑

u∈V (T )

d2u

walks of the third type u2 6= u = u4. Closed walks of the fourth type may be counted by

the adjacent pair (u, u1): for each choice of the neighbor u1 of u, there are du1 − 1 choices

for each of u2 6= u and u4 6= u, so that the total number of walks of this type is∑
u∈V (T )

∑
{u1 : uu1∈E(T )}

(du1 − 1)2 =
∑

u1∈V (T )

du1(du1 − 1)2 =
∑

u1∈V (T )

d3u1
− 2

∑
u1∈V (T )

d2u1
+ 2m .

Closed walks of the fifth type may be counted by the adjacent pair (u1, u2): for each

choice of the neighbor u1 of u, there are du1 − 1 choices for u2 and du2 − 1 choices for u3.

Hence the total number of walks of this type is∑
u∈V (T )

∑
{u1 : uu1∈E(T )}

∑
{u2 : u1u2∈E(T )}

(du2 − 1) = 2
∑

u1u2∈E(T )

(du1 − 1)(du2 − 1)

= 2
∑

u1u2∈E(T )

du1du2 −
∑

u1∈V (T )

d2u1
−

∑
u3∈V (T )

d2u3
+ 2m .

Finally, adding these quantities together we see that

M6(T ) = 2
∑

u∈V (T )

d3u − 6
∑

u∈V (T )

d2u + 6
∑

uv∈E(T )

dudv + 4m . (20)

Now we can move forward to compare the closed walks of lengths 4 and 6 between

Pn−1

(⌊
n
2

⌋)
and the trees in Q∗

n. Tree Pn−1

(⌊
n
2

⌋)
has one vertex of degree 3, three leaves

and n− 4 vertices of degree 2, so that

M4

(
Pn−1

(⌊n
2

⌋))
= 6n− 6 and M6

(
Pn−1

(⌊n
2

⌋))
= 20n− 14 .

If T is a tree in Q∗
n, then it has one of the three types depicted in Fig. 3, depending on

the number of vertices of degree 4 that it contains:
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Type i) For a tree T ∈ Q∗
n with no vertices of degree 4, if it has k ≥ 2 vertices of degree 3,

then it has k + 2 leaves and n− 2k − 2 vertices of degree 2, so that

M4(T ) = 6n+ 4k − 10 ≥ 6n− 2 . (21)

It further contains k edges between vertices of degrees 3 and 1, two edges that

connect path leaves to vertices of degree either 2 or 3, and n − k − 3 edges that

connect vertices of degrees either 2 or 3 on the path. The edge on the right from each

vertex of degree 3 on the path will contribute at least 3 ·2 to the sum
∑

uv∈E(T ) dudv.

Regardless of how the vertices of degree 3 are distributed, there will be at least k−1

such edges, while the remaining n − 2k − 2 will contribute at least 2 · 2. Hence∑
uv∈E(T ) dudv ≥ 4n+ k − 10, so that

M6(T ) ≥ 20n+ 18k − 56 ≥ 20n− 20 . (22)

Hence

(n− 1)2[M4(T )−M4(S)] + [M6(T )−M6(S)] ≥ 4(n− 1)2 − 6 .

The inequality

4(n− 1)2 − 6 >
nΛ8

(n− 1)(n− 1− Λ)

for Λ = 1 +
√
2 is satisfied for n ≥ 9, so that from Lemma 8 we have

EEr(T ) > EEr

(
Pn−1

(⌊n
2

⌋))
for each tree T of this type with at least 9 vertices.

Type ii) For a tree T ∈ Q∗
n with one vertex of degree four, if it has k ≥ 0 vertices of degree

three, then it has k + 4 leaves and n− 2k − 5 vertices of degree two, so that

M4(T ) = 6n+ 4k + 2 ≥ 6n+ 2 ; (23)

Similarly as in the previous case, we get
∑

uv∈E(T ) dudv ≥ 4n+ k − 4, so that

M6(T ) ≥ 20n+ 18k − 32 ≥ 20n− 32 . (24)

Hence

(n− 1)2[M4(T )−M4(S)] + [M6(T )−M6(S)] ≥ 8(n− 1)2 − 18 .

-650-



The inequality

8(n− 1)2 − 18 >
nΛ8

(n− 1)(n− 1− Λ)

is satisfied for n ≥ 8, so that from Lemma 8

EEr(T ) > EEr

(
Pn−1

(⌊n
2

⌋))
for each tree T of this type with at least 8 vertices.

Type iii) For a tree T ∈ Q∗
n with two vertices of degree four, if it has k ≥ 0 vertices of degree

three, then it has k + 6 leaves and n− 2k − 8 vertices of degree two, so that

M4(T ) = 6n+ 4k + 14 ≥ 6n+ 14 . (25)

In this case we get
∑

uv∈E(T ) dudv ≥ 4n+ k + 2, so that

M6(T ) ≥ 20n+ 18k + 112 ≥ 20n+ 112 . (26)

Hence

(n− 1)2[M4(T )−M4(S)] + [M6(T )−M6(S)] ≥ 20(n− 1)2 + 126.

The inequality

20(n− 1)2 + 126 >
nΛ8

(n− 1)(n− 1− Λ)

is satisfied for n ≥ 6, so that from Lemma 8

EEr(T ) > EEr

(
Pn−1

(⌊n
2

⌋))
for all trees T of this type.

Hence it remains to computationally check trees of the first type with at most 8 vertices

and trees of the second type with at most 7 vertices. There are 11 such trees in total,

depicted in Fig. 9, all of which have resolvent Estrada index larger than that of Pn−1

(⌊
n
2

⌋)
.

This resolves Conjecture 1 for trees in Q∗
n as well, so that we finally have

Theorem 12. For 2 ≤ a ≤ bn/2c, the tree Pn−1(a) has the a-th smallest resolvent Estrada

index among trees of order n.

Lemma 10, together with the estimates (21)-(26) for the numbers of closed walks of

lengths 4 and 6, implies that

ER(T ) > ER
(
Pn−1

(⌊n
2

⌋))
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Figure 9. Trees in Q∗
n to which Lemma 8 cannot be applied. Their resolvent

Estrada indices and resolvent energies are shown beneath the drawings.
Trees Pn−1

(⌊
n
2

⌋)
, 6 ≤ n ≤ 8, are shown for comparison.

holds for trees in Q∗
n of the first type with at least 8 vertices, of the second type with at

least 7 vertices, and for all trees of the third type (see Fig. 3). The remaining four trees in

Q∗
6 and Q∗

7 also have resolvent energy larger than that of the corresponding Pn−1

(⌊
n
2

⌋)
,

as shown in Fig. 9. Hence we also have

Theorem 13. For 2 ≤ a ≤ bn/2c, the tree Pn−1(a) has the a-th smallest resolvent energy

among trees of order n.

4 Concluding remarks

We have resolved Conjecture 1 in Sections 2 and 3 by applying different approaches to

trees not in Q∗
n and trees in Q∗

n. The fact that trees not in Q∗
n are �-comparable to Fn

enabled us to conclude that Pn, Pn−1(2), . . . , Pn−1

(⌊
n
2

⌋)
are the smallest trees for any

invariant defined as a weighted series of closed walk numbers with nonnegative coefficients,

including the Estrada index, the resolvent Estrada index, the resolvent energy and the

spectral radius (allowing equality instead of strict inequality in the latter case).

On the other hand, trees in Q∗
n are, in principle, not �-comparable to Pn−1

(⌊
n
2

⌋)
. The
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appropriate choices of coefficients ck = 1/(n−1)k in the definition of the resolvent Estrada

index and ck = 1/nk+1 in the definition of the resolvent energy enabled us to use a simple

spectral bound on the tail of defining series in Lemmas 7 and 9, and to focus solely on

closed walks of lengths 4 and 6 in Lemmas 8 and 10. Such approach, unfortunately, cannot

be used with the Estrada index or the spectral radius, so that new methods have to be

found in order to deduce results for the Estrada index and the spectral radius analogous

to those presented here for the resolvent Estrada index and the resolvent energy.
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[16] D. Stevanović, Spectral Radius of Graphs , Acad. Press, Amsterdam, 2015.
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