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Abstract

The Laplacian and normalized Laplacian energy of G are given by expressions
EL(G) =

∑n
i=1 |µi − d|, EL(G) =

∑n
i=1 |λi − 1|, respectively, where µi and λi are

the eigenvalues of Laplacian matrix L and normalized Laplacian matrix L of G. An
interesting problem in spectral graph theory is to find graphs {L,L}−noncospectral
with the same E{L,L}(G). In this paper, we present graphs of order n, which are
L-borderenergetic (in short, EL(G) = 2n− 2) and graphs L-noncospectral with the
same normalized Laplacian energy.

1 Introduction

Throughout this paper, all graphs are assumed to be finite, undirected and without loops

or multiple edges. If G is a graph of order n and M is a real symmetric matrix associated

with G, then the M - energy of G is

EM(G) =
n∑

i=1

∣∣∣∣λi(M)− tr(M)

n

∣∣∣∣ . (1)

The energy E(G) of a graph G simply refers to using the adjacency matrix in (1). There

are many results on energy and its applications in several areas, including in chemistral

see [10] for more details and the references [2, 11–14,16].

Recently, a new concept as borderenergetic graphs [5] was proposed, namely graphs

of order n satisfying E(G) = 2n − 2. In this way, several authors have been presented

families of borderenergetic graphs [2, 7, 8, 11,16].

An analogous concept as borderenergetic graphs, called L-borderenergetic graphs was

proposed in [18]. That is, a graph G of order n is L-borderenergetic if EL(G) = 2n − 2,
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where EL(G) =
∑n

i=1 |µi − d|, and d is the avarage degree of G. Some classes of L-

borderenergetic of order n = 4r + 4 (r ≥ 1) are obtained in [18]. In [3], a kind of

threshold graphs were found to be L-borderenergetic, and all the connected non-complete

and pairwise non-isomorphic L-borderenergetic graphs of small order n depicted for n

with 4 ≤ n ≤ 9.

Since that finding noncospectral graphs with the same energy is an interesting problem

in spectral graph theory, in this paper we continue this investigation presenting some new

graphs which are L- borderenergetic and finish it showing two classes of graphs that are

L-noncospectral with the same normalized Laplacian energy.

The paper is organized as follows. In Section 2 we describe some known results about

the Laplacian and normalized Laplacain spectrum of graphs. In Section 3 we present two

classes of L-borderenergetic graphs. We finalize this paper, showing graphs with the same

normalized Laplacian energy.

2 Premilinares

Let G1 = (V1, E1) and G2 = (V2, E2) be undirected graphs without loops or multiple

edges. The union G1 ∪ G2 of graphs G1 and G2 is the graph G = (V,E) for which

V = V1 ∪ V2 and E = E1 ∪ E2. We denote the graph G ∪G ∪ . . . ∪G︸ ︷︷ ︸
m

by mG. The join

G1∇G2 of graphs G1 and G2 is the graph obtained from G1 ∪G2 by joining every vertex

of G1 with every vertex of G2.

The Laplacian spectrum of G1∪. . .∪Gk is the union of Laplacian spectra of G1, . . . , Gk,

while the Laplacian spectra of the complement of n- vertex graph G consists of values

n− µi, for each Laplacian eigenvalue µi of G, except for a single instance of eigenvalue 0

of G.

Theorem 1 ( [9]) Let G1 and G2 be graphs on n1 and n2 vertices, respectively. Let L1

and L2 be the Laplacian matrices for G1 and G2, respectively, and let L be the Laplacian

matrix for G1∇G2. If 0 = α1 ≤ α2 ≤ . . . ≤ αn1 and 0 = β1 ≤ β2 ≤ . . . ≤ βn2 are the

eigenvalues of L1 and L2, respectively. Then the eigenvalues of L are

0, n2 + α2, n2 + α3, . . . , n2 + αn1

n1 + β2, n1 + β3, . . . , n1 + βn2 , n1 + n2.
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The following result is due to Butler( [1], Theorem 12).

Theorem 2 Let G1 = (V1, E1) be an r- regular graph on n vertices and G2 = (V2, E2) be

an s- regular graph on m vertices. Suppose

0 = λ1 ≤ . . . ≤ λn ≤ 2

are the L- eigenvalues of G1 and

0 = µ1 ≤ . . . ≤ µm ≤ 2

are the L- eigenvalues of G2. Then the L-eigenvalues of G1∇G2 are

0,
m+ rλ2

m+ r
, . . . ,

m+ rλn

m+ r
,
n+ sµ2

n+ s
, . . . ,

n+ sµm

n+ s
,

m

m+ r
+

n

n+ s
.

3 Constructing new L-borderenergetic graphs

Recall that the Laplacian energy EL(G) of G is defined to be
∑n

i=1 |µi − d|, where 0 =

µ1 ≤ µ2 ≤ . . . ≤ µn are the Laplacian eigenvalues of G and d is the average degree of G.

It is known that the complete graph Kn has Laplacian energy 2(n − 1). We exhibit two

infinite classes which are L-noncospectral and L-borderenergetic graphs.

3.1 The class Kn−1 � Kn

For each integer n ≥ 3, we define the graph G in Kn−1 �Kn to be the following join

G = (Kn−1 ∪Kn−2)∇K1

of order 2n− 2. Let µm denote the laplacian eigenvalue µ with multiplicity equals to m.

The Figure 1 shows the graph K4 �K5.

Lemma 1 Let G = Kn−1 �Kn be a graph of order 2n− 2. Then the Laplacian spectrum

of G is given by

0; 1; (n− 1)n−3; nn−2; 2n− 2.

Proof: Let G be a graph in Kn−1 � Kn. Since that Kn−1 and Kn−2 have Laplacian

spectrum equal to {(n− 1)n−2, 0} and {(n− 2)n−3, 0}, respectively. Taking G1 = Kn−1 ∪

Kn−2 and G2 = K1, according by Theorem 1, follows that the Laplacian spectrum of G

is equal to

0; 1; (n− 1)n−3; nn−2; 2n− 2.

-619-



Theorem 3 For each n ≥ 3, G = Kn−1�Kn−2 is L-borderenergetic and L-noncospectral

graph with K2n−2.

Proof: Clearly G and K2n−2 are L-noncospectral. Let d be the average degree of G. Since

that d is equal to average of Laplacian eigenvalues ofG then d = 2n−2+n(n−2)+(n−1)(n−3)+1
2n−2

=

n− 1. Using Lemma 1, EL(G) = |2n− 2− (n− 1)|+ (n− 2)|n− (n− 1)|+ (n− 3)|(n−

1)− (n− 1)|+ |1− (n− 1)|+ |0− (n− 1)| = 4n− 6 = EL(K2n−2).

Figure 1. Graph K4 �K5

3.2 Another Construction

For each integer n ≥ 3, we define the graph G of order 2n, obtained from two copies of

the complete graph by adding n edges between one vertex of a copy of Kn and n vertices

of the other copy.

Remark: This construction was first introduced by Stevanović in [17], where it is studied

other spectral properties of this graph, as Laplacian energy. Let’s denote this class by

Kn ·Kn. The Figure 2 shows the graph K3 ·K3.

Lemma 2 Let G = Kn ·Kn be a graph of order 2n. Then the Laplacian spectrum of G is

given by

0; 1; nn−2; (n+ 1)n−1; 2n.

Proof: Let G = Kn ·Kn be a graph of order 2n. Since that G can be viewed as the join

(Kn ∪Kn−1)∇K1, the proof is similar to Lemma 1.

Theorem 4 For each n ≥ 3, G = Kn ·Kn is L-borderenergetic and L-noncospectral graph

with K2n.

Proof: Clearly G = Kn ·Kn and K2n are L-noncospectral. Let d be the average degree

of G. Since that d = n then EL(G) = |2n− n|+ (n− 1)|n+1− n|+ (n− 2)|n− n|+ |1−

n|+ |0− n| = 4n− 2 = EL(K2n).
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Figure 2. Graph K3 ·K3

4 Graphs with same normalized Laplacian energy

In this section we present graphs which have the same normalized Laplacian energy EL(G).

Let Kn be the complete graph on n vertices. For positive integer b ≥ 2 we define the

following classes of graphs:

• The class of graphs 2K2∇Kb.

• The class of graphs 2K2∇bK1.

We let λm
i denote the m- multiplicity of normalized laplacian eigenvalue λi.

Lemma 3 Let be an integer positive b ≥ 2 and G = 2K2∇Kb a graph of order n = b+4.

Then

0,
b

b+ 1
,

(
b+ 2

b+ 1

)2

,

(
b+ 4

b+ 3

)b−1

,
b

b+ 1
+

4

b+ 3
.

are the L- eigenvalues of G.

Proof: Let G1 = 2K2 and G2 = Kb be the graphs of order n = 4 and m = b, respectively.

Since that G1 is an 1-regular graph and G2 is an (b − 1)-regular graph, and the L-

eigenvalues of G1 and G2 are given by {02, 22} and {0, ( b
b−1

)b−1}, respectively. Taking

r = 1 and s = b− 1, then the result follows by Theorem (2).

Lemma 4 Let be an integer positive b ≥ 2 and G′ = 2K2∇bK1 a graph of order n = b+4.

Then

0,
b

b+ 1
,

(
b+ 2

b+ 1

)2

, (1)b−1,
b

b+ 1
+ 1.

are the L- eigenvalues of G′.

Proof: Similar to Lemma 3.

Theorem 5 Let be an integer positive b ≥ 2, G = 2K2∇Kb and G′ = 2K2∇bK1 graphs

of order n = b + 4. Then G and G′ are L-noncospectral and have the same normalized

Laplacian energy. Furthermore

EL(G) = EL(G
′) =

2b+ 4

b+ 1
.
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Proof: Let G = 2K2∇Kb and G′ = 2K2∇bK1 be graphs of order n = b + 4. Clearly G

and G′ are L-noncospectral. Using that EL(G) =
∑n

i=1 |λi − 1| and Lemma 3, follows

EL(G) = |0− 1|+
∣∣∣∣ b

b+ 1
− 1

∣∣∣∣+ 2

∣∣∣∣b+ 2

b+ 1
− 1

∣∣∣∣+ (b− 1)

∣∣∣∣b+ 4

b+ 3
− 1

∣∣∣∣+ ∣∣∣∣ b

b+ 1
+

4

b+ 3
− 1

∣∣∣∣
EL(G) =

2b2 + 10b+ 12

(b+ 1)(b+ 3)
=

2(b+ 2)(b+ 3)

(b+ 1)(b+ 3)
=

2b+ 4

b+ 1
.

If G′ = 2K2∇bK1, by Lemma (4), we have that

EL(G
′) = |0− 1|+

∣∣∣∣ b

b+ 1
− 1

∣∣∣∣+ 2

∣∣∣∣b+ 2

b+ 1
− 1

∣∣∣∣+ (b− 1)|1− 1|+
∣∣∣∣ b

b+ 1
+ 1− 1

∣∣∣∣
EL(G

′) = 1 +
3

b+ 1
+

b

b+ 1
=

2b+ 4

b+ 1
,

and then the result follows.

Now we present the general case. Let Kn be the complete graph on n vertices. For

positive integers a, b ≥ 2 we define the following classes of graphs:

• The class of graphs aK2∇Kb.

• The class of graphs aK2∇bK1.

Lemma 5 Let be the integers positive a, b ≥ 2 and G = aK2∇Kb a graph of order

n = 2a+ b. Then

0,

(
b

b+ 1

)a−1

,

(
b+ 2

b+ 1

)a

,

(
2a+ b

2a+ b− 1

)b−1

,
b

b+ 1
+

2a

2a+ b− 1
.

are the L- eigenvalues of G.

Lemma 6 Let be the integers positive a, b ≥ 2 and G′ = aK2∇bK1 a graph of order

n = 2a+ b. Then

0,

(
b

b+ 1

)a−1

,

(
b+ 2

b+ 1

)a

, (1)b−1,
b

b+ 1
+ 1.

are the L- eigenvalues of G′.

Theorem 6 Let be the integers positive a, b ≥ 2, G = aK2∇Kb and G′ = aK2∇bK1

graphs of order n = 2a + b. Then G and G′ are L-noncospectral and have the same

normalized laplacian energy. Furthermore

EL(G) = EL(G
′) =

2a+ 2b

b+ 1
.
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Proof: Let G = aK2∇Kb and G′ = aK2∇bK1 be graphs of order n = 2a + b. Clearly G

and G′ are L-noncospectral. Using that EL(G) =
∑n

i=1 |λi − 1| and Lemma 5, follows

EL(G) = |0− 1|+ (a− 1)

∣∣∣∣ b

b+ 1
− 1

∣∣∣∣+ a

∣∣∣∣b+ 2

b+ 1
− 1

∣∣∣∣+ (b− 1)

∣∣∣∣ 2a+ b

2a+ b− 1
− 1

∣∣∣∣
+

∣∣∣∣ b

b+ 1
+

2a

2a+ b− 1
− 1

∣∣∣∣
EL(G) =

4a2 + 6ab+ 2b2 − 2a− 2b

(b+ 1)(2a+ b− 1)
=

(2a+ 2b)(2a+ b− 1)

(b+ 1)(2a+ b− 1)
=

2a+ 2b

b+ 1
.

If G′ = aK2∇bK1, by Lemma (6), we have that

EL(G
′) = |0− 1|+ (a− 1)

∣∣∣∣ b

b+ 1
− 1

∣∣∣∣+ a

∣∣∣∣b+ 2

b+ 1
− 1

∣∣∣∣+ (b− 1)|1− 1|+
∣∣∣∣ b

b+ 1
+ 1− 1

∣∣∣∣
EL(G

′) = 1 +
2a− 1

b+ 1
+

b

b+ 1
=

2a+ 2b

b+ 1
,

and then the result follows.
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