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Abstract

A point group for specifying chirality and an RS -permutation group for speci-
fying RS -stereogenicity are differentiated by means of mirror-coset representations.
They are integrated to generate an RS -stereoisomeric group, after the computer-
oriented representation of the RS -stereoisomeric group has been developed by start-
ing from mirror-coset representations. Thereby, the processes of combinatorial enu-
meration are computerized on the basis of the GAP system. The construction of an
RS -stereoisomeric group stems from an appropriate generators by using the Group

function of the GAP system. The calculation of the corresponding cycle index with
chirality fittingness (CI-CF) is based on the function CalcConjClassCICF developed
as a function of the GAP system. The calculation of the corresponding generat-
ing function and the evaluation of the coefficient of each term are conducted by
using newly-developed GAP functions. The source lists of practical procedures for
combinatorial enumeration of 3D structures are attached as appendices.
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1 Introduction

From the beginning of stereochemistry, chirality has been presumed to be a single kind of

handedness for supporting both van’t Hoff’s way [1,2] and Le Bel’s way [3,4], even though

the former depends on “asymmetry” [1, 2] (or later, stereogenicity [5]) and the latter

depends on “dissymmetry” [6] (or later, chirality [7]). In particular, even van’t Hoff’s way

(asymmetry, stereogenicity) has been linked to chirality as the single kind of handedness,

because modern stereochemistry has not recognized handedness other than chirality. This

misleadingly linkage without recognizing another kind of handedness has provided serious

confusion to the terminology of modern stereochemistry, e.g.. “pseudoasymmetry” as an

exception of “asymmetry” [8–10] and “chirality units” as a subcategory of “stereogenic

units” [11, 12]. Although there appeared several discussions on the serious confusion

[13–16] and several revisions of terminology [11, 12, 17], they have not yet recognized

handedness other than chirality, so that they have revealed their limitations because of

unconscious transmutation of terminology, as pointed out in my review [18].

To settle the confusion in the terminology of modern stereochemistry, the stereoiso-

gram approach has been proposed by the author (Fujita) [19–21]. One of the most impor-

tant conclusions of Fujita’s stereoisogram approach is that there are two kinds of hand-

edness, i.e., chirality and RS -stereogenicity, where the concept of RS -stereogenicity has

been proposed as a substantial restriction of “stereogenicity” in order to demonstrate the

net interaction between chirality and (unrestricted) stereogenicity. The two kinds of hand-

edness (chirality and RS -stereogenicity) are integrated to generate RS -stereoisomerism,

which is characterized by RS -stereoisomeric groups as algebraic expressions and by ste-

reoisograms as diagrammatic expressions. Thereby, the theoretical foundations of mod-

ern stereochemistry have been restructured to give a self-consistent framework [22–25].

Fujita’s stereoisogram approach has effectively remedied discontents of stereochemical

terminology [18].

A quadruplet of RS -stereoisomers contained in a stereoisogram is an equivalence

class under the action of an RS -stereoisomeric group. This means that inequivalent

quadruplets can be enumerated combinatorially under an RS -stereoisomeric group. After

unit subduced cycle indices with chirality fittingness (USCI-CFs) of Fujita’s USCI ap-

proach [26–28] have been extended to meet RS -stereoisomeric groups, symmetry-itemized

enumeration of quadruplets of RS -stereoisomers have been conducted to count tetrahedral
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derivatives [29,30], allene derivatives [31,32], and oxirane derivatives [33].

Type-itemized enumeration of quadruplets of RS -stereoisomers has been conducted

under the action of RS -stereoisomeric groups [34], where cycles indices of chirality fitting-

ness (CI-CFs) proposed originally in Fujita’s proligand method [35–38] have been extended

to meet the requirement of RS -stereoisomeric groups. More systematic methods for type-

itemized enumeration have been developed by proposing modulated CI-CFs [39–41].

From the computational viewpoint of enumeration practice, there are two phases to be

considered during the above-mentioned enumerations, i.e., calculation of USCI-CFs (for

Fujita’s USCI approach) or CI-CFs (for Fujita’s proligand method) and calculation of

generating functions. Although the latter phase has been effectively conducted by using

computer, the calculation of USCI-CFs or CI-CFs has not yet computerized especially

in the extended usage for RS -stereoisomeric groups. This is because there have been no

effective (computer-oriented) representations for differentiating between two subgroups of

RS -stereoisomeric groups, i.e., point groups and RS -permutation groups.

I have recently proposed the computer-oriented representations of point groups, where

GAP functions for calculating CI-CFs have been developed [42,43]. The next task is to de-

velop the computer-oriented representations of RS -stereoisomeric groups, which are capa-

ble of differentiating between point subgroups and RS -permutation subgroups. Thereby,

the calculation of CI-CFs as well as the calculation of generating functions will be com-

puterized in the extended usage for RS -stereoisomeric groups.

2 Combined Representations of RS -Stereoisomeric

Groups

2.1 RS -Stereoisomeric Groups and Stereoisograms

According to Fujita’s stereoisogram approach [19–21], chirality under point-group sym-

metry (the first kind of handedness) and RS -stereogenicity under RS -permutation-group

symmetry (the second kind of handedness) are integrated to give RS -stereoisomerism as

a new concept, where the two groups are combined with a ligand-reflection group as an

additional group, so as to develop an RS -stereoisomeric group. Such an RS -stereoisomeric

group is illustrated by a stereoisogram, which is developed as a diagrammatic expression

as shown by Figure 1.

The vertical direction of a stereoisogram (e.g., Figure 1) is concerned with chirali-
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Figure 1. Elementary stereoisogram of numbered tetrahedral skeletons. The other
modes of sequential numbering are permitted without losing generality.

ty/achirality under point-group symmetry (e.g., Td). A reflection (e.g., (1)(2 4)(3)) con-

verts a numbered skeleton (e.g., 1) into the corresponding mirror-numbered skeleton (e.g.,

1). The original numbered skeleton (e.g., 1) and the mirror-numbered skeleton (e.g., 1)

are enantiomeric to each other, where the reflection (e.g., (1)(2 4)(3)) is accompanied by

a ligand reflection, which is emphasized by attaching an overline.

The horizontal direction of a stereoisogram (e.g., Figure 1) is concerned with RS -

stereogenicity/RS -astereogenicity under RS -permutation-group symmetry (e.g., Tσ̃). An

RS -permutation (e.g., (1)(2 4)(3)) converts the numbered skeleton (e.g., 1) into the cor-

responding RS -numbered skeleton (e.g., 2). The original numbered skeleton (e.g., 1)

and the RS -numbered skeleton (e.g., 2) are RS -diastereomeric to each other, where the

RS -permutation (e.g., (1)(2 4)(3)) is not accompanied by a ligand reflection.

The diagonal direction of a stereoisogram (e.g., Figure 1) is concerned with scler-

ality/asclerality under ligand-reflection-group symmetry (e.g., TĨ). A ligand reflection

(e.g., (1)(2)(3)(4)) converts the numbered skeleton (e.g., 1) into the corresponding LR-

numbered skeleton (e.g., 2). The original numbered skeleton (e.g., 1) and the LR-

numbered skeleton (e.g., 2) are holantimeric to each other, where the ligand reflection

(e.g., (1)(2)(3)(4)) is accompanied by a ligand reflection, which is emphasized by attach-

ing an overline.
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A quadruplet of numbered skeletons contained in a stereoisogram (e.g., Figure 1) is

controlled by an RS -stereoisomeric group (e.g., Tdσ̃Î), which is generated by integrating

the three groups, i.e., a point group (e.g., Td), an RS -permutation group (e.g., Tσ̃), and

a ligand-reflection group (e.g., TĨ).

For further investigation of Fujita’s stereoisogram approach, expressions using an over-

line (e.g., (1)(2)(3)(4) and (1)(2)(3)(4)) should be replaced by computer-oriented repre-

sentations, which enable us to treat ligand reflections more systematically by computer.

2.2 Combined Representations of Point Groups

Let us consider a set of n positions of a given skeleton:

X = {1, 2, 3, . . . , n}, (1)

where the positions are numbered sequentially. The set can be regarded as belonging to

different groups according to viewpoints of our discussions.

The action of a point group G on X (Eq. 1) brings about a permutation representation

P (X)

G
, where the effect of ligand reflections is not taken into consideration. The point

group G has a maximum chiral subgroup G(m), so that the following coset decomposition

is obtained:

G = G(m) + G(m)σ, (2)

where the symbol σ represents a (roto)reflection selected appropriately. To evaluate the

effect of ligand reflections, a two-membered set of cosets is taken into consideration:

χ = {G(m),G(m)σ}. (3)

The action of the point group G on the set χ produces a coset representation of degree 2

(called a mirror-coset representation):

P (χ)

G
= {P (χ)

g | ∀g ∈ G}, (4)
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Table 1. RS -Stereoisomeric Group T
dσ̃Î

and its Subgroups for Characterizing a
Tetrahedral Skeleton

group a list of generators, order, a list of elements

Td

(point group)

Td := Group( [ (1,3)(2,4), (2,3,4), (1,3)(5,6) ] )

Order = 24

[ (), (3,4)(5,6), (2,3)(5,6), (2,3,4), (2,4,3), (2,4)(5,6),

(1,2)(5,6), (1,2)(3,4), (1,2,3), (1,2,3,4)(5,6),

(1,2,4,3)(5,6), (1,2,4), (1,3,2), (1,3,4,2)(5,6), (1,3)(5,6),

(1,3,4), (1,3)(2,4), (1,3,2,4)(5,6), (1,4,3,2)(5,6),

(1,4,2), (1,4,3), (1,4)(5,6), (1,4,2,3)(5,6), (1,4)(2,3) ]

Tσ̃

(RS -permutation
group)

Ts := Group( [ (1,3)(2,4), (2,3,4), (1,3) ] )

Order = 24

[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4),

(1,2,3), (1,2,3,4), (1,2,4,3), (1,2,4),

(1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4),

(1,4,3,2), (1,4,2), (1,4,3), (1,4), (1,4,2,3),

(1,4)(2,3) ]

TÎ

(ligand-reflection
group)

TI := Group( [ (1,3)(2,4), (2,3,4), (5,6) ] )

Order = 24

[ (), (5,6), (2,3,4), (2,3,4)(5,6), (2,4,3), (2,4,3)(5,6),

(1,2)(3,4), (1,2)(3,4)(5,6), (1,2,3), (1,2,3)(5,6),

(1,2,4), (1,2,4)(5,6), (1,3,2), (1,3,2)(5,6), (1,3,4),

(1,3,4)(5,6), (1,3)(2,4), (1,3)(2,4)(5,6), (1,4,2),

(1,4,2)(5,6), (1,4,3), (1,4,3)(5,6), (1,4)(2,3),

(1,4)(2,3)(5,6) ]

T
(normal
subgroup)

T := Group( [ (1,3)(2,4), (2,3,4) ] )

Order = 12

[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2),

(1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ]

Tdσ̃Î

(RS -stereoisomeric
group)

TdsI := Group( [ (1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6) ] )

Order = 48

[ (), (5,6), (3,4), (3,4)(5,6), (2,3), (2,3)(5,6), (2,3,4),

(2,3,4)(5,6), (2,4,3), (2,4,3)(5,6), (2,4),

(2,4)(5,6), (1,2), (1,2)(5,6), (1,2)(3,4), (1,2)(3,4)(5,6),

(1,2,3), (1,2,3)(5,6), (1,2,3,4), (1,2,3,4)(5,6),

(1,2,4,3), (1,2,4,3)(5,6), (1,2,4), (1,2,4)(5,6), (1,3,2),

(1,3,2)(5,6), (1,3,4,2), (1,3,4,2)(5,6),

(1,3), (1,3)(5,6), (1,3,4), (1,3,4)(5,6), (1,3)(2,4),

(1,3)(2,4)(5,6), (1,3,2,4), (1,3,2,4)(5,6), (1,4,3,2),

(1,4,3,2)(5,6), (1,4,2), (1,4,2)(5,6), (1,4,3), (1,4,3)(5,6),

(1,4), (1,4)(5,6), (1,4,2,3), (1,4,2,3)(5,6),

(1,4)(2,3), (1,4)(2,3)(5,6) ]
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each permutation of which is represented as follows:

P (χ)

g =

(
G(m) G(m)σ

G(m) G(m)σ

)

=

(
n+ 1 n+ 2

n+ 1 n+ 2

)
= (n+ 1)(n+ 2) for ∀g ∈ G(m): rotations (5)

P (χ)

g =

(
G(m) G(m)σ

G(m)σ G(m)

)

=

(
n+ 1 n+ 2

n+ 2 n+ 1

)
= (n+ 1 n+ 2) for ∀g ∈ G(m)σ: (roto)reflections (6)

Although the mirror-coset representation P (χ)

G
(Eq. 4) is based on the set of cosets (Eq. 3),

it brings about an equivalent effect to a mirror-permutation representation (Eq. 6 of [42]),

which has been previously defined on the basis of the set of local chiralities (Eq. 3 of [42]).

Because th permutation representation P (X)

G
described above is concerned with the n

positions of X (Eq. 1), the subsequent numbering n+1 and n+2 is adopted in Eqs. 5 and

6. The permutation representation P (X)

G
is combined with the permutation representation

P (χ)

G
(Eq. 4) to give a combined-permutation representation:

P (Xχ)

G
= P (X)

G
⊕P (χ)

G
= {P (X)

g ⊕P (χ)

g | ∀g ∈ G}, (7)

where the symbol P (X)

g ⊕ P (χ)

g is a combination of the two permutations for g at issue.

The degree of the combined representation (Eq. 7) is equal to n + 2. The combined

representation (Eq. 7) based on the mirror-coset representation (Eq. 4) is equivalent to

the combined representation (Eq. 7 of [42]) defined previously on the basis of the mirror-

permutation representation (Eq. 6 of [42]).

The combined representation (Eq. 7) can be regarded as a permutation group iso-

morphic (or generally homomorphic) to the original point group G. For example, the

point group Td for characterizing a tetrahedral skeleton 1 (the vertical direction of Fig-

ure 1) can be constructed by using the Group function of the GAP system, where a set

of generators gen_Td is composed of (1,3)(2,4) for a two-fold rotation, (2,3,4) for a

three-fold rotation, and (1,3)(5,6) for a reflection with a ligand-reflection permutation

(5,6). Each command of the GAP system is input after a prompt gap> in the command

prompt display of the Windows OS as follows:

gap> gen_Td := [(1,3)(2,4), (2,3,4), (1,3)(5,6)];;

gap> Td := Group(gen_Td);;

gap> Print("Td := ", Td, "\n");
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Td := Group( [ (1,3)(2,4), (2,3,4), (1,3)(5,6) ] )

gap> Print("Order = ", Size(Td), "\n");

Order = 24

gap> element_Td := Elements(Td);;

gap> Print(element_Td, "\n");

[ (), (3,4)(5,6),(2,3)(5,6),(2,3,4), (2,4,3), (2,4)(5,6), (1,2)(5,6), (1,2)(3,4), (1,2,3), (1,2,3,4)(5,6),

(1,2,4,3)(5,6), (1,2,4), (1,3,2), (1,3,4,2)(5,6), (1,3)(5,6), (1,3,4), (1,3)(2,4), (1,3,2,4)(5,6),

↪→ (1,4,3,2)(5,6),

(1,4,2), (1,4,3), (1,4)(5,6), (1,4,2,3)(5,6), (1,4)(2,3) ]

This result is collected in the first part of Table 1. The resulting group Td (order 24)

contains 24 elements, which are produced as a set of permutations (products of cycles), as

listed in the list element_Td. These permutations are group elements corresponding to a

combined representation shown generally by Eq. 7. Each (roto)reflection with an overline

is represented by a permutation with (5,6). For example, the reflection (1)(2 4)(3) (with

an overline) in Figure 1 is denoted as (2,4)(5,6) in the list element_Td.

2.3 Combined Representations of RS -Permutation Groups

The corresponding RS -permutation group G̃ is generated by starting from the point

group G, where the RS -permutations of G̃ correspond to the (roto)reflections but have

no effects of ligand reflections. The action of G̃ on X (Eq. 1) brings about a permutation

representation P (X)

G̃
, where the effect of ligand reflections is not taken into consideration

(i.e., degree n). Without considering the effect of ligand reflections, the permutation

representation P (X)

G̃
for the RS -permutation group G̃ is equal to the above-mentioned

permutation representation P (X)

G
for the point group G (cf. Eq. 7). The point group G̃

contains the maximum chiral subgroup G(m), so that the following coset decomposition

is obtained:

G̃ = G(m) + G(m)σ̃, (8)

where the symbol σ̃ represents an RS -permutation selected appropriately. To evaluate

the effect of RS -permutations, a two-membered set of cosets is taken into consideration:

χ̃ = {G(m),G(m)σ̃}. (9)

The action of the point group G̃ on the set χ̃ produces no effect:

P (χ̃)

G̃
= {P (χ̃)

g | ∀g ∈ G̃}, (10)
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each permutation of which is a product of two 1-cycles represented as follows:

P (χ̃)

g =

(
G(m) G(m)σ̃

G(m) G(m)σ̃

)

=

(
n+ 1 n+ 2

n+ 1 n+ 2

)
= (n+ 1)(n+ 2) for ∀g ∈ G̃ (11)

Because th permutation representation P (X)

G̃
described above is concerned with the n

positions of X (Eq. 1), the subsequent numbering n + 1 and n + 2 is adopted in Eq. 11.

The permutation representation P (X)

G̃
is combined with the permutation representation

P (χ̃)

G̃
(Eq. 11) to give a combined-permutation representation:

P (Xχ̃)

G̃
= P (X)

G̃
⊕P (χ̃)

G̃
= {P (X)

g ⊕P (χ̃)

g | ∀g ∈ G̃}, (12)

where the symbol P (X)

g ⊕ P (χ̃)

g is a combination of the two permutations for g at issue.

The degree of the combined representation (Eq. 12) is equal to n+ 2.

The combined representation (Eq. 12) can be regarded as a permutation group iso-

morphic (or generally homomorphic) to the original point group G̃. For example, the

RS -permutation group Tσ̃ for characterizing the horizontal direction of Figure 1 can be

constructed by using the Group function of the GAP system, where a set of generators

(the argument of the function Group) is composed of (1,3)(2,4) for a two-fold rota-

tion, (2,3,4) for a three-fold rotation, and (1,3) for an RS -permutation (by omitting

a ligand-reflection part (5)(6)). The commands of the GAP system and their results

are shown in the Tσ̃-part (the second part) of Table 1. It should be noted that P (Xχ̃)

G̃
of

degree n+ 2 (e.g., P (Xχ̃)

Tσ̃
of degree 6) and P (X)

G̃
of degree n (e.g., P (X)

Tσ̃
of degree 4) in Eq.

12 are conceptually different from each other, although their explicit expressions due to

the GAP system are equal to each other.

2.4 Combined Representations of Ligand-Reflection Groups

The action of a ligand-reflection group Ĝ on X (Eq. 1) brings about a permutation

representation P (X)

Ĝ
, where the effect of ligand reflections is not taken into consideration.

The ligand-reflection group Ĝ contains the maximum chiral subgroup G(m), so that the

following coset decomposition is obtained:

Ĝ = G(m) + G(m)Î , (13)

where the symbol Î represents a ligand reflection corresponding to the identity element

I.
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To evaluate the effect of ligand reflections, a two-membered set of cosets is taken into

consideration:

χ̂ = {G(m),G(m)Î}. (14)

The action of the ligand-reflection group Ĝ on the set χ̂ produces a coset representation

of degree 2:

P (χ̂)

Ĝ
= {P (χ̂)

g | ∀g ∈ Ĝ}, (15)

each permutation of which is represented as follows:

P (χ̂)

g =

(
G(m) G(m)Î

G(m) G(m)Î

)

=

(
n+ 1 n+ 2

n+ 1 n+ 2

)
= (n+ 1)(n+ 2) for ∀g ∈ G(m): rotations (16)

P (χ̂)

g =

(
G(m) G(m)Î

G(m)Î G(m)

)

=

(
n+ 1 n+ 2

n+ 2 n+ 1

)
= (n+ 1 n+ 2) for ∀g ∈ G(m)Î: ligand reflections(17)

Because th permutation representation P (X)

Ĝ
described above is concerned with the n

positions of X (Eq. 1), the subsequent numbering n+1 and n+2 is adopted in Eqs. 16 and

17. The permutation representation P (X)

Ĝ
is combined with the permutation representation

P (χ̂)

Ĝ
to give a combined-permutation representation:

P (Xχ̂)

Ĝ
= P (X)

Ĝ
⊕P (χ̂)

Ĝ
= {P (X)

g ⊕P (χ̂)

g | ∀g ∈ Ĝ}, (18)

where the symbol P (X)

g ⊕ P (χ̂)

g is a combination of the two permutations for g at issue.

The degree of the combined representation (Eq. 18) is equal to n+ 2.

The combined representation (Eq. 18) can be regarded as a permutation group isomor-

phic (or generally homomorphic) to the original ligand-reflection group Ĝ. For example,

the ligand-reflection group TÎ for characterizing the diagonal direction of Figure 1 can be

constructed by using the Group function of the GAP system, where a set of generators

(the argument of the function Group) is composed of (1,3)(2,4) for a two-fold rotation,

(2,3,4) for a three-fold rotation, and (5,6) for a ligand reflection. The commands of

the GAP system and their results are shown in the TÎ-part (the third part) of Table 1.

This construction of the ligand-reflection group TÎ (TI) is based on the addition of

the ligand reflection (5,6) to the maximum point group T (T), which is in turn generated
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by a set of generators [(1,3)(2,4), (2,3,4)] as shown in the T-part (the fourth part)

of Table 1.

2.5 Combined Representations of RS -Stereoisomeric Groups

Because the point group G (Eq. 2), the RS -permutation group G̃ (Eq. 8), and the ligand-

reflection group Ĝ (Eq. 13) have the maximum chiral subgroup G(m) commonly, they are

integrated to give an RS -stereoisomeric group G as follows:

G = G(m) + G(m)σ + G(m)σ̃ + G(m)Î . (19)

The resulting group G (Eq. 19) acts on the set X (Eq. 1) to give a permutation repre-

sentation P (X)

G , where the effect of ligand reflections is not taken into consideration.

To evaluate the effect of ligand reflections, Eq. 19 is rewritten by referring to Eq. 8 as

follows:

G = (G(m) + G(m)σ̃) + (G(m)σ + G(m)Î) = G̃ + G̃σ, (20)

where we use σ̃σ = Î. Then, we take account of the following set of two cosets:

χ = {G̃, G̃σ}. (21)

The action of the RS -stereoisomeric group G on the set χ produces a coset representation

of degree 2 (also called a mirror-coset representation):

P (χ)

G = {P (χ)

g | ∀g ∈ G}, (22)

each permutation of which is represented as follows:

P (χ)

g =

(
G̃ G̃σ

G̃ G̃σ

)

=

(
n+ 1 n+ 2

n+ 1 n+ 2

)
= (n+ 1)(n+ 2) for ∀g ∈ G̃ (23)

P (χ)

g =

(
G̃ G̃σ

G̃σ G̃

)

=

(
n+ 1 n+ 2

n+ 2 n+ 1

)
= (n+ 1 n+ 2) for ∀g ∈ G̃σ (24)

It should be noted that Eq. 22 is consistent with Eqs. 4, 10, and 15.
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The permutation representation P (X)

G is combined with the permutation representation

P (χ)

G (Eq. 22) to give a combined-permutation representation:

P (Xχ)

G = P (X)

G ⊕P (χ)

G = {P (X)

g ⊕P (χ)

g | ∀g ∈ G}, (25)

where the symbol P (X)

g ⊕ P (χ)

g is a combination of the two permutations for g at issue.

The degree of the combined representation (Eq. 25) is equal to n+ 2.

The combined representation (Eq. 25) can be regarded as a permutation group isomor-

phic (or generally homomorphic) to the original RS -stereoisomeric group G. For example,

the RS -stereoisomeric group Tdσ̃Î for characterizing the total feature of Figure 1 can be

constructed by using the Group function of the GAP system, where a set of generators

(the argument of the function Group of TdsI) is composed of (1,3)(2,4) for a two-fold

rotation, (2,3,4) for a three-fold rotation, (1,3)(5,6) for a reflection, and (5,6) for a

ligand reflection. Note that (5,6) corresponds to Î. The commands of the GAP system

and their results are shown in the Tdσ̃Î-part (the fifth part) of Table 1.

2.6 Properties of RS -Stereoisomeric Groups

2.6.1 Selection of Sets of Generators

To select a set of generators for constructing an RS -stereoisomeric group, there are three

modes as follows:

1. The first mode of selection is the addition of a ligand reflection to a set of generators

for constructing the point group G. This mode reflects the coset decomposition of

G by G:

G = (G(m) + G(m)σ) + (G(m)σ̃ + G(m)Î) = G + GÎ , (26)

which is obtained by starting from Eq. 19.

For example, the construction of Tdσ̃Î (TdsI) shown in Table 1 stems from the

addition of the ligand reflection (5,6) to the point group Td (Td). This aims at

emphasizing the extension of the point group Td to the RS -stereoisomeric group

Tdσ̃Î . Note that chirality under a point group G (e.g., Td) is regarded as a kind

of handedness in general, where a pair of attributes, i.e., chirality/achirality, is

provided according to the vertical direction of a stereoisogram (e.g., Figure 1).

2. The second mode of selection is the addition of a ligand reflection to a set of gen-

erators for constructing the RS -permutation group G̃. Thus, an alternative con-
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struction is possible by adding the ligand reflection (5,6) to the RS -permutation

group Tσ̃ (Ts), i.e., TdsI := Group([(1,3)(2,4), (2,3,4), (1,3), (5,6)]).

This generation more clearly supports the coset decomposition (Eq. 20) because

of G̃σ = G̃Î (e.g., Tσ̃σ = Tσ̃ Î). Note that RS -stereogenicity under an RS -

permutation group G̃ (e.g., Tσ̃) is regarded as another kind of handedness, where a

pair of attributes, i.e., RS -stereogenicity/RS -astereogenicity, is provided according

to the horizontal direction of a stereoisogram (e.g., Figure 1). This mode of con-

struction provides us with an alternative formulation of RS -stereoisomeric groups.

3. The third mode is to select a set of generators, which can be considered to be gen-

erated by the addition of an RS -permutation to a set of generators for constructing

the point group G as well as the addition of a reflection to a set of generators

for constructing the RS -permutation group G̃. As a result, such a selected set of

generators does not contain a permutation for a ligand reflection. Thus, a further

set of generators [(1,3)(2,4), (2,3,4), (1,3)(5,6), (1,3)] also generates the

RS -stereoisomeric group Tdσ̃Î . This set of generators can be considered to be the

addition of an RS -permutation (1,3) to the point group Td (Td) as well as the ad-

dition of a reflection (1,3)(5,6) to the RS -permutation group Tσ̃ (Ts). Although

a ligand reflection is not contained in the set of generators, it is generated by a

subsequent multiplication such as σσ̃ = Î (e.g., (1,3)(5,6)*(1,3) = (5,6)). This

multiplication corresponds to the diagonal direction which links 2 and 1 in Figure

1 (note (1)(2 4)(3) ∗ (1)(2 4)(3) = (1)(2)(3)(4)).

2.6.2 Subgroups of RS -Stereoisomeric Groups

The RS -Stereoisomeric group G is decomposed into a set of cosets represented by Eq. 19,

where the maximum chiral subgroup G(m) is a normal subgroup. The coset decomposition

of the RS -stereoisomeric group Tdσ̃Î by T is represented as follows:

Tdσ̃Î = T + Tσ + Tσ̃ + TÎ . (27)

When the combined representation of Tdσ̃Î (TdsI) is regarded as a permutation group

(Table 1), the coset decomposition of Tdσ̃Î (TdsI) by the subgroup T (T) is calculated

as a list of cosets (l_cosets) by using the function CosetDecomposition of the GAP

system:
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gap> l_cosets := CosetDecomposition(TdsI, T);;

gap> Print("TdsI = T + T*s + T*I + T*d: \n", l_cosets, "\n");

TdsI = T + T*s +T*I + T*d:

[ [ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,3)(2,4), (1,4,2),

(1,4,3), (1,4)(2,3) ],

[ (3,4), (2,4), (2,3), (1,2), (1,2,4,3), (1,2,3,4), (1,4,3,2), (1,4), (1,4,2,3), (1,3,4,2),

(1,3), (1,3,2,4) ],

[ (5,6), (2,3,4)(5,6), (2,4,3)(5,6), (1,2)(3,4)(5,6), (1,2,3)(5,6), (1,2,4)(5,6), (1,3,2)(5,6),

(1,3,4)(5,6), (1,3)(2,4)(5,6), (1,4,2)(5,6), (1,4,3)(5,6), (1,4)(2,3)(5,6) ],

[ (3,4)(5,6), (2,4)(5,6), (2,3)(5,6), (1,2)(5,6), (1,2,4,3)(5,6), (1,2,3,4)(5,6), (1,4,3,2)(5,6),

(1,4)(5,6), (1,4,2,3)(5,6), (1,3,4,2)(5,6), (1,3)(5,6), (1,3,2,4)(5,6) ] ]

The resulting list (l_cosets) is composed of four inner lists, each of which is sur-

rounded in a pair of square brackets. They correspond respectively to T (l_cosets[1]),

Tσ̃ (l_cosets[2]), TÎ (l_cosets[3]), and Tσ (l_cosets[4]). This is confirmed, for

example, by constructing l_Tdtemp (for Td) by summing up l_cosets[1] (for T) and

l_cosets[4] (for Tσ). The sum l_Tdtemp is shown to be an equal set to element_Td

calculated above for the point group Td (Td) (Table 1), as confirmed by using the function

IsEqualSet of the GAP system:
gap> l_Tdtemp := Concatenation(l_cosets[1], l_cosets[4]);;

gap> Print("Td: ", l_Tdtemp, "\n");

Td: [ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,3)(2,4), (1,4,2), (1,4,3),

(1,4)(2,3), (3,4)(5,6), (2,4)(5,6), (2,3)(5,6), (1,2)(5,6), (1,2,4,3)(5,6), (1,2,3,4)(5,6),

(1,4,3,2)(5,6), (1,4)(5,6), (1,4,2,3)(5,6), (1,3,4,2)(5,6), (1,3)(5,6), (1,3,2,4)(5,6) ]

gap> Print("Td OK?: ", IsEqualSet(element_Td, l_Tdtemp), "\n");

Td OK?: true

In a similar way, the summation of l_cosets[1] and l_cosets[2] produces an equal

set to Ts for the RS -permutation group Tσ̃, while the summation of l_cosets[1] and

l_cosets[3] produces an equal set to TI for the ligand-reflection group TÎ .

2.6.3 Conjugacy Classes of RS -Stereoisomeric Groups

The comparison between the coset decomposition of the point group G (Eq. 2) and that of

the RS -stereoisomeric group G (Eq. 20) indicates the parallelism of their group structures.

It follows that the GAP function divideConjClasses developed for calculating a list of

conjugacy classes of a point group G [43] can be applied, as it is, to an RS -stereoisomeric

group G.

Because the source list of the function divideConjClasses is stored in the file named

CICFgenCC.func (Appendix A of [43]), the file is beforehand loaded by means of the GAP

command Read. Thereby, the following result of the RS -stereoisomeric group Tdσ̃Î (TdsI)

is obtained:
gap> Read("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/CICFgenCC.gapfunc");

gap> gen1 := [(1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6)];;

gap> TdsI := Group(gen1);

Group([ (1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6) ])

gap> l_conjclass := divideConjClasses(TdsI, 4, 6);

[ [ [ () ], [ (3,4), (2,3), (2,4), (1,2), (1,3), (1,4) ],
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[ (2,3,4), (2,4,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,4,2), (1,4,3) ],

[ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ],

[ (1,2,3,4), (1,2,4,3), (1,3,4,2), (1,3,2,4), (1,4,3,2), (1,4,2,3) ] ],

[ [ (5,6) ], [ (3,4)(5,6), (2,3)(5,6), (2,4)(5,6), (1,2)(5,6), (1,3)(5,6), (1,4)(5,6) ],

[ (2,3,4)(5,6), (2,4,3)(5,6), (1,2,3)(5,6), (1,2,4)(5,6), (1,3,2)(5,6), (1,3,4)(5,6), (1,4,2)(5,6),

(1,4,3)(5,6) ],

[ (1,2)(3,4)(5,6), (1,3)(2,4)(5,6), (1,4)(2,3)(5,6) ],

[ (1,2,3,4)(5,6), (1,2,4,3)(5,6), (1,3,4,2)(5,6), (1,3,2,4)(5,6), (1,4,3,2)(5,6), (1,4,2,3)(5,6) ] ] ]

The resulting list named l_conjclass contains two inner lists l_conjclass[1] and

l_conjclass[2] according to the following coset decomposition:

Tdσ̃Î = Tσ̃ + Tσ̃σ (28)

where the first list l_conjclass[1] consists of five conjugacy classes of Tσ̃ (without

(5,6)), while the second list l_conjclass[2] consists of five conjugacy classes of Tσ̃σ

(with (5,6)). Thus, the elements of Tdσ̃Î listed in the last part of Table 1 are classified

into totally ten conjugacy classes. Note that each conjugacy class contains permutations

(products of cycles) having the same cycle structure.

2.6.4 Point Groups Isomorphic to RS -Stereoisomeric Groups

The parallelism between the point group G (cf. Eq. 2) and the RS -stereoisomeric group G

(cf. Eq. 20) means that there may be a point group isomorphic to the RS -stereoisomeric

group G. For example, the RS -stereoisomeric group Tdσ̃Î (order 48) has been demon-

strated to be isomorphic to the point group Oh (order 48) [29]. These two groups are

parallel with respect to their coset decompositions. Compare the coset decomposition of

Tdσ̃Î (Eq. 28) with the following coset decomposition of Oh:

Oh = O + Oσ, (29)

where the symbol O denotes the maximum chiral subgroup of Oh.

1
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sss s s❝ ss❝s❝ s s❝s

1 2

34
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78

3 4

Figure 2. A reference tetrahedral skeleton 3 and a reference cubic skeleton 4

The parallelism between Tdσ̃Î and Oh can be confirmed by comparing TdsI generated

from a set of generators:
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gen1 = [(1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6)]

with Oh_cube generated from a set of generators:

gen2 := [(1,3)(2,4)(5,7)(6,8), (2,4,5)(3,8,6),

(1,3)(5,7)(9,10), (1,7)(2,8)(3,5)(4,6)(9,10)].

Although the point group Oh (Oh_cube) has been generated from a different set of gen-

erators in a previous paper [43], the adoption of the above sets of generators gen1 and

gen2 is convenient to trace the correspondence between a tetrahedral skeleton 3 and a

cubic skeleton 4 (Figure 2).

The equivalent eight vertices of the cube 4 are classified into two sets (with an open

circle and a solid circle), so that the vertices with a solid circle is correlated to the four

vertices of the tetrahedron 3. Thereby, the correspondence between gen1 and gen2 are

interpreted visually. Thus, the generator (1,3)(2,4)(5,7)(6,8) of gen2 corresponds to

a two-fold rotation running through the centers of the top and bottom faces of 4, so that

it is correlated to the generator (1,3)(2,4) of gen1. The generator (2,4,5)(3,8,6) of

gen2 corresponds to a three-fold rotation running through vertices 1 and 7 of 4, so that it

is correlated to the generator (2,3,4) of gen1. The generator (1,3)(5,7)(9,10) of gen2

corresponds to a reflection concerning the mirror plane 2–4–8–6 of 4, so that it is correlated

to the generator (1,3)(5,6) of gen1. The last generator (1,7)(2,8)(3,5)(4,6)(9,10)

corresponds to an inversion at the center of the cube 4, so that it is correlated to a ligand

reflection Î, which is represented by (5,6) of gen1.

The correspondence between the elements of Tdσ̃Î and those of Oh is calculated by

using the following source list stored in the file named TdsI-Oh6.gap tentatively.

#Read("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/TdsI-Oh6.gap");

LogTo("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/TdsI-Oh6log.txt");

Read("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/CICFgenCC.gapfunc");

gen1 := [(1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6)];

TdsI := Group(gen1);; #TdsI

gen2 := [(1,3)(2,4)(5,7)(6,8), (2,4,5)(3,8,6), (1,3)(5,7)(9,10), (1,7)(2,8)(3,5)(4,6)(9,10)];

Oh_cube := Group(gen2);; #cube

l_conjclass := divideConjClasses(TdsI, 4, 6);;

l1_conjclass := l_conjclass[1]; l2_conjclass := l_conjclass[2];

hom1 := GroupHomomorphismByImages(TdsI, Oh_cube, gen1, gen2);

for j in [1..Size(l1_conjclass)] do

ll1 := l1_conjclass[j];

for i in [1..Size(ll1)] do

Print(ll1[i], "&", Image(hom1, ll1[i]), "\\\\ \n");

od; Print("\\hline \n"); od;

Print("\\hline \n");
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for j in [1..Size(l2_conjclass)] do

ll2 := l2_conjclass[j];

for i in [1..Size(ll2)] do

Print(ll2[i], "&", Image(hom1, ll2[i]), "\\\\ \n");

od; Print("\\hline \n"); od;

LogTo();

When inputting this file to the GAP system, the respective commands are succes-

sively executed. The elements of Tdσ̃Î are beforehand classified into conjugacy classes as

described above (the function divideConjClasses). Then, the correspondence between

the elements of Tdσ̃Î and those of Oh are calculated by means of the GAP functions

GroupHomomorphismByImages and Image. The calculated data are stored in the log file

named TdsI-Oh6log.txt tentatively. They are summarized in a tabular form to give

Table 2, where each row with an asterisk indicates the correspondence between gen1 and

gen2.

The permutations of the Tdσ̃Î-column and those of the Oh-column in Table 2 can

be correlated diagrammatically by comparing 3 and 4 of Figure 2. Let us examine, for

example, the correspondence between (3,4) for 3 and (1, 7)(2, 3)(4, 6)(5, 8) for

4 (the second row of Table 2). The set of four diagonal lines (boldfaced) of the cube 4 is

considered as an ordered set as follows:

{line 1–7 (•–◦), line 6–4 (•–◦), line 3–5 (•–◦), line 8–2 (•–◦)} = {1, 2, 3, 4}, (30)

where the four diagonal lines are numbered sequentially. Although the terminals of each

line are tentatively differentiated by an open circle and a solid circle, they are equivalent

under the action of Oh. The permutation (1, 7)(2, 3)(4, 6)(5, 8), which corre-

sponds to a two-fold rotation through the midpoints of edges 2–3 and 5–8 in the cube 4,

acts on the ordered set so as to give another ordered set:

{line 7–1 (◦–•), line 4–6 (◦–•), line 2–8 (◦–•), line 5–3 (◦–•)} =

{line 1–7 (•–◦), line 6–4 (•–◦), line 8–2 (•–◦), line 3–5 (•–◦)} = {1, 2, 4, 3}. (31)

This action (from Eq. 30 to Eq. 31) is represented by the following permutation:

(
1 2 3 4

1 2 4 3

)
= (1)(2)(3 4) = (3 4), (32)

which is equal to the (3,4) for 3. In other words, the four diagonal lines of 4 (Eq. 30)

corresponds to the four vertices of 3.
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Table 2. Correspondence between T
dσ̃Î

for a tetrahedron and Oh for a cube

Tdσ̃Î for a tetrahedron Oh for a cube

TdsI := Group(gen1) Oh cube := Group(gen2)

P (Xχ)

T
dσ̃Î

P (Xχ)

Oh-cube

() ()

(3,4) ( 1, 7)( 2, 3)( 4, 6)( 5, 8)

(2,3) ( 1, 7)( 2, 8)( 3, 4)( 5, 6)

(2,4) ( 1, 7)( 2, 6)( 3, 5)( 4, 8)

(1,2) ( 1, 4)( 2, 8)( 3, 5)( 6, 7)

(1,3) ( 1, 5)( 2, 8)( 3, 7)( 4, 6)

(1,4) ( 1, 2)( 3, 5)( 4, 6)( 7, 8)

(2,3,4)* ( 2, 4, 5)( 3, 8, 6)

(2,4,3) ( 2, 5, 4)( 3, 6, 8)

(1,2,3) ( 1, 6, 3)( 4, 5, 7)

(1,2,4) ( 1, 6, 8)( 2, 7, 4)

(1,3,2) ( 1, 3, 6)( 4, 7, 5)

(1,3,4) ( 1, 3, 8)( 2, 7, 5)

(1,4,2) ( 1, 8, 6)( 2, 4, 7)

(1,4,3) ( 1, 8, 3)( 2, 5, 7)

(1,2)(3,4) ( 1, 6)( 2, 5)( 3, 8)( 4, 7)

(1,3)(2,4)* ( 1, 3)( 2, 4)( 5, 7)( 6, 8)

(1,4)(2,3) ( 1, 8)( 2, 7)( 3, 6)( 4, 5)

(1,2,3,4) ( 1, 4, 3, 2)( 5, 8, 7, 6)

(1,2,4,3) ( 1, 4, 8, 5)( 2, 3, 7, 6)

(1,3,4,2) ( 1, 5, 8, 4)( 2, 6, 7, 3)

(1,3,2,4) ( 1, 5, 6, 2)( 3, 4, 8, 7)

(1,4,3,2) ( 1, 2, 3, 4)( 5, 6, 7, 8)

(1,4,2,3) ( 1, 2, 6, 5)( 3, 7, 8, 4)

(5,6)* ( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,10)

(3,4)(5,6) ( 2, 5)( 3, 8)( 9,10)

(2,3)(5,6) ( 3, 6)( 4, 5)( 9,10)

(2,4)(5,6) ( 2, 4)( 6, 8)( 9,10)

(1,2)(5,6) ( 1, 6)( 4, 7)( 9,10)

(1,3)(5,6)* ( 1, 3)( 5, 7)( 9,10)

(1,4)(5,6) ( 1, 8)( 2, 7)( 9,10)

(2,3,4)(5,6) ( 1, 7)( 2, 6, 5, 8, 4, 3)( 9,10)

(2,4,3)(5,6) ( 1, 7)( 2, 3, 4, 8, 5, 6)( 9,10)

(1,2,3)(5,6) ( 1, 4, 3, 7, 6, 5)( 2, 8)( 9,10)

(1,2,4)(5,6) ( 1, 4, 8, 7, 6, 2)( 3, 5)( 9,10)

(1,3,2)(5,6) ( 1, 5, 6, 7, 3, 4)( 2, 8)( 9,10)

(1,3,4)(5,6) ( 1, 5, 8, 7, 3, 2)( 4, 6)( 9,10)

(1,4,2)(5,6) ( 1, 2, 6, 7, 8, 4)( 3, 5)( 9,10)

(1,4,3)(5,6) ( 1, 2, 3, 7, 8, 5)( 4, 6)( 9,10)

(1,2)(3,4)(5,6) ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,10)

(1,3)(2,4)(5,6) ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,10)

(1,4)(2,3)(5,6) ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)

(1,2,3,4)(5,6) ( 1, 6, 3, 8)( 2, 7, 4, 5)( 9,10)

(1,2,4,3)(5,6) ( 1, 6, 8, 3)( 2, 5, 7, 4)( 9,10)

(1,3,4,2)(5,6) ( 1, 3, 8, 6)( 2, 4, 7, 5)( 9,10)

(1,3,2,4)(5,6) ( 1, 3, 6, 8)( 2, 7, 5, 4)( 9,10)

(1,4,3,2)(5,6) ( 1, 8, 3, 6)( 2, 5, 4, 7)( 9,10)

(1,4,2,3)(5,6) ( 1, 8, 6, 3)( 2, 4, 5, 7)( 9,10)
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3 Enumeration Under RS -Stereoisomeric Groups

3.1 CI-CFs for RS -Stereoisomeric Groups

For the purpose of gross enumeration of 3D structures, Fujita’s proligand method [35–

38] adopts the concept of sphericities of cycles, i.e., homospheric, enantiospheric, and

hemispheric cycles, during the action of point groups G. This concept has been extended

to cover the effect of RS -stereoisomeric groups G (Eq. 11 of [39]). The extended CI-CF

should be further modified from the present viewpoint, so as to be harmonized with the

combined-permutation representation P (Xχ)

G (Eq. 25).

Let us focus our attention on a k-cycle in a given product of cycles which is contained

in the P (X)

G -part of P (Xχ)

G (Eq. 25). A k-cycle contained in a product of cycles for g

(∈ G̃ ⊂ G) which exhibits a mirror-coset representation P (χ)

g = (n + 1)(n + 2) (for

∀g ∈ G̃ in Eq. 23) is referred to as a hemispheric cycle and characterized by a sphericity

index bk. On the other hand, a k-cycle contained in a product of cycles for g (∈ G̃σ ⊂ G)

which exhibits a mirror-coset representation P (χ)

g = (n + 1 n + 2) (for ∀g ∈ G̃σ in

Eq. 24) is categorized into a homospheric cycle (sphericity index: ak) if k is odd or an

enantiospheric cycle (sphericity index: ck) if k is even.

Suppose that an element P (X)

g of degree n (cf. Eq. 25) is represented by a cycle decom-

position involving the number νk(P
(X)

g ) of k-cycles (
∑n

k=1 kνk(P
(X)

g )). Then the element

P (Xχ)

g corresponding to P (X)

g (cf. Eq. 25) is specified by a product of sphericity indices

(PSI):

PSI
P

(Xχ)
g

= $
ν1(P

(X)
g )

1 $
ν2(P

(X)
g )

2 · · · $νn(P (X)
g )

n , (33)

where $k is ak if P (χ)

g = (n + 1 n + 2) (one 2-cycle) and k is odd; $k is ck if P (χ)

g =

(n + 1 n + 2) (one 2-cycle) and k is even; and $k is bk if P (χ)

g = (n + 1)(n + 2) (two

1-cycles). According to Def. 7.20 of [38], the cycle index with chirality fittingness (CI-CF)

for P (Xχ)

G is calculated as follows by using the PSIs (Eq. 33):

CI-CF(P (Xχ)

G ; $k) =
1

|G|
∑

g ∈ G

$
ν1(P

(X)
g )

1 $
ν2(P

(X)
g )

2 · · · $νn(P (X)
g )

n . (34)

Note that any permutation of the conjugacy class Cl(g) has the same mode of cycle

decomposition, or equivalently the same cycle structure. This means that PSI
P

(Xχ)
g

(Eq.

33) is common to all of the element g ∈ Cl(g), so that the PSI for the conjugacy class
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Cl(g) can be written as follows:

PSI
P

(Xχ)
Cl(g)

= $
ν1(P

(X)
Cl(g)

)

1 $
ν2(P

(X)
Cl(g)

)

2 · · · $νn(P
(X)
Cl(g)

)

n . (35)

Thereby, the CI-CF (Eq. 34) for P (Xχ)

G is rewritten as follows:

CI-CF(P (Xχ)

G ; $k) =
1

|G|
∑

Cl(g)

|Cl(g)|$ν1(P
(X)
Cl(g)

)

1 $
ν2(P

(X)
Cl(g)

)

2 · · · $νn(P
(X)
Cl(g)

)

n , (36)

where the summation concerning Cl(g) runs to cover the representatives of the conjugacy

classes contained in G and the symbol |Cl(g)| represents the size of the corresponding

conjugacy class Cl(g).

3.2 Calculation of CI-CFs

The parallelism between the point group G (cf. Eq. 2) and the RS -stereoisomeric group

G (cf. Eq. 20) means that the cycle index with chirality fittingness (CI-CF) for G can be

calculated in a similar way to G. It follows that a function for calculating the CI-CF of

the point group G is applicable to the calculation of the CI-CF of the RS -stereoisomeric

group G.

A function CalcCICF has been developed as a GAP function for calculating CI-CFs

under point groups [42]. The function CalcCICF is applicable to calculate CI-CFs (Eq. 34)

under RS -stereoisomeric groups. Another function CalcConjClassCICF for calculating

CI-CFs under point groups has also been developed [43], where conjugacy classes are taken

into consideration. The function CalcConjClassCICF is applicable to calculate CI-CFs

(Eq. 36) under RS -stereoisomeric groups. These two functions are capable of bringing

about equal CI-CFs.

Because the source list of the function CalcConjClassCICF is stored in the file named

CICFgenCC.func (Appendix A of [43]), the file is beforehand loaded by means of the GAP

command Read. The application of the function CalcConjClassCICF to the calculation

of the CI-CF (CICF_TdsI) of the RS -stereoisomeric group Tdσ̃Î is executed as follows:

gap> Read("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/CICFgenCC.gapfunc");

gap> gen_1 := [(1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6)];;

gap> TdsI := Group(gen_1);

Group([ (1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6) ])

gap> CICF_TdsI := CalcConjClassCICF(TdsI, 4, 6);

1/48*b_1^4+1/48*a_1^4+1/8*b_1^2*b_2+1/8*a_1^2*c_2+1/6*b_1*b_3+1/6*a_1*a_3+1/16*b_2^2+1/16*c_2^2+1/8*b_4

↪→ +1/8*c_4

The resulting CI-CF (CICF_TdsI) is confirmed by examining the cycle structures of

each term collected in the Tdσ̃Î-column of Table 2. According to Fujita’s proligand method
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[35], the identity element () means (1)(2)(3)(4) so as to provide a product of sphericity

indices (PSI) b_1^4 (b41), six elements of a 2-cycle (e.g., (3,4) meaning (1)(2)(3 4))

provide a PSI 6*b_1^2*b_2 (6b21b2), eight elements of a 3-cycle (e.g., (2,3,4)) provide

a PSI 8*b_1*b_3 (8b1b3), three elements of two 2-cycles (e.g., (1,2)(3,4)) provide a

PSI 3*b_2^2 (3b22), and six elements of a 4-cycle (e.g., (1,2,3,4)) provide a PSI 6*b_4

(6b4). Each element with (5,6) corresponds to a (roto)reflection or a ligand reflection,

which is represented by an overline, as described above. Thus, one element (5,6) means

(1)(2)(3)(4) so as to provides a PSI a_1^4 (a41), six elements of a 2-cycle with (5,6) (e.g.,

(3,4)(5,6) meaning (1)(2)(3 4)) provide a PSI 6*a_1^2*c_2 (6a21c2), eight elements of a

3-cycle with (5,6) (e.g., (2,3,4)(5,6)) provide a PSI 8*a_1*a_3 (8a1a3), three elements

of two 2-cycles with (5,6) (e.g., (1,2)(3,4)(5,6)) provide a PSI 3*c_2^2 (3c22), and

six elements of a 4-cycle with (5,6) (e.g., (1,2,3,4)(5,6)) provide a PSI 6*c_4 (6c4).

These PSIs are summed up and divided by the order of Tdσ̃Î (48) to give the CI-CF of

Tdσ̃Î . The resulting CI-CF is identical with the CICF_TdsI calculated above.

The procedure based on the function CalcConjClassCICF for calculating a CI-CF can

be applied to the groups listed in Table 1. The calculated CI-CFs for the groups are

collected in Table 3. The format of each term of the resulting CI-CFs obeys the GAP

notation. Thus, the symbol * represents a multiplication and the symbol ^ represent a

power. The CI-CFs listed in Table 3 are consistent with the CI-CFs reported previously

(Eqs. 64–68 of [39] and Eqs. 58–62 of [40]), which have been calculated by an alternative

procedure without relying on the present computer-oriented representations.

3.3 Enumeration of Tetrahedral Derivatives

Suppose that the four positions of a tetrahedral skeleton 1 (or 3) accommodate a set of

four proligands selected from a given ligand inventory:

L = {A,B,C,D; p, p, q, q, r, r, s, s}, (37)

where the uppercase letters A, B, C, and D represent achiral proligands, while a pair of

lowercase letters p/p, q/q, r/r, or s/s represents an enantiomeric pair of chiral proligands

in isolation. Theorem 7.14 of [38] for the point group is applied to the present case under

the RS -stereoisomeric group Tdσ̃Î . Thereby, the sphericity indices ($k: ak, ck, and bk)
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Table 3. CI-CFs of RS -Stereoisomeric Group T
dσ̃Î

and its Subgroups for Charac-
terizing a Tetrahedral Skeleton

group a list of generators, CI-CF

Td

(point group)

Td:= Group( [ (1,3)(2,4), (2,3,4), (1,3)(5,6) ] )

CICF_Td := 1/24*b_1^4+1/4*a_1^2*c_2+1/3*b_1*b_3+1/8*b_2^2+1/4*c_4

Tσ̃

(RS -permutation group)

Ts:= Group( [ (1,3)(2,4), (2,3,4), (1,3) ] )

CICF_Ts := 1/24*b_1^4+1/4*b_1^2*b_2+1/3*b_1*b_3+1/8*b_2^2+1/4*b_4

T
Î

(ligand-reflection group)

TI:= Group( [ (1,3)(2,4), (2,3,4), (5,6) ] )

CICF_TI := 1/24*b_1^4+1/24*a_1^4+1/3*b_1*b_3+1/3*a_1*a_3

+1/8*c_2^2+1/8*b_2^2

T
(normal subgroup)

T:= Group( [ (1,3)(2,4), (2,3,4) ] )

CICF_T := 1/12*b_1^4+2/3*b_1*b_3+1/4*b_2^2

T
dσ̃Î

(RS -stereoisomeric group)

TdsI:= Group( [ (1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6) ] )

CICF_TdsI := 1/48*b_1^4+1/48*a_1^4+1/8*b_1^2*b_2+1/8*a_1^2*c_2

+1/6*b_1*b_3+1/6*a_1*a_3+1/16*c_2^2+1/16*b_2^2+1/8*c_4+1/8*b_4

contained in the CI-CFs are substituted by the following ligand-inventory functions:

ak = Ak + Bk + Ck + Dk (38)

ck = Ak + Bk + Ck + Dk + 2pk/2pk/2 + 2qk/2qk/2 + 2rk/2rk/2 + 2sk/2sk/2 (39)

bk = Ak + Bk + Ck + Dk + pk + pk + qk + qk + rk + rk + sk + sk (40)

These ligand-inventory functions are introduced into the CI-CFs collected in Table 3.

The resulting equations are expanded to give generating functions, where the coefficient of

each term AaBbCcDdppppqqqqrrrrssss (a+b+c+d+p+p+q+q+r+r+s+s = 4) represents

the number of quadruplets with the respective composition. Note that a pair of compen-

sated terms, i.e., 1
2
(AaBbCcDdppppqqqqrrrrssss + AaBbCcDdppppqqqqrrrrssss), should be

regarded as representing a single quadruplet. Because the terms in the generating func-

tions appear symmetrically, the term AaBbCcDdppppqqqqrrrrssss can be represented by a

partition:

[θ] = [a, b, c, d, p, p, q, q, r, r, s, s], (41)

where we presume a ≥ b ≥ c ≥ d; p ≥ q ≥ r ≥ s; p ≥ p, q ≥ q, r ≥ r, and s ≥ s so as to

be adopted as a representative.

Because a generating function has so many complicated terms in general, it is desir-

able to obtain the coefficient of a specific term selectively. For this purpose, the func-

tion calcCoeffGen has been developed and stored in the above-mentioned file named
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CICFgenCC.func (Appendix A of [43]), which should be loaded beforehand by means of

the GAP command Read. For example, the coefficients of the terms A3B (A^3*B) and

A2B2 (A^2*B^2) appearing in the function f = (A + B)^4 are calculated by inputting

the following commands:

gap> Read("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/CICFgenCC.gapfunc");

gap> A := Indeterminate(Rationals, "A");; B := Indeterminate(Rationals, "B");;

gap> f := (A + B)^4;

A^4+4*A^3*B+6*A^2*B^2+4*A*B^3+B^4

gap> coeff_A3B := calcCoeffGen(f, [A,B], [3,1]);

4

gap> coeff_A2B2 := calcCoeffGen(f, [A,B], [2,2]);

6

The source list for calculating the coefficients of the generating functions derived from

the CI-CFs collected in Table 3 is stored in a work file named enum-TdsI.gap, which is

attached as Appendix A. The results are shown in Table 4. The data of the Td-column

and the Tdσ̃Î of Table 4 are consistent with the data of Table 2 of [44], which have been

calculated by an alternative procedure without relying on the present computer-oriented

representations.

Note that a fraction 1/2 of the intersection between the [θ]3-row and the Tdσ̃Î-column,

for example, corresponds to 1 × 1
2
(A3p + A3p), which means one quadruplet of RS -

stereoisomers. Thus, the [θ]3-row indicates that the one quadruplet of RS -stereoisomers

corresponds to one pair of enantiomers (the Td-column), to two RS -astereogenic promol-

ecules (2× 1
2
(A3p + A3p) at the Tσ̃-column), to one pair of holantimers (the TÎ-column),

and to two promolecules (2× 1
2
(A3p + A3p) at the T-column).

A representative promolecule for each quadruplet of RS -stereoisomers, which is listed

in the Tdσ̃Î-column of Table 4, is depicted in Figure 3. The representative is accompanied

by the corresponding partition ([θ]1–[θ]30) and its aspect index, which designates [type,

RS -stereoisomeric group; point group, RS -permutation group, ligand-reflection group]).

4 Type-Itemized Enumeration

4.1 Type-Itemized CI-CFs for a Tetrahedral Skeleton

Type-itemized enumerations of RS -stereoisomers have been reported recently [39, 40],

where CI-CFs modulated by type-IV or type-V quadruplets have been defined to calculate

type-itemized CI-CFs. Modulated CI-CFs by type-V quadruplets (Definition 1 of [40])

are adopted here by relying on the present computer-oriented representations.

A modulated CI-CF of the present purpose is calculated as follows:
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Table 4. Enumeration of Tetrahedral Promolecules Under the RS -Stereoisomeric
Group T

dσ̃Î
and its Subgroups

numbers of promolecules

partition under respective groups

Td Tσ̃ TÎ T Tdσ̃Î

[θ]1 = [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ]2 = [3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ]3 = [3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]4 = [2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ]5 = [2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]6 = [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ]7 = [2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]8 = [2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ]9 = [2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]10 = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 2 2 1

[θ]11 = [1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0] 1 1 1 2 1/2

[θ]12 = [1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]13 = [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 2 1 1 2 1

[θ]14 = [1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0] 1 1 1 2 1/2

[θ]15 = [1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]16 = [1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]17 = [1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]18 = [1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0] 1 1 1 2 1/2

[θ]19 = [1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0] 1 1 1 2 1/2

[θ]20 = [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]21 = [0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]22 = [0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]23 = [0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0] 1 1 1 1 1

[θ]24 = [0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]25 = [0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]26 = [0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]27 = [0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0] 1/2 1 1/2 1 1/2

[θ]28 = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0] 1 1 2 2 1

[θ]29 = [0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0] 1 1 1 2 1/2

[θ]30 = [0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0] 1 1 1 2 1/2
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RS-astereogenic RS-stereogenic

Type I [−,−, a]

C

A

BC
D

5 ([θ]10)

[I, CÎ ; C1, C1, CÎ ]

C

p

pq
q

6 ([θ]28)

[I, Cσ̂; C1, C1, Cσ̂]

chiral

Type II [−, a,−]

C

p

pp
p

7 ([θ]20)

[II, Tσ̃; T, Tσ̃, T]

C

p

AA
A

8 ([θ]3)

[II, C3σ̃; C3, C3σ̃, C3]

C

A

pp
p

9 ([θ]15)

[II, C3σ̃; C3, C3σ̃, C3]

C

q

pp
p

10 ([θ]22)

[II, C3σ̃; C3, C3σ̃, C3]

C

p

pp
p

11 ([θ]21)

[II, C3σ̃; C3, C3σ̃, C3]

C

A

Ap
p

12 ([θ]5)

[II, C2σ̃; C2, C2σ̃, C2]

C

p

pq
q

13 ([θ]25)

[II, C2σ̃; C2, C2σ̃, C2]

C

A

Ap
B

14 ([θ]7)

[II, Cσ̃; C1, Cσ̃, C1]

C

A

Aq
p

15 ([θ]9)

[II, Cσ̃; C1, Cσ̃, C1]

C

A

Bp
p

16 ([θ]12)

[II, Cσ̃; C1, Cσ̃, C1]

C

A

pp
p

17 ([θ]16)

[II, Cσ̃; C1, Cσ̃, C1]

C

A

qp
p

18 ([θ]17)

[II, Cσ̃; C1, Cσ̃, C1]

C

p

pq
p

19 ([θ]24)

[II, Cσ̃; C1, Cσ̃, C1]

C

p

pq
q

20 ([θ]26)

[II, Cσ̃; C1, Cσ̃, C1]

C

p

pr
q

21 ([θ]27)

[II, Cσ̃; C1, Cσ̃, C1]

Type III [−,−,−]

C

A

BC
p

22 ([θ]11)

[III, C1; C1, C1, C1]

C

A

Bq
p

23 ([θ]14)

[III, C1; C1, C1, C1]

C

A

qp
p

24 ([θ]18)

[III, C1; C1, C1, C1]

C

A

rq
p

25 ([θ]19)

[III, C1; C1, C1, C1]

C

p

pr
q

26 ([θ]29)

[III, C1; C1, C1, C1]

C

p

qs
r

27 ([θ]30)

[III, C1; C1, C1, C1]

achiral

Type IV [a, a, a]

C

A

AA
A

28 ([θ]1)

[IV, Tdσ̃Î ; Td, Tσ̃, TÎ ]

C

B

AA
A

29 ([θ]2)

[IV, C3vσ̃Î ; C3v, C3σ̃, C3Î ]

C

A

AB
B

30 ([θ]4)

[IV, C2vσ̃Î ; C2v, C2σ̃, C2Î ]

C

p

pp
p

31 ([θ]23)

[IV, S4σ̃Î ; S4, C2σ̃, C2Î ]

C

B

CA
A

32 ([θ]6)

[IV, Csσ̃Î ; Cs, Cσ̃, CÎ ]

C

A

Ap
p

33 ([θ]8)

[IV, Csσ̃σ̂; Cs, Cσ̃, Cσ̂]

Type V [a,−,−]

C

A

Bp
p

34 ([θ]13)

[V, Cs; Cs, C1, C1]

Figure 3. Reference promolecules of quadruplets of RS -stereoisomers (Types I to
V) for tetrahedral promolecules. A quadruplet of RS -stereoisomers is
counted once under the action of the RS -stereoisomeric group T

dσ̃Î
, so

that an arbitrary promolecule is depicted as a representative of each
quadruplet of RS-stereoisomers. The partition (cf. Table 4) and its as-
pect index (designating [type, RS -stereoisomeric group; point group,
RS -permutation group, ligand-reflection group]) are attached to the
compound number of each promolecule.
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Table 5. Type-Itemized CI-CFs under the Action of the RS -Stereoisomeric Group
T
dσ̃Î

on a Tetrahedral Skeleton

Type (Type Index) CI-CF under the RS -Stereoisomeric Group T
dσ̃Î

Type I

([−,−, a])

CICF_I := -mCICF_Td + CICF_TI

= 1/24*a_1^4-1/4*a_1^2*a_2+1/3*a_1*a_3+1/8*c_2^2-1/4*c_2*a_2

+1/4*a_2^2-1/4*c_4

Type II

([−, a,−])

CICF_II := -mCICF_Td + CICF_Ts

= 1/4*b_1^2*b_2-1/4*a_1^2*a_2-1/4*c_2*a_2+1/4*a_2^2-1/4*c_4+1/4*b_4

Type III

([−,−,−])

CICF_III := mCICF_Td - CICF_TdsI

= 1/48*b_1^4-1/48*a_1^4-1/8*b_1^2*b_2-1/8*a_1^2*c_2+1/4*a_1^2*a_2

+1/6*b_1*b_3-1/6*a_1*a_3-1/16*c_2^2

+1/4*c_2*a_2+1/16*b_2^2-1/4*a_2^2+1/8*c_4-1/8*b_4

Type IV

([a, a, a])

CICF_IV := -CICF_T + 2*mCICF_Td

= 1/2*a_1^2*a_2+1/2*c_2*a_2-1/2*a_2^2+1/2*c_4

Type V

([a,−,−])

CICF_V := CICF_T - mCICF_Td - CICF_Ts - CICF_TI + 2*CICF_TdsI

= 1/4*a_1^2*c_2-1/4*a_1^2*a_2-1/4*c_2*a_2+1/4*a_2^2

gap> CICF_Vx := (1/4)*(a_1^2*c_2 - a_1^2*a_2 - a_2*c_2 + a_2^2);

1/4*a_1^2*c_2-1/4*a_1^2*a_2-1/4*c_2*a_2+1/4*a_2^2

gap> mCICF_Td := CICF_Td - CICF_Vx;

1/24*b_1^4+1/4*a_1^2*a_2+1/3*b_1*b_3+1/4*c_2*a_2+1/8*b_2^2-1/4*a_2^2+1/4*c_4

The CI-CF denoted by CICF_Vx is a CI-CF for calculating type-V quadruplets under the

action of the RS -stereoisomeric group Tdσ̃Î on a tetrahedral skeleton (Eq. 64 of [40]). The

corresponding modulated CI-CF (mCICF_Td) is calculated by CICF_Td - CICF_Vx, where

the modulated CI-CF (Eq. 65 of [40]) is interpreted to rely on the present computer-

oriented representations.

The set of CI-CFs collected in Table 3 (CICF_Ts, CICF_TI, CICF_T, and CICF_TdsI)

and the modulated CI-CF (mCICF_Td in place of CICF_Td) are used to calculate type-

itemized CI-CFs (denoted as CICF_I to CICF_V) according to Eqs. 7–11 of [40]. The

results are summarized in Table 5. They are identical with the CI-CFs reported in [40]

(Eqs. 66–70), which have been obtained without relying on the present computer-oriented

representations.

4.2 Type-Itemized Enumeration of RS -Stereoisomers Derived
from a Tetrahedral Skeleton

To accomplish type-itemized enumeration under the RS -stereoisomeric group Tdσ̃Î , the

ligand ligand-inventory functions shown in Eqs. 38–40 are introduced to the type-itemized
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CI-CFs (CICF_I to CICF_V) collected in Table 5. The resulting equations are expanded to

give generating functions (f_I to f_V) in a parallel way to Subsection 3.3. The coefficient

of each term in the generating functions is calculated by using the function calcCoeffGen

described above.

The source list for calculating the coefficients of the generating functions derived from

the CI-CFs collected in Table 5 is stored in a work file named enumType-TdsI1.gap, which

is attached as Appendix B. The results are shown in Table 6. The data of Table 6 are

consistent with the generating functions reported in Eqs. 77–81 of [39], which have been

calculated by an alternative procedure without relying on the present computer-oriented

representations.

Each type-itemized number of Table 6 is concerned with the number of quadruplets of

RS -stereoisomers which are inequivalent under the RS -stereoisomeric group Tdσ̃Î . This

means that one quadruplet of RS -stereoisomers is counted once, so that the value 1/2 at

the intersection between the [θ]3-row and the type-II column, for example, corresponds

to 1× 1
2
(A3p + A3p).

Table 6 indicates the presence of two type-I quadruplets of RS -stereoisomers, of fifteen

type-II quadruplets (due to 15/2), of six type-III quadruplets (due to 6/2), of six type-IV

quadruplets, and of one type-V quadruplet. The representative promolecules of these

quadruplets are depicted in Figure 3, where they are itemized into type I to type V.

5 Conclusion

Computer-oriented representations of RS -stereoisomeric groups have been developed,

where (roto)reflections (or ligand-reflections) and rotations (or RS -permutations) are dif-

ferentiated by means of a mirror-coset representation. Thereby, two subgroups isomorphic

under an RS -stereoisomeric group, i.e., a point group and an RS -permutation group, are

differentiated so as to specify chirality and RS -stereogenicity as two kinds of handedness.

The processes of combinatorial enumeration under an RS -stereoisomeric group, i.e.,

1. the construction of the RS -stereoisomeric group,

2. the calculation of the corresponding CI-CF,

3. the calculation of the corresponding generating function, and

4. the evaluation of the coefficient of each term appearing in the generating function
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Table 6. Type-Itemized Enumeration of RS -Stereoisomers Under T
dσ̃Î

type-itemized numbers

partition I II III IV V

[θ]1 = [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 1 0

[θ]2 = [3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 1 0

[θ]3 = [3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]4 = [2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 1 0

[θ]5 = [2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]6 = [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 1 0

[θ]7 = [2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]8 = [2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 0 0 0 1 0

[θ]9 = [2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]10 = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 1 0 0 0 0

[θ]11 = [1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0] 0 0 1/2 0 0

[θ]12 = [1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]13 = [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 0 0 0 0 1

[θ]14 = [1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0] 0 0 1/2 0 0

[θ]15 = [1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]16 = [1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]17 = [1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]18 = [1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0] 0 0 1/2 0 0

[θ]19 = [1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0] 0 0 1/2 0 0

[θ]20 = [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]21 = [0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]22 = [0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]23 = [0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0] 0 0 0 1 0

[θ]24 = [0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]25 = [0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]26 = [0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0] 0 1/2 0 0 0

[θ]27 = [0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0] 0 1/2 0 0 0

[θ]28 = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0] 1 0 0 0 0

[θ]29 = [0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0] 0 0 1/2 0 0

[θ]30 = [0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0] 0 0 1/2 0 0

total 2 15/2 6/2 6 1
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are computerized by using the GAP system.

Appendix A. Source List of enum-TdsI.gap for Enumerating Tetra-
hedral RS -Stereoisomers

The following program for combinatorial enumeration of RS -stereoisomers based on a

tetrahedral skeleton is stored in a file named enum-TdsI.gap (an arbitrary name), which

is placed in a work directory named c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/ (an

arbitrary name). To use the functions CalcConjClassCICF and calcCoeffGen, the

file CICFgenCC.gapfunc is beforehand loaded. To execute this file, the first line com-

mented out by the # symbol is copied and paste after the gap> prompt in the command

prompt of the Windows operating system. The output is stored in the log file named

enum-TdsIlog.txt (an arbitrary name), which contains the data for constructing Table

4. Each pair of lowercase letters p/p, q/q, r/r, or s/s in the ligand-inventory functions

(Eqs. 39 and e40) is replaced by a pair of an lowercase letter and the corresponding

uppercase letter (e.g., p/P).

#Read("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/enum-TdsI.gap");

LogTo("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/enum-TdsIlog.txt");

Read("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/CICFgenCC.gapfunc"); #Loading of CICFgenCC.gapfunc

gen_Td := [(1,3)(2,4), (2,3,4), (1,3)(5,6)];; Td := Group(gen_Td);

CICF_Td := CalcConjClassCICF(Td, 4, 6);

gen_Ts := [(1,3)(2,4), (2,3,4), (1,3)];; Ts := Group(gen_Ts);

CICF_Ts := CalcConjClassCICF(Ts, 4, 6);

gen_TI := [(1,3)(2,4), (2,3,4), (5,6)];; TI := Group(gen_TI);

CICF_TI := CalcConjClassCICF(TI, 4, 6);

gen_T := [(1,3)(2,4), (2,3,4)];; T := Group(gen_T);

CICF_T := CalcConjClassCICF(T, 4, 6);

gen_1 := [(1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6)];; TdsI := Group(gen_1);

CICF_TdsI := CalcConjClassCICF(TdsI, 4, 6);

A := Indeterminate(Rationals, "A"); B := Indeterminate(Rationals, "B");

C := Indeterminate(Rationals, "C"); D := Indeterminate(Rationals, "D");

p := Indeterminate(Rationals, "p"); P := Indeterminate(Rationals, "P");

q := Indeterminate(Rationals, "q"); Q := Indeterminate(Rationals, "Q");

r := Indeterminate(Rationals, "r"); R := Indeterminate(Rationals, "R");

s := Indeterminate(Rationals, "s"); S := Indeterminate(Rationals, "S");

b_1 := Indeterminate(Rationals, "b_1"); b_2 := Indeterminate(Rationals, "b_2");

b_3 := Indeterminate(Rationals, "b_3"); b_4 := Indeterminate(Rationals, "b_4");

a_1 := Indeterminate(Rationals, "a_1"); a_2 := Indeterminate(Rationals, "a_2");

a_3 := Indeterminate(Rationals, "a_3"); a_4 := Indeterminate(Rationals, "a_4");

c_2 := Indeterminate(Rationals, "c_2"); c_4 := Indeterminate(Rationals, "c_4");

aa_1 := A + B + C + D; aa_2 := A^2 + B^2 + C^2 + D^2;

aa_3 := A^3 + B^3 + C^3 + D^3; aa_4 := A^4 + B^4 + C^4 + D^4;

bb_1 := A + B + C + D + p + q + r + s + P + Q + R + S;

bb_2 := A^2 + B^2 + C^2 + D^2 + p^2 + q^2 + r^2 + s^2 + P^2 + Q^2 + R^2 + S^2;

bb_3 := A^3 + B^3 + C^3 + D^3 + p^3 + q^3 + r^3 + s^3 + P^3 + Q^3 + R^3 + S^3;

bb_4 := A^4 + B^4 + C^4 + D^4 + p^4 + q^4 + r^3 + s^3 + P^4 + Q^4 + R^4 + S^4;

cc_2 := A^2 + B^2 + C^2 + D^2 + 2*p*P + 2*q*Q + 2*r*R + 2*s*S;
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cc_4 := A^4 + B^4 + C^4 + D^4 + 2*p^2*P^2 + 2*q^2*Q^2 + 2*r^2*R^2 + 2*s^2*S^2;

f_Td := Value(CICF_Td, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_Ts := Value(CICF_Ts, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_TI := Value(CICF_TI, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_T := Value(CICF_T, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_TdsI := Value(CICF_TdsI, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

list_partitions :=[];

calcCoeffGenTdsI := function(list_partitions)

local list_ligand_L, l_pp;

list_ligand_L := [A,B,C,D,p,P,q,Q,r,R,s,S];

l_pp := list_partitions;

Print("$", l_pp, "$ & ",

calcCoeffGen(f_Td, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_Ts, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_TI, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_T, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_TdsI, list_ligand_L, list_partitions), " \\\\ \n");

end;

#"Print A4";

calcCoeffGenTdsI([4,0,0,0,0,0,0,0,0,0,0,0]);

#"Print A3";

calcCoeffGenTdsI([3,1,0,0,0,0,0,0,0,0,0,0]); calcCoeffGenTdsI([3,0,0,0,1,0,0,0,0,0,0,0]);

#"Print A2";

calcCoeffGenTdsI([2,2,0,0,0,0,0,0,0,0,0,0]); calcCoeffGenTdsI([2,0,0,0,2,0,0,0,0,0,0,0]);

calcCoeffGenTdsI([2,1,1,0,0,0,0,0,0,0,0,0]); calcCoeffGenTdsI([2,1,0,0,1,0,0,0,0,0,0,0]);

calcCoeffGenTdsI([2,0,0,0,1,1,0,0,0,0,0,0]); calcCoeffGenTdsI([2,0,0,0,1,0,1,0,0,0,0,0]);

#"Print A1";

calcCoeffGenTdsI([1,1,1,1,0,0,0,0,0,0,0,0]); calcCoeffGenTdsI([1,1,1,0,1,0,0,0,0,0,0,0]);

calcCoeffGenTdsI([1,1,0,0,2,0,0,0,0,0,0,0]); calcCoeffGenTdsI([1,1,0,0,1,1,0,0,0,0,0,0]);

calcCoeffGenTdsI([1,1,0,0,1,0,1,0,0,0,0,0]); calcCoeffGenTdsI([1,0,0,0,3,0,0,0,0,0,0,0]);

calcCoeffGenTdsI([1,0,0,0,2,1,0,0,0,0,0,0]); calcCoeffGenTdsI([1,0,0,0,2,0,1,0,0,0,0,0]);

calcCoeffGenTdsI([1,0,0,0,1,1,1,0,0,0,0,0]); calcCoeffGenTdsI([1,0,0,0,1,0,1,0,1,0,0,0]);

#"Print A0";

calcCoeffGenTdsI([0,0,0,0,4,0,0,0,0,0,0,0]); calcCoeffGenTdsI([0,0,0,0,3,1,0,0,0,0,0,0]);

calcCoeffGenTdsI([0,0,0,0,3,0,1,0,0,0,0,0]); calcCoeffGenTdsI([0,0,0,0,2,2,0,0,0,0,0,0]);

calcCoeffGenTdsI([0,0,0,0,2,1,1,0,0,0,0,0]); calcCoeffGenTdsI([0,0,0,0,2,0,2,0,0,0,0,0]);

calcCoeffGenTdsI([0,0,0,0,2,0,1,1,0,0,0,0]); calcCoeffGenTdsI([0,0,0,0,2,0,1,0,1,0,0,0]);

calcCoeffGenTdsI([0,0,0,0,1,1,1,1,0,0,0,0]); calcCoeffGenTdsI([0,0,0,0,1,1,1,0,1,0,0,0]);

calcCoeffGenTdsI([0,0,0,0,1,0,1,0,1,0,1,0]);

LogTo();

Appendix B. Source List of enumType-TdsI1.gap for Type-Itemized
Enumeration of Tetrahedral RS -Stereoisomers

The following program for combinatorial enumeration of RS -stereoisomers based on a

tetrahedral skeleton is stored in a file named enumType-TdsI1.gap (an arbitrary name),

which is placed in a work directory named c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/

(an arbitrary name). To use the functions CalcConjClassCICF and calcCoeffGen, the

file CICFgenCC.gapfunc is beforehand loaded. To execute this file, the first line com-

mented out by the # symbol is copied and paste after the gap> prompt in the command
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prompt of the Windows operating system. The output is stored in the log file named

enumType-TdsI1log (an arbitrary name), which contains the data for constructing Table

6. Each pair of lowercase letters p/p, q/q, r/r, or s/s in the ligand-inventory functions

(Eqs. 39 and e40) is replaced by a pair of an lowercase letter and the corresponding

uppercase letter (e.g., p/P).

#Read("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/enumType-TdsI1.gap");

LogTo("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/enumType-TdsI1log.txt");

Read("c:/fujita0/fujita2016/TdsI-GAP/calc-GAP/CICFgenCC.gapfunc"); #Loading of CICFgenCC.gapfunc

gen_Td := [(1,3)(2,4), (2,3,4), (1,3)(5,6)];; Td := Group(gen_Td);

CICF_Td := CalcConjClassCICF(Td, 4, 6);

gen_Ts := [(1,3)(2,4), (2,3,4), (1,3)];; Ts := Group(gen_Ts);

CICF_Ts := CalcConjClassCICF(Ts, 4, 6);

gen_TI := [(1,3)(2,4), (2,3,4), (5,6)];; TI := Group(gen_TI);

CICF_TI := CalcConjClassCICF(TI, 4, 6);

gen_T := [(1,3)(2,4), (2,3,4)];; T := Group(gen_T);

CICF_T := CalcConjClassCICF(T, 4, 6);

gen_1 := [(1,3)(2,4), (2,3,4), (1,3)(5,6), (5,6)];; TdsI := Group(gen_1);

CICF_TdsI := CalcConjClassCICF(TdsI, 4, 6);

b_1 := Indeterminate(Rationals, "b_1"); b_2 := Indeterminate(Rationals, "b_2");

b_3 := Indeterminate(Rationals, "b_3"); b_4 := Indeterminate(Rationals, "b_4");

a_1 := Indeterminate(Rationals, "a_1"); a_2 := Indeterminate(Rationals, "a_2");

a_3 := Indeterminate(Rationals, "a_3"); a_4 := Indeterminate(Rationals, "a_4");

c_2 := Indeterminate(Rationals, "c_2"); c_4 := Indeterminate(Rationals, "c_4");

#Modulated CICF

CICF_Vx := (1/4)*(a_1^2*c_2 - a_1^2*a_2 - a_2*c_2 + a_2^2);

mCICF_Td := CICF_Td - CICF_Vx;

#Type-Itemized CI-CFs

CICF_I := -mCICF_Td + CICF_TI;

CICF_II := -mCICF_Td + CICF_Ts;

CICF_III := mCICF_Td - CICF_TdsI;

CICF_IV := -CICF_T + 2*mCICF_Td;

CICF_V := CICF_T - mCICF_Td - CICF_Ts - CICF_TI + 2*CICF_TdsI;

#Indeterminates for Enumeration

A := Indeterminate(Rationals, "A"); B := Indeterminate(Rationals, "B");

C := Indeterminate(Rationals, "C"); D := Indeterminate(Rationals, "D");

p := Indeterminate(Rationals, "p"); P := Indeterminate(Rationals, "P");

q := Indeterminate(Rationals, "q"); Q := Indeterminate(Rationals, "Q");

r := Indeterminate(Rationals, "r"); R := Indeterminate(Rationals, "R");

s := Indeterminate(Rationals, "s"); S := Indeterminate(Rationals, "S");

#Ligand-Inventory Functions

aa_1 := A + B + C + D; aa_2 := A^2 + B^2 + C^2 + D^2;

aa_3 := A^3 + B^3 + C^3 + D^3; aa_4 := A^4 + B^4 + C^4 + D^4;

bb_1 := A + B + C + D + p + q + r + s + P + Q + R + S;

bb_2 := A^2 + B^2 + C^2 + D^2 + p^2 + q^2 + r^2 + s^2 + P^2 + Q^2 + R^2 + S^2;

bb_3 := A^3 + B^3 + C^3 + D^3 + p^3 + q^3 + r^3 + s^3 + P^3 + Q^3 + R^3 + S^3;

bb_4 := A^4 + B^4 + C^4 + D^4 + p^4 + q^4 + r^3 + s^3 + P^4 + Q^4 + R^4 + S^4;

cc_2 := A^2 + B^2 + C^2 + D^2 + 2*p*P + 2*q*Q + 2*r*R + 2*s*S;

cc_4 := A^4 + B^4 + C^4 + D^4 + 2*p^2*P^2 + 2*q^2*Q^2 + 2*r^2*R^2 + 2*s^2*S^2;

#Generating Function for Type I to type V

f_I := Value(CICF_I, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_II := Value(CICF_II, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;
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f_III := Value(CICF_III, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_IV := Value(CICF_IV, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_V := Value(CICF_V, [a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

#Function for Constructing Tabular Format

list_partitions :=[];

calcCoeffGenType := function(list_partitions)

local list_ligand_L, l_pp;

list_ligand_L := [A,B,C,D,p,P,q,Q,r,R,s,S];

l_pp := list_partitions;

Print("$", l_pp, "$ & ",

calcCoeffGen(f_I, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_II, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_III, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_IV, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_V, list_ligand_L, list_partitions), " \\\\ \n");

end;

#"Print A4";

calcCoeffGenType([4,0,0,0,0,0,0,0,0,0,0,0]);

#"Print A3";

calcCoeffGenType([3,1,0,0,0,0,0,0,0,0,0,0]); calcCoeffGenType([3,0,0,0,1,0,0,0,0,0,0,0]);

#"Print A2";

calcCoeffGenType([2,2,0,0,0,0,0,0,0,0,0,0]); calcCoeffGenType([2,0,0,0,2,0,0,0,0,0,0,0]);

calcCoeffGenType([2,1,1,0,0,0,0,0,0,0,0,0]); calcCoeffGenType([2,1,0,0,1,0,0,0,0,0,0,0]);

calcCoeffGenType([2,0,0,0,1,1,0,0,0,0,0,0]); calcCoeffGenType([2,0,0,0,1,0,1,0,0,0,0,0]);

#"Print A1";

calcCoeffGenType([1,1,1,1,0,0,0,0,0,0,0,0]); calcCoeffGenType([1,1,1,0,1,0,0,0,0,0,0,0]);

calcCoeffGenType([1,1,0,0,2,0,0,0,0,0,0,0]); calcCoeffGenType([1,1,0,0,1,1,0,0,0,0,0,0]);

calcCoeffGenType([1,1,0,0,1,0,1,0,0,0,0,0]); calcCoeffGenType([1,0,0,0,3,0,0,0,0,0,0,0]);

calcCoeffGenType([1,0,0,0,2,1,0,0,0,0,0,0]); calcCoeffGenType([1,0,0,0,2,0,1,0,0,0,0,0]);

calcCoeffGenType([1,0,0,0,1,1,1,0,0,0,0,0]); calcCoeffGenType([1,0,0,0,1,0,1,0,1,0,0,0]);

#"Print A0";

calcCoeffGenType([0,0,0,0,4,0,0,0,0,0,0,0]); calcCoeffGenType([0,0,0,0,3,1,0,0,0,0,0,0]);

calcCoeffGenType([0,0,0,0,3,0,1,0,0,0,0,0]); calcCoeffGenType([0,0,0,0,2,2,0,0,0,0,0,0]);

calcCoeffGenType([0,0,0,0,2,1,1,0,0,0,0,0]); calcCoeffGenType([0,0,0,0,2,0,2,0,0,0,0,0]);

calcCoeffGenType([0,0,0,0,2,0,1,1,0,0,0,0]); calcCoeffGenType([0,0,0,0,2,0,1,0,1,0,0,0]);

calcCoeffGenType([0,0,0,0,1,1,1,1,0,0,0,0]); calcCoeffGenType([0,0,0,0,1,1,1,0,1,0,0,0]);

calcCoeffGenType([0,0,0,0,1,0,1,0,1,0,1,0]);

LogTo();
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