Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

L-Borderenergetic Graphs and Normalized Laplacian Energy

Fernando Tura

Departamento de Matemática, UFSM, Santa Maria, RS, 97105-900, Brazil

ftura@smail.ufsm.br

(Received November 4, 2016)

Abstract

The Laplacian and normalized Laplacian energy of G are given by expressions $E_L(G) = \sum_{i=1}^n |\mu_i - \overline{d}|, E_{\mathcal{L}}(G) = \sum_{i=1}^n |\lambda_i - 1|$, respectively, where μ_i and λ_i are the eigenvalues of Laplacian matrix L and normalized Laplacian matrix \mathcal{L} of G. An interesting problem in *spectral graph theory* is to find graphs $\{L, \mathcal{L}\}$ -noncospectral with the same $E_{\{L, \mathcal{L}\}}(G)$. In this paper, we present graphs of order n, which are L-borderenergetic (in short, $E_L(G) = 2n - 2$) and graphs \mathcal{L} -noncospectral with the same normalized Laplacian energy.

1 Introduction

Throughout this paper, all graphs are assumed to be finite, undirected and without loops or multiple edges. If G is a graph of order n and M is a real symmetric matrix associated with G, then the M- energy of G is

$$E_M(G) = \sum_{i=1}^n \left| \lambda_i(M) - \frac{tr(M)}{n} \right|. \tag{1}$$

The energy E(G) of a graph G simply refers to using the adjacency matrix in (1). There are many results on energy and its applications in several areas, including in chemistral see [10] for more details and the references [2, 11–14, 16].

Recently, a new concept as *borderenergetic* graphs [5] was proposed, namely graphs of order n satisfying E(G) = 2n - 2. In this way, several authors have been presented families of borderenergetic graphs [2,7,8,11,16].

An analogous concept as borderenergetic graphs, called *L*-borderenergetic graphs was proposed in [18]. That is, a graph *G* of order *n* is *L*-borderenergetic if $E_L(G) = 2n - 2$, where $E_L(G) = \sum_{i=1}^n |\mu_i - \overline{d}|$, and \overline{d} is the avarage degree of G. Some classes of Lborderenergetic of order n = 4r + 4 $(r \ge 1)$ are obtained in [18]. In [3], a kind of threshold graphs were found to be L-borderenergetic, and all the connected non-complete and pairwise non-isomorphic L-borderenergetic graphs of small order n depicted for nwith $4 \le n \le 9$.

Since that finding noncospectral graphs with the same energy is an interesting problem in spectral graph theory, in this paper we continue this investigation presenting some new graphs which are L- borderenergetic and finish it showing two classes of graphs that are \mathcal{L} -noncospectral with the same normalized Laplacian energy.

The paper is organized as follows. In Section 2 we describe some known results about the Laplacian and normalized Laplacian spectrum of graphs. In Section 3 we present two classes of *L*-borderenergetic graphs. We finalize this paper, showing graphs with the same normalized Laplacian energy.

2 Premilinares

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be undirected graphs without loops or multiple edges. The union $G_1 \cup G_2$ of graphs G_1 and G_2 is the graph G = (V, E) for which $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$. We denote the graph $\underline{G \cup G \cup \ldots \cup G}$ by mG. The join $G_1 \nabla G_2$ of graphs G_1 and G_2 is the graph obtained from $G_1 \cup G_2$ by joining every vertex of G_1 with every vertex of G_2 .

The Laplacian spectrum of $G_1 \cup \ldots \cup G_k$ is the union of Laplacian spectra of G_1, \ldots, G_k , while the Laplacian spectra of the complement of *n*- vertex graph *G* consists of values $n - \mu_i$, for each Laplacian eigenvalue μ_i of *G*, except for a single instance of eigenvalue 0 of *G*.

Theorem 1 ([9]) Let G_1 and G_2 be graphs on n_1 and n_2 vertices, respectively. Let L_1 and L_2 be the Laplacian matrices for G_1 and G_2 , respectively, and let L be the Laplacian matrix for $G_1 \nabla G_2$. If $0 = \alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_{n_1}$ and $0 = \beta_1 \leq \beta_2 \leq \ldots \leq \beta_{n_2}$ are the eigenvalues of L_1 and L_2 , respectively. Then the eigenvalues of L are

> 0, $n_2 + \alpha_2$, $n_2 + \alpha_3$, ..., $n_2 + \alpha_{n_1}$ $n_1 + \beta_2$, $n_1 + \beta_3$, ..., $n_1 + \beta_{n_2}$, $n_1 + n_2$.

-619-

The following result is due to Butler([1], Theorem 12).

Theorem 2 Let $G_1 = (V_1, E_1)$ be an r- regular graph on n vertices and $G_2 = (V_2, E_2)$ be an s- regular graph on m vertices. Suppose

$$0 = \lambda_1 \le \ldots \le \lambda_n \le 2$$

are the \mathcal{L} - eigenvalues of G_1 and

$$0 = \mu_1 \le \ldots \le \mu_m \le 2$$

are the \mathcal{L} - eigenvalues of G_2 . Then the \mathcal{L} -eigenvalues of $G_1 \nabla G_2$ are

 $0, \frac{m+r\lambda_2}{m+r}, \dots, \frac{m+r\lambda_n}{m+r}, \frac{n+s\mu_2}{n+s}, \dots, \frac{n+s\mu_m}{n+s}, \frac{m}{m+r} + \frac{n}{n+s}.$

3 Constructing new L-borderenergetic graphs

Recall that the Laplacian energy $E_L(G)$ of G is defined to be $\sum_{i=1}^{n} |\mu_i - \overline{d}|$, where $0 = \mu_1 \leq \mu_2 \leq \ldots \leq \mu_n$ are the Laplacian eigenvalues of G and \overline{d} is the average degree of G. It is known that the complete graph K_n has Laplacian energy 2(n-1). We exhibit two infinite classes which are L-noncospectral and L-borderenergetic graphs.

3.1 The class $K_{n-1} \odot K_n$

For each integer $n \ge 3$, we define the graph G in $K_{n-1} \odot K_n$ to be the following join

$$G = (K_{n-1} \cup K_{n-2})\nabla K_1$$

of order 2n - 2. Let μ^m denote the laplacian eigenvalue μ with multiplicity equals to m. The Figure 1 shows the graph $K_4 \odot K_5$.

Lemma 1 Let $G = K_{n-1} \odot K_n$ be a graph of order 2n - 2. Then the Laplacian spectrum of G is given by

0; 1;
$$(n-1)^{n-3}$$
; n^{n-2} ; $2n-2$.

Proof: Let G be a graph in $K_{n-1} \odot K_n$. Since that K_{n-1} and K_{n-2} have Laplacian spectrum equal to $\{(n-1)^{n-2}, 0\}$ and $\{(n-2)^{n-3}, 0\}$, respectively. Taking $G_1 = K_{n-1} \cup K_{n-2}$ and $G_2 = K_1$, according by Theorem 1, follows that the Laplacian spectrum of G is equal to

0; 1;
$$(n-1)^{n-3}$$
; n^{n-2} ; $2n-2$.

Theorem 3 For each $n \ge 3$, $G = K_{n-1} \odot K_{n-2}$ is L-borderenergetic and L-noncospectral graph with K_{2n-2} .

Proof: Clearly *G* and K_{2n-2} are *L*-noncospectral. Let \overline{d} be the average degree of *G*. Since that \overline{d} is equal to average of Laplacian eigenvalues of *G* then $\overline{d} = \frac{2n-2+n(n-2)+(n-1)(n-3)+1}{2n-2} = n-1$. Using Lemma 1, $E_L(G) = |2n-2-(n-1)| + (n-2)|n-(n-1)| + (n-3)|(n-1)-(n-1)| + |1-(n-1)| + |0-(n-1)| = 4n-6 = E_L(K_{2n-2}).$

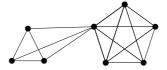


Figure 1. Graph $K_4 \odot K_5$

3.2 Another Construction

For each integer $n \geq 3$, we define the graph G of order 2n, obtained from two copies of the complete graph by adding n edges between one vertex of a copy of K_n and n vertices of the other copy.

Remark: This construction was first introduced by Stevanović in [17], where it is studied other spectral properties of this graph, as Laplacian energy. Let's denote this class by $K_n \cdot K_n$. The Figure 2 shows the graph $K_3 \cdot K_3$.

Lemma 2 Let $G = K_n \cdot K_n$ be a graph of order 2n. Then the Laplacian spectrum of G is given by

0; 1;
$$n^{n-2}$$
; $(n+1)^{n-1}$; $2n$.

Proof: Let $G = K_n \cdot K_n$ be a graph of order 2*n*. Since that G can be viewed as the join $(K_n \cup K_{n-1})\nabla K_1$, the proof is similar to Lemma 1.

Theorem 4 For each $n \ge 3$, $G = K_n \cdot K_n$ is L-borderenergetic and L-noncospectral graph with K_{2n} .

Proof: Clearly $G = K_n \cdot K_n$ and K_{2n} are *L*-noncospectral. Let \overline{d} be the average degree of *G*. Since that $\overline{d} = n$ then $E_L(G) = |2n - n| + (n - 1)|n + 1 - n| + (n - 2)|n - n| + |1 - n| + |0 - n| = 4n - 2 = E_L(K_{2n}).$

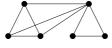


Figure 2. Graph $K_3 \cdot K_3$

4 Graphs with same normalized Laplacian energy

In this section we present graphs which have the same normalized Laplacian energy $E_{\mathcal{L}}(G)$. Let K_n be the complete graph on n vertices. For positive integer $b \geq 2$ we define the following classes of graphs:

- The class of graphs $2K_2\nabla K_b$.
- The class of graphs $2K_2\nabla bK_1$.

We let λ_i^m denote the *m*- multiplicity of normalized laplacian eigenvalue λ_i .

Lemma 3 Let be an integer positive $b \ge 2$ and $G = 2K_2 \nabla K_b$ a graph of order n = b + 4. Then

$$0, \frac{b}{b+1}, \left(\frac{b+2}{b+1}\right)^2, \left(\frac{b+4}{b+3}\right)^{b-1}, \frac{b}{b+1} + \frac{4}{b+3}.$$

are the \mathcal{L} - eigenvalues of G.

Proof: Let $G_1 = 2K_2$ and $G_2 = K_b$ be the graphs of order n = 4 and m = b, respectively. Since that G_1 is an 1-regular graph and G_2 is an (b - 1)-regular graph, and the \mathcal{L} eigenvalues of G_1 and G_2 are given by $\{0^2, 2^2\}$ and $\{0, (\frac{b}{b-1})^{b-1}\}$, respectively. Taking r = 1 and s = b - 1, then the result follows by Theorem (2).

Lemma 4 Let be an integer positive $b \ge 2$ and $G' = 2K_2 \nabla bK_1$ a graph of order n = b+4. Then

$$0, \frac{b}{b+1}, \left(\frac{b+2}{b+1}\right)^2, (1)^{b-1}, \frac{b}{b+1} + 1.$$

are the \mathcal{L} - eigenvalues of G'.

Proof: Similar to Lemma 3.

Theorem 5 Let be an integer positive $b \ge 2$, $G = 2K_2\nabla K_b$ and $G' = 2K_2\nabla bK_1$ graphs of order n = b + 4. Then G and G' are \mathcal{L} -noncospectral and have the same normalized Laplacian energy. Furthermore

$$E_{\mathcal{L}}(G) = E_{\mathcal{L}}(G') = \frac{2b+4}{b+1}.$$

-622-

Proof: Let $G = 2K_2 \nabla K_b$ and $G' = 2K_2 \nabla b K_1$ be graphs of order n = b + 4. Clearly G and G' are \mathcal{L} -noncospectral. Using that $E_{\mathcal{L}}(G) = \sum_{i=1}^{n} |\lambda_i - 1|$ and Lemma 3, follows

$$E_{\mathcal{L}}(G) = |0-1| + \left|\frac{b}{b+1} - 1\right| + 2\left|\frac{b+2}{b+1} - 1\right| + (b-1)\left|\frac{b+4}{b+3} - 1\right| + \left|\frac{b}{b+1} + \frac{4}{b+3} - 1\right|$$
$$E_{\mathcal{L}}(G) = \frac{2b^2 + 10b + 12}{(b+1)(b+3)} = \frac{2(b+2)(b+3)}{(b+1)(b+3)} = \frac{2b+4}{b+1}.$$

If $G' = 2K_2 \nabla b K_1$, by Lemma (4), we have that

$$E_{\mathcal{L}}(G') = |0-1| + \left|\frac{b}{b+1} - 1\right| + 2\left|\frac{b+2}{b+1} - 1\right| + (b-1)|1-1| + \left|\frac{b}{b+1} + 1 - 1\right|$$
$$E_{\mathcal{L}}(G') = 1 + \frac{3}{b+1} + \frac{b}{b+1} = \frac{2b+4}{b+1},$$

and then the result follows.

Now we present the general case. Let K_n be the complete graph on n vertices. For positive integers $a, b \ge 2$ we define the following classes of graphs:

- The class of graphs $aK_2\nabla K_b$.
- The class of graphs $aK_2\nabla bK_1$.

Lemma 5 Let be the integers positive $a, b \ge 2$ and $G = aK_2\nabla K_b$ a graph of order n = 2a + b. Then

$$0, \left(\frac{b}{b+1}\right)^{a-1}, \left(\frac{b+2}{b+1}\right)^{a}, \left(\frac{2a+b}{2a+b-1}\right)^{b-1}, \frac{b}{b+1} + \frac{2a}{2a+b-1}$$

are the \mathcal{L} - eigenvalues of G.

Lemma 6 Let be the integers positive $a, b \ge 2$ and $G' = aK_2\nabla bK_1$ a graph of order n = 2a + b. Then

$$0, \left(\frac{b}{b+1}\right)^{a-1}, \left(\frac{b+2}{b+1}\right)^a, (1)^{b-1}, \frac{b}{b+1} + 1.$$

are the \mathcal{L} - eigenvalues of G'.

1

Theorem 6 Let be the integers positive $a, b \geq 2$, $G = aK_2\nabla K_b$ and $G' = aK_2\nabla bK_1$ graphs of order n = 2a + b. Then G and G' are \mathcal{L} -noncospectral and have the same normalized laplacian energy. Furthermore

$$E_{\mathcal{L}}(G) = E_{\mathcal{L}}(G') = \frac{2a+2b}{b+1}$$

-623-

Proof: Let $G = aK_2\nabla K_b$ and $G' = aK_2\nabla bK_1$ be graphs of order n = 2a + b. Clearly G and G' are \mathcal{L} -noncospectral. Using that $E_{\mathcal{L}}(G) = \sum_{i=1}^{n} |\lambda_i - 1|$ and Lemma 5, follows

$$E_{\mathcal{L}}(G) = |0-1| + (a-1) \left| \frac{b}{b+1} - 1 \right| + a \left| \frac{b+2}{b+1} - 1 \right| + (b-1) \left| \frac{2a+b}{2a+b-1} - 1 \right| \\ + \left| \frac{b}{b+1} + \frac{2a}{2a+b-1} - 1 \right| \\ \frac{4a^2 + 6ab + 2b^2 - 2a - 2b}{2a+2b} = (2a+2b)(2a+b-1) - 2a+2b$$

 $E_{\mathcal{L}}(G) = \frac{4a^2 + 6ab + 2b^2 - 2a - 2b}{(b+1)(2a+b-1)} = \frac{(2a+2b)(2a+b-1)}{(b+1)(2a+b-1)} = \frac{2a+2b}{b+1}.$

If $G' = aK_2 \nabla bK_1$, by Lemma (6), we have that

$$E_{\mathcal{L}}(G') = |0-1| + (a-1)\left|\frac{b}{b+1} - 1\right| + a\left|\frac{b+2}{b+1} - 1\right| + (b-1)|1-1| + \left|\frac{b}{b+1} + 1 - 1\right|$$
$$E_{\mathcal{L}}(G') = 1 + \frac{2a-1}{b+1} + \frac{b}{b+1} = \frac{2a+2b}{b+1},$$

and then the result follows.

References

- S. Butler, *Eigenvalues and Structures of Graphs*, PhD dissertation, Univ. California, San Diego, 2008.
- [2] B. Deng, X. Li, I. Gutman, More on borderenergetic graphs, *Lin. Algebra Appl.* 497 (2016) 199–208.
- [3] B. Deng, X. Li, More on L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 115–127.
- [4] C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
- [5] S. Gong, X. Li, G. Xu, I. Gutman, B. Furtula, Borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 74 (2015) 321–332.
- [6] I. Gutman, B. Zhou, Laplacian energy graph of a graph, *Lin. Algebra Appl.* 414 (2006) 29–37.
- [7] Y. Hou, Q. Tao, Borderenergetic threshold graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 253–262.
- [8] D. P. Jacobs, V. Trevisan, F. Tura, Eigenvalues and energy in threshold graphs, *Lin. Algebra Appl.* 465 (2015) 412–425.
- [9] R. Merris, Laplacian graph eigenvectors, Lin. Algebra Appl. 278 (1998) 221–236.

- [10] X. Li, Y. Shi, I. Gutman, *Graph Energy*, Springer, New York, 2012.
- [11] X. Li, M. Wei, S. Gong, A computer search for the borderenergetic graphs of order 10, MATCH Commun. Math. Comput. Chem. 74 (2015) 333–342.
- [12] X. Li, H. Ma, All hypoenergetic graphs with maximum degree at most 3, *Lin. Algebra Appl.* **431** (2009) 2127–2133.
- [13] X. Li, H. Ma, All connected graphs with maximum degree at most 3 whose energies are equal to the number of vertices, MATCH Commun. Math. Comput. Chem. 64 (2010) 7–24.
- [14] X. Li, H. Ma, Hypoenergetic and strongly hypoenergetic k-cyclic graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 41–60.
- [15] H. S. Ramane, H. B. Walikar, Construction of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 203–210.
- [16] Z. Shao, F. Deng, Correcting the number of borderenergetic graphs of order 10, MATCH Commun. Math. Comput. Chem. 75 (2016) 263–266.
- [17] D. Stevanović, I. Stanković, M. Milosević, More on the relation between energy and Laplacian energy of graphs, *MATCH Commun. Math. Comput. Chem.* **61** (2009) 395–401.
- [18] F. Tura, L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 37–44.