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Abstract

The energy of a graph is defined as the sum of the absolute values of the eigenvalues of its

adjacency matrix. A graph G on n vertices is said to be borderenergetic if its energy equals to the

energy of the complete graphKn. In [12], Tura promote this concept for Laplacian matrices. The

Laplacian energy of G, introduced by Gutman and Zhou [5], is given by LE(G) =
∑n

i=1 |µi− d̄|,
where µi are the Laplacian eigenvalues of G and d̄ is the average degree of G. A graph G on

n vertices is said to be L-borderenergetic if LE(G) = LE(Kn). In this paper, we first present

all non-complete L-borderenergetic graphs of order 4, 5, 6, 7. Then we construct one connected

non-complete L-borderenergetic graph on n vertices for each integer n ≥ 4, which extends the

result in [12] and completely confirms the existence of non-complete L-borderenergetic graphs.

Particularly, we prove that there are at least n
2 + 4 non-complete L-borderenergetic graphs of

order n for any even integer n ≥ 6.

1 Introduction

Throughout this paper, all graphs are assumed to be finite, undirected and without loops

or multiple edges. Let G be such a graph of order n, and let λ1, λ2, . . . , λn be the eigen-

values of its adjacency matrix A(G). Then the energy of G, denoted by E(G), is the

sum of the absolute values of the eigenvalues of A(G), that is, E(G) =
∑n

i=1 |λi|. There

are many results on energy [3, 7–11] and its applications in several areas, including in

chemistry see [6] for more details and the references therein. It is well known that the
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energy of the complete graph Kn is E(Kn) = 2n − 2. Recently, Gong, Li, Xu and

Gutman [4] introduced the concept of borderenergetic. A graph G on n vertices is said

to be borderenergetic if its energy equals to that of the complete graph Kn, that is,

E(G) = E(Kn) = 2n − 2. Moreover, they show that there exist borderenergetic graphs

of order n for each integer n ≥ 7. The Laplacian energy of G, induced by Gutman

and Zhou [5], is given by LE(G) =
∑n

i=1 |µi − d̄|, where µi are the Laplacian eigen-

values of G and d̄ is the average degree of G. Similarly, the Laplacian energy of the

complete graph Kn is LE(G) = 2n − 2 as well. With respect to the Laplacian energy,

Tura [12] introduced the concept of L-borderenergetic. A graph G on n vertices is said

to be L-borderenergy if its Laplacian energy equals to that of the complete graph Kn,

that is, LE(G) = LE(Kn) = 2n − 2. Moreover, Tura [12] also gives several classes of L-

borderenergetic graphs, by the way, he proves that for each r ≥ 1, there are 2r+1 graphs,

of order 4r + 4, pairwise L-noncospectral and L-borderenergetic graphs, which confirms

the existence of non-complete L-borderenergetic graphs for n = 4r + 4. Recently, a kind

of threshold graphs were found to be L-borderenergetic in [2]. In this paper, we give the

existence of non-complete L-borderenergetic graphs for each integer n ≥ 4. Furthermore,

we prove that there are at least n
2
+ 4 non-complete L-borderenergetic graphs for each

even integer n ≥ 6.

2 L-borderenergetic graphs of order 4, 5, 6 and 7

The only connected graphs on 3 vertices are P3 and K3. By simple calculation, we

know that LE(P3) = 10/3, which is not equal to LE(K3) = 4. Therefore, there is no

non-complete L-borderenergetic graphs on less than 4 vertices. As in [4], by using the

computer software SageMath we exhaust all non-complete L-borderenergetic graphs on

4, 5, 6 and 7 vertices in Proposition 1-4, respectively.

Proposition 1. There are exactly two non-complete L-borderenergetic graphs on 4 ver-

tices, which are labelled as G
(4)
1 and G

(4)
2 shown in Fig. 1, where LE(G

(4)
1 ) and LE(G

(4)
2 )

equal to LE(K4) = 6.

Proposition 2. There is exactly one non-complete L-borderenergetic graph on 5 vertices,

which is labeled as G
(5)
1 shown in Fig. 2.
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{4, 3, 1, 0} {42, 2, 0}
Figure 1. The non-complete L-borderenergetic graphs on 4 vertices and their Laplacian

spectra
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G
(5)
1

{5, 3, 12, 0}
Figure 2. The non-complete L-borderenergetic graph on 5 vertices and its Laplacian spec-

trum

Proposition 3. There are exactly 11 non-complete L-borderenergetic graphs on 6 vertices,

which are labeled as G
(6)
1 , G

(6)
2 ,. . . ,G

(6)
11 depicted in Fig. 3.
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G
(6)
1 G

(6)
2 G

(6)
3 G

(6)
4

G
(6)
5 G

(6)
6 G

(6)
7 G

(6)
8

G
(6)
9 G

(6)
10 G

(6)
11

{6, 3, 13, 0} {6, 4, 3, 2, 1, 0} {6, 42, 3, 1, 0} {6, 32, 12, 0}

{6, 5, 32, 1, 0} {6, 42, 22, 0} {6, 5, 4, 3, 2, 0} {63, 42, 0}

{6, 52, 32, 0} {62, 5, 4, 3, 0} {62, 4, 32, 0}
Figure 3. The non-complete L-borderenergetic graphs on 6 vertices and their Laplacian

spectra

Proposition 4. There are exactly 5 non-complete L-borderenergetic graphs on 7 vertices,

which are labeled as G
(7)
1 , G

(7)
2 ,. . . ,G

(7)
5 depicted in Fig. 4.
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(7)
1 G

(7)
2 G

(7)
3

G
(7)
4 G

(7)
5

{7, 3, 14, 0} {7, 53, 4, 2, 0} {7, 6, 5, 42, 2, 0}

{7, 6, 5, 42, 2, 0} {7, 6, 5, 4, 33, 0}
Figure 4. The non-complete L-borderenergetic graph on 7 vertices and its Laplacian spec-

trum

Remark 1. In fact, we also find that there are exactly 33 non-complete L-borderenergetic

graphs on 8 vertices. By simple observation, each L-borderenergetic graph of order less

than 9 is the join of two graphs. However, there exist non-complete L-borderenergetic

graphs which are not the join of two graphs, such as the graphs shown in Fig. 5. By

simple calculation, they are L-borderenergetic graphs (their Laplacian spectra and Lapla-

cian energies are given in Fig. 5), but they are not the join of two graphs because their

Laplacian spectral radius do not equal to their orders. In the next section, we focus on

constructing non-complete L-borderenergetic graphs by using the join operation.
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Figure 5. Two non-complete L-borderenergetic graphs which are not the join of two
graphs

3 Non-complete L-borderenergetic graphs

In this section, we construct L-borderenergetic graphs by using the graph operations of

union and join. We start with the definition of these two operations. Let G1 = (V1, E1)

and G2 = (V2, E2) be two undirected simple graphs. The union G1 ∪G2 of the graphs G1

and G2 is the graph G = (V,E) for which V = V1 ∪ V2 and E = E1 ∪E2. Denote by mG

the union of m’s G, that is, mG = G ∪G ∪ · · · ∪G︸ ︷︷ ︸
m

. The join G1∇G2 of the graphs G1
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and G2 is obtained from G1 ∪ G2 by joining every vertex in G1 with every vertex in G2.

The following result is well-known and one can find it in [1].

Lemma 1. Let G1 and G2 be two graphs on n1 and n2 vertices, let α1 ≥ α2 ≥ · · · ≥

αn1 = 0 and β1 ≥ β2 ≥ · · · ≥ βn2 = 0 be the Laplacian eigenvalues of G1 and G2,

respectively. Then the Laplacian spectra of G1 ∪G2 and G1∇G2 are given by

SpecL(G1 ∪G2) = {α1, . . . , αn1 , β1, . . . , βn2},
SpecL(G1∇G2) = {n1 + n2, n2 + α1, n2 + α2, . . . , n2 + αn1−1, n1 + β1, . . . , n1 + βn2−1, 0}.

By a observation of Propositions 1, 2, 3 and 4, many of the L-borderenergetic graphs

we depicted are obtained from a graph by joining a new point. Now we construct a graph

having such form. For an integer n ≥ 4, we construct the graph

Gn(a, b) = (aK2 ∪ bK1)∇K1

where a, b ≥ 0 and 2a + b + 1 = n. Since n ≥ 4, it is easy to see that Gn(a, b) is a non-

complete connected graph. By Lemma 1, we get the Laplacian eigenvalues of Gn(a, b).

Lemma 2. The Laplacian spectrum of Gn is given by

SpecL(Gn(a, b)) = {n, 3a, 1a+b−1, 0}.

Proof. It is well known that the Laplacian spectra of K1 and K2 are {0} and {2, 0},

respectively. By Lemma 1, we have SpecL(aK2∪ bK1) = {2a, 0a+b}. Therefore, by Lemma

1 again, we have SpecL(Gn(a, b)) = SpecL((aK2 ∪ bK1)∇K1) = {n, 3a, 1a+b−1, 0}.

It is easy to see that the average degree of Gn(a, b) is

d̄ =
4a+ b+ (2a+ b)

n
=

6a+ 2b

n
= 2 +

2a− 2

n
. (1)

Then we get the Laplacian energy of Gn(a, b).

Theorem 1. The Laplacian energy of Gn(a, b) is given by

LE(Gn(a, b)) = (2n− 2) +
2(a− 1)(b− 1)

n
.

Proof. By Lemma 2 and Eq. (1), we have

LE(Gn(a, b)) =
n∑

i=1

|µi − d̄| =
(
n− 2− 2a− 2

n

)
+ a

(
1− 2a− 2

n

)
+ (a+ b− 1)

(
1 +

2a− 2

n

)
+

(
2 +

2a− 2

n

)
= (2n− 2) +

2(a− 1)(b− 1)

n
.
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If Gn(a, b) is L-borderenergetic, from Theorem 1, we have

LE(Gn(a, b)) = (2n− 2) +
2(a− 1)(b− 1)

n
= LE(Kn) = 2n− 2,

which holds if and only if a = 1 or b = 1. In fact, we have the following result, which

confirms the existence of non-complete L-borderenergetic graphs.

Theorem 2. Let Gn = {Gn(a, b) | a, b ≥ 0, 2a + b + 1 = n} where n ≥ 4. If n is odd,

then Gn(1, n− 3) = (K2 ∪ (n− 3)K1)∇K1 is the only L-borderenergetic graph in Gn. If n

is even, then Gn(1, n− 3) = (K2 ∪ (n− 3)K1)∇K1 and Gn(
n−2
2
, 1) = (n−2

2
K2 ∪K1)∇K1

are the only L-borderenergetic graphs in Gn.

Remark 2. From Theorem 2, we claim that there exists non-complete L-borderenergetic

graphs on n vertices for any n ≥ 4. Besides, Gn(1, n− 3) = G
(n)
1 for i = 4, 5, 6, 7, which

are depicted in Section 2.

Note that G5(1, 2) is the only non-complete L-borderenergetic graph on 5 vertices. For

an even integer n ≥ 4 we construct another graph

Hn(a, b) =
(n
2
− 1

)
K1∇(aK1 ∪ (K1∇bK1))

where a, b ≥ 0 and a+ b+ n
2
= n. Obviously, Hn(a, b) is always a non-complete connected

graph since n ≥ 4. By Lemma 1, we get the Laplacian spectrum of Hn(a, b).

Lemma 3. The Laplacian spectrum of Hn(a, b) is given by

SpecL(Hn(a, b)) =

{
{n, n

2
+ b, (n

2
)b−1, (n

2
− 1)

n
2
−b, (n

2
+ 1)

n
2
−2, 0}, b ≥ 1

{n, (n
2
+ 1)

n
2
−2, (n

2
− 1)

n
2 , 0}, b = 0

Note that the average degree of Hn(a, b) is given by

d̄ =


(n
2
−1)(n

2
+1)+a(n

2
−1)+(n

2
−1+b)+b(n

2
)

n
= n

2
+ 2(b−1)

n
, b ≥ 1

(n
2
−1)(n

2
+1)+(n

2
+1)(n

2
−1)

n
= n

2
− 2

n
, b = 0

(2)

From Lemma 3 and Eq. (2), we get the Laplacian energy of Hn(a, b).

Theorem 3. The Laplacian energy of Hn(a, b) is given by

LE(Hn(a, b)) =

{
2n− 2, b ≥ 1

2n− 2− 4
n
, b = 0
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Proof. We only consider the case of b ≥ 1, the other case is very similar. From Lemma 3

and Eq. (2), we have

(Hn(a, b)) =
n∑

i=1

|µi − d̄| =
(
n−

(
n

2
+

2(b− 1)

n

))
+

(
b− 2(b− 1)

n

)
+
(n
2
− 2

)((n
2
+ 1

)
−

(
n

2
+

2(b− 1)

n

))
+ (b− 1)

((
n

2
+

2(b− 1)

n

)
− n

2

)
+
(n
2
− b

)((
n

2
+

2(b− 1)

n

)
−

(n
2
− 1

))
+

(
n

2
+

2(b− 1)

n

)
= 2n− 2

Therefore, Hn(a, b) is a non-complete L-borderenergetic graph when b ≥ 1.

Theorem 4. Let Hn = {Hn(a, b) | a, b ≥ 0, a + b = n
2
}, where n ≥ 4 is even. Then all

graphs but Hn(
n
2
, 0) in Hn are non-complete L-borderenergetic graphs.

Remark 3. Each pair of graphs in Hn have different Laplacian spectra, and so they

are not isomorphic. For n = 4, all non-complete L-borderenergetic graphs are contained

in this class, that is, H4(1, 1) = G
(4)
1 and H4(0, 2) = G

(4)
2 . However, there are many

L-borderenergetic graphs which are out of this class for n ≥ 6.

In what follows, we will construct some other L-borderenergetic graphs. For an even

integer n ≥ 6, denote by

Jn(1) = K1∇(K1 ∪ ((n
2
− 1)K1∇(n

2
− 1)K1)),

Jn(2) = K1∇((n
2
− 1)K2 ∪K1),

Jn(3) = (K2 ∪ (n
2
− 2)K1)∇(K1∇(n

2
− 1)K1),

Jn(4) = (K2 ∪ (n
2
− 2)K1)∇((K1∇(n

2
− 2)K1) ∪K1).

As in the proof of Theorem 2, by calculating the Laplacian energy of Jn(i), we obtain

that all of them are L-borderenergetic graphs on n vertices. We present their Laplacian

spectra and average degrees in Table 1.

Theorem 5. For any even integer n ≥ 6, the graphs Jn(i) for i = 1, 2, 3, 4 are connected

non-complete L-borderenergetic graphs on n vertices.
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H
n
(a
,b
)
=

(n
2
−

1)
K

1
∇
(a
K

1
∪
(K

1
∇
bK

1
))

{n
,
n 2
+
b,
(n
2
+
1)

n 2
−
2
,(

n 2
)b

−
1
,(

n 2
−
1)

n 2
−
b
,0
}

n 2
+

2
(b
−
1
)

n

J
n
(1
)
=

K
1
∇
(K

1
∪
((

n 2
−

1)
K

1
∇
(n
2
−

1)
K

1
))

{n
,n

−
1,
(n
2
)n

−
4
,1
,0
}

n 2

J
n
(2
)
=

K
1
∇
((

n 2
−

1)
K

2
∪
K

1
)

{n
,3

n 2
−
1
,1

n 2
−
1
,0
}

3
−

4 n

J
n
(3
)
=

(K
2
∪
(n
2
−

2)
K

1
)∇

(K
1
∇
(n
2
−

1)
K

1
)

{n
2
,
n 2
+
2,
(n
2
+
1)

n 2
−
2
,(

n 2
)n 2

−
2
,0
}

n 2
+
1

J
n
(4
)
=

(K
2
∪
(n
2
−

2)
K

1
)∇

((
K

1
∇
(n
2
−

2)
K

1
)
∪
K

1
)

{n
,n

−
1,

n 2
+
2,
(n
2
+
1)

n 2
−
3
,(

n 2
)n 2

−
1
,0
}

n 2
+
1
−

2 n

G
r
=

((
2r
K

1
∇
2r
K

1
)
∪
K

1
)∇

2r
K

1
{6
r
+
1,
6r
,(
4r

+
1)

2
r
−
1
,(
4r
)4

r
−
2
,2
r,
0}

4r
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From Table 1, we obtain that each pair of graphs given in Theorems 4 and 5 cannot

share the same Laplacian spectrum, which leads to the following result.

Corollary 1. For an even integer n ≥ 6, there exists at least n
2
+4 connected non-complete

L-borderenergetic graphs, which are Hn(a, b) for b = 1, 2, . . . , n
2
and Jn(i) for i = 1, 2, 3, 4.

For n = 6r + 1, we also find a L-borderenergetic graph different from (K2 ∪ (n −

3)K1)∇K1.

Theorem 6. For any integer r ≥ 1, the graph Gr = ((2rK1∇2rK1) ∪ K1)∇2rK1 is a

connected non-complete L-borderenergetic graph on 6r + 1 vertices.

The Laplacian spectrum and average degree of Gr are given in Table 1, and we can

immediately calculate the Laplacian energy of Gr, which equals to 12r = 2(6r + 1) − 2,

and the verifying works are omitted here.
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