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Abstract

The Laplacian and normalized Laplacian energy of G are given by expressions
Er(G) = 30 |wi — d|, Ec(G) = -7, |\ — 1], respectively, where y; and A; are
the eigenvalues of Laplacian matrix L and normalized Laplacian matrix £ of G. An
interesting problem in spectral graph theory is to find graphs {L, £L}—noncospectral
with the same Eyy £}(G). In this paper, we present graphs of order n, which are
L-borderenergetic (in short, Er(G) = 2n — 2) and graphs £-noncospectral with the
same normalized Laplacian energy.

1 Introduction

Throughout this paper, all graphs are assumed to be finite, undirected and without loops
or multiple edges. If G is a graph of order n and M is a real symmetric matrix associated

with G, then the M- energy of G is

n

EJ/[(G) = Z

i=1

Ni(M) — W

(1)

tr(M) ‘ .

The energy E(G) of a graph G simply refers to using the adjacency matrix in (1). There
are many results on energy and its applications in several areas, including in chemistral
see [10] for more details and the references [2,11-14,16].

Recently, a new concept as borderenergetic graphs [5] was proposed, namely graphs
of order n satisfying F(G) = 2n — 2. In this way, several authors have been presented
families of borderenergetic graphs [2,7,8,11,16].

An analogous concept as borderenergetic graphs, called L-borderenergetic graphs was

proposed in [18]. That is, a graph G of order n is L-borderenergetic if E;(G) = 2n — 2,
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where Er(G) = Y |pi — d|, and d is the avarage degree of G. Some classes of L-
borderenergetic of order n = 4r + 4 (r > 1) are obtained in [18]. In [3], a kind of
threshold graphs were found to be L-borderenergetic, and all the connected non-complete
and pairwise non-isomorphic L-borderenergetic graphs of small order n depicted for n
with 4 <n <9.

Since that finding noncospectral graphs with the same energy is an interesting problem
in spectral graph theory, in this paper we continue this investigation presenting some new
graphs which are L- borderenergetic and finish it showing two classes of graphs that are
L-noncospectral with the same normalized Laplacian energy.

The paper is organized as follows. In Section 2 we describe some known results about
the Laplacian and normalized Laplacain spectrum of graphs. In Section 3 we present two
classes of L-borderenergetic graphs. We finalize this paper, showing graphs with the same

normalized Laplacian energy.

2 Premilinares

Let G; = (Vi, Ey) and Gy = (V3, E;) be undirected graphs without loops or multiple
edges. The union G; U Gy of graphs G; and G is the graph G = (V| E) for which
V =ViUV; and E = E; U E;. We denote the graph GUG U...UG by mG. The join
G1VG; of graphs Gy and G5 is the graph obtained from Gy UmG2 by joining every vertex
of G with every vertex of Gs.

The Laplacian spectrum of G U. . .UGYy, is the union of Laplacian spectra of Gy, . . ., G,
while the Laplacian spectra of the complement of n- vertex graph G consists of values
n — p;, for each Laplacian eigenvalue p; of G, except for a single instance of eigenvalue 0

of G.

Theorem 1 ( [9]) Let Gy and Go be graphs on ny and ny vertices, respectively. Let L,
and Lo be the Laplacian matrices for Gv and G, respectively, and let L be the Laplacian
matriz for GiVGy. If 0 = a1 < ay < ... <oy, and 0 = B < By < ... < By, are the
eigenvalues of Ly and Loy, respectively. Then the eigenvalues of L are

0, no+a, nat+as,..., ng+ay

ny+ Ba, n1+ B3, 1+ Bry, Mo+ g
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The following result is due to Butler( [1], Theorem 12).

Theorem 2 Let Gy = (Vi, Ey) be an r- regular graph on n vertices and G = (Va, Es) be

an s- regular graph on m vertices. Suppose

OZAISS)\nSQ

are the L- eigenvalues of Gy and

are the L- eigenvalues of Gy. Then the L-eigenvalues of G{V Gy are

0 m + T’)\Z m + TAn n -+ Sllo n+ Sltm m n

’ [ ’ yr

m+r m+r  n+s n+s m+r n+s

3 Constructing new L-borderenergetic graphs

Recall that the Laplacian energy Er(G) of G is defined to be >, |u; — d|, where 0 =
g < pa < ... < pin are the Laplacian eigenvalues of G and d is the average degree of G.
It is known that the complete graph K, has Laplacian energy 2(n — 1). We exhibit two

infinite classes which are L-noncospectral and L-borderenergetic graphs.

3.1 The class K,,_1 ® K,

For each integer n > 3, we define the graph G in K,,_; ® K, to be the following join
G=(K,-1 UK, 2)VK;

of order 2n — 2. Let u™ denote the laplacian eigenvalue p with multiplicity equals to m.

The Figure 1 shows the graph Ky ® Kj.

Lemma 1 Let G = K, 1 ® K,, be a graph of order 2n — 2. Then the Laplacian spectrum
of G is given by
0; 1; (n—1)""% n"% 2n—2.

Proof: Let G be a graph in K, 1 ® K,. Since that K, ; and K,_, have Laplacian
spectrum equal to {(n — 1)"72,0} and {(n — 2)"3, 0}, respectively. Taking G1 = K,,_; U
K2 and G = K, according by Theorem 1, follows that the Laplacian spectrum of G
is equal to

0; 1; (n—1)""% n"2% 2n—2.
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Theorem 3 For eachn > 3, G = K,,_1 ® K,,_5 is L-borderenergetic and L-noncospectral

graph with Ko, .

Proof: Clearly G and K5,_, are L-noncospectral. Let d be the average degree of G. Since

2n—2+n(n—2)+(n—1)(n—3)+1 __

that d is equal to average of Laplacian eigenvalues of G then d = ST

n—1. Using Lemma 1, E,(G) =2n—2—(n—=1)|+ (n—2)|n— (n— 1)| + (n = 3)|(n —
==+ [1=(n-1)]+[0—(n—1)|=4n—6 = EL(Kap—2).

Figure 1. Graph K4 © K5

3.2 Another Construction

For each integer n > 3, we define the graph G of order 2n, obtained from two copies of
the complete graph by adding n edges between one vertex of a copy of K, and n vertices
of the other copy.

Remark: This construction was first introduced by Stevanovié¢ in [17], where it is studied
other spectral properties of this graph, as Laplacian energy. Let’s denote this class by

K, - K,,. The Figure 2 shows the graph K3 - K3.

Lemma 2 Let G = K, - K,, be a graph of order 2n. Then the Laplacian spectrum of G is
given by
0; 1; n"72% (n+1)""; 2n.

Proof: Let G = K, - K,, be a graph of order 2n. Since that G can be viewed as the join
(K, UK,_1)VKj, the proof is similar to Lemma 1.

Theorem 4 For eachn > 3, G = K,,- K,, is L-borderenergetic and L-noncospectral graph
with Kgn.

Proof: Clearly G = K,, - K, and Ky, are L-noncospectral. Let d be the average degree
of G. Since that d = n then E;(G) = [2n —n|+ (n—1)|n+1—n|+ (n—2)|n —n|+|1 -
n|+10—n|=4n—2= E (Ks,).
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Figure 2. Graph K3 - K3
4 Graphs with same normalized Laplacian energy

In this section we present graphs which have the same normalized Laplacian energy E.(G).
Let K, be the complete graph on n vertices. For positive integer b > 2 we define the

following classes of graphs:

e The class of graphs 2K,V K},
e The class of graphs 2K, VbK].

We let A" denote the m- multiplicity of normalized laplacian eigenvalue ;.

Lemma 3 Let be an integer positive b > 2 and G = 2K,V K, a graph of order n = b+ 4.

Then
0 b b+2\? /b+4\" b L
"b4+1"\b+1) "\b+3 "b+1 b+3

are the L- eigenvalues of G.

Proof: Let G; = 2K, and G5 = K, be the graphs of order n = 4 and m = b, respectively.
Since that G; is an 1-regular graph and Gs is an (b — 1)-regular graph, and the L-
eigenvalues of Gy and Gy are given by {02,22} and {0, (%)l’*l}7 respectively. Taking
r=1and s =b— 1, then the result follows by Theorem (2).

Lemma 4 Let be an integer positive b > 2 and G' = 2K,VbK, a graph of order n = b+4.

Then 5
b b+2 b1 D
| — 1 ,—— + 1.
'b+1’(b+1) (1) 'bJrljL

are the L- eigenvalues of G'.
Proof: Similar to Lemma 3.

Theorem 5 Let be an integer positive b > 2, G = 2K,V Ky and G' = 2K,VbK, graphs
of order n = b+ 4. Then G and G' are L-noncospectral and have the same normalized

Laplacian energy. Furthermore

2b+4
b+1

E:(G)=E(G) =
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Proof: Let G = 2K,VK, and G' = 2K,VbK; be graphs of order n = b+ 4. Clearly G
and G’ are L-noncospectral. Using that Ez(G) =Y | |\ — 1| and Lemma 3, follows

b+2 b+4 b 4
Eg(G):\oflw‘ . - ‘ ‘ ]

'+2‘—f1‘ +(b-1) ’771 Fl——t 1

b+1 b+1 b+3

20° +10b4+12  2(b+2)(b+3)  2b+4
b+1)(B+3)  (G+1)(B+3)  b+1°
If G’ = 2K,VbK;, by Lemma (4), we have that

Ec(G) =

b2 b
Er(G)=0—1] + 1] +2 i—1 FO-DI= 1]+ |11
b+1
3 b 244
E(Gh=1 —
c(&) SRS R

and then the result follows.

Now we present the general case. Let K, be the complete graph on n vertices. For
positive integers a,b > 2 we define the following classes of graphs:

e The class of graphs a K, VK.

e The class of graphs a K, VK] .

Lemma 5 Let be the integers positive a,b > 2 and G = aK32VK, a graph of order
n=2a+b. Then

0 b\t /b+2\° 2a+b \"' b N 2a
"\b+1 "\b+1/) "\ 2a+b—-1 "b+1 2a+b-1"

are the L- eigenvalues of G.

Lemma 6 Let be the integers positive a,b > 2 and G' = aK,VUK, a graph of order

b\ b+2\" ., b
A — — 1t —— 4+ 1.
0’(b+1) ’(b+1) (1) ’b+1+

are the L- eigenvalues of G'.

n=2a+b. Then

Theorem 6 Let be the integers positive a,b > 2, G = aK3VK, and G' = aK3VbK,
graphs of order n = 2a +b. Then G and G’ are L-noncospectral and have the same

normalized laplacian energy. Furthermore

2a + 2b
b+1 "

E:(G)=E(G) =
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Proof: Let G = aK>2VK, and G' = aK5VbK; be graphs of order n = 2a + b. Clearly G
and G’ are L-noncospectral. Using that Ez(G) =Y, |\ — 1| and Lemma 5, follows

b+2
— =1+ (b-1
e A e ]
+L+270,
b+1 2a+0b-1

2a + b

E(G)=10-1+(a-1) ;= Crp—]

_1‘

4a® +6ab+20* —2a—2b (20 +20)(2a+b—1) 2a+2b
b+DQ2a+b—-1) — (b+D@2a+b-1)  b+1°
If G’ = aK3,VbK,, by Lemma (6), we have that

Ee(G) =

b+2 b
AN _ _ - _ = _ _ _ _
E(G)Y=10—1+(a 1)'b+1 1‘—&-(1 Y 1‘+(b |1 1\+‘b+1+1 1‘
2a — 1 2a + 2
Ee(@) = 1 a b 2a+2b

b+1 +b+1* b+1"

and then the result follows.
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