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Abstract

In order to enhance the applicability of Fujita’s proligand method (S. Fujita,
Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and Chem-
ical Compounds, Mathematical Chemistry Monographs Series, Vol. 15, Kraguje-
vac, 2013), functions for calculating cycle indices with chirality fittingness (CI-CFs)
have been developed on the basis of the GAP (Groups, Algorithms, Programming)
system. After a mirror-permutation representations is defined to characterize a
(roto)reflection, a combined-permutation representation is defined as a computer-
oriented representation of a point group. Such a computer-oriented representation
has been used to develop the GAP functions for calculating CI-CFs, where conju-
gacy classes are taken into consideration for the purpose of simplifying calculation
processes. The source program containing these GAP functions is attached as an
appendix. The resulting CI-CFs have been applied to combinatorial enumeration of
promolecules derived from Oh-skeletons (an octahedron, a cube, a cuboctahedron,
a truncated octahedron, and a truncated hexahedron). A GAP program for calcu-
lating the numbers of cubane derivatives is attached as another appendix in order
to illustrate a straightforward procedure of Fujita’s proligand method.
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1 Introduction

Gross enumeration of chemical compounds has been widely conducted by using Pólya’s

theorem, as summarized in reviews [1–5] and books [6–9]. As the title of the English

translation [10] of Pólya’s original article [11] (“Combinatorial Enumeration of Groups,

Graphs, and Chemical Compounds”) indicates, Pólya’s theorem aims at the enumera-

tion of chemical compounds as graphs, where it is based on cycle indices (CIs) as key

polynomials for enumerating graphs.

On the other hand, the title of a book on Fujita’s proligand method [12] (“Com-

binatorial Enumeration of Graphs, Three-Dimensional Structures, and Chemical Com-

pounds”) indicates that its main target is the enumeration of chemical compounds as

three-dimensional (3D) structures, where it is based on cycle indices with chirality fitting-

ness (CI-CFs) as key polynomials for enumerating 3D structures.

Computer systems for supporting group theory (e.g., the GAP (Groups, Algorithms,

Programming) system [13], the Maple system [14], and the Mathematica system [15])

have laid stress on enumeration of graphs without considering ligand reflections, where

Pólya’s theorem [10, 11] has been mainly used as an enumeration device. As a result,

they support a function of calculating CIs without chirality fittingness (e.g., the function

CycleIndex of the GAP system).

As a mirror of the stress laid on graphs, such computer systems have not yet equipped

with functions of calculating CI-CFs, which are used to enumerate 3D structures with

considering ligand reflections in Fujita’s proligand method [12, 16]. For the purpose of

enumerating chemical compounds as 3D structures by such computer systems, the effects

of ligand reflections for characterizing chirality fittingness have recently been formulated

on the basis of the concept of sphericities, where ligand reflections are specified by mirror-

permutation representations. Thereby, a set of GAP functions for calculating CI-CFs has

been developed after formulating computer-oriented representations of point groups, as

reported recently in this journal [17].

To pursue further applications based on the GAP system, the set of GAP functions

should be linked to group-theoretical properties such as conjugacy classes and homomor-

phism related to the computer-oriented representations. The purpose of this article is to

develop another set of GAP functions for calculating CI-CFs after examining conjugacy

classes and homomorphism by using several Oh-skeletons as probes. Practical proce-
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Figure 1. Oh-Skeletons: Octahedron 1 (OC -6), cube 2 (CU -8), cuboctahedron 3,
truncated octahedron 4, and truncated hexahedron (truncated cube) 5.

dures for calculating CI-CFs will be demonstrated to enhance the applicability of Fujita’s

proligand method.

2 Computer-Oriented Representations for Enumera-

tion Under Point Groups

For the sake of self-containment, several items formulated in a recent article [17] are

adopted after appropriate modifications to treat Oh-skeletons listed in Figure 1.

2.1 Coset Representations Assigned to Oh-Skeletons

Let us first examine an octahedral skeleton 1 as a typical example of an Oh-skeleton,

where the six positions construct an orbit governed by a coset representation Oh(/C4v).

The concrete form of Oh(/C4v) can be obtained algebraically by starting from its multi-

plication table and the corresponding coset decomposition of the point group Oh (order:

|Oh| = 48 ) by the subgroup C4v (order: |C4v| = 8) [18–20]. The coset representation

Oh(/C4v) is shown as a set of products of cycles in Figure 2, which is a modification of

Figure 2 of [20] (the numbering of the two-fold axes has been changed).

Geometrically speaking, the six positions of 1 are equivalent under the action of the

point group Oh, so that they belong to an orbit (equivalence class) governed by the
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Oh(/C4v), P
(XX)
Oh

P
(χ)
Oh

Oh(/C4v), P
(XX)
Oh

P
(χ)
Oh

operation product of cycles PSI operation product of cycles PSI

I (1)(2)(3)(4)(5)(6) (7)(8) b61 i (1 6)(2 4)(3 5) (7 8) c32
C2(3) (1)(2 4)(3 5)(6) (7)(8) b21b

2
2 σh(3) (1)(2 4)(3)(5)(6) (7 8) a41c2

C2(1) (1 6)(3 5)(2)(4) (7)(8) b21b
2
2 σh(2) (1)(2)(3 5)(4)(6) (7 8) a41c2

C2(2) (1 6)(2 4)(3)(5) (7)(8) b21b
2
2 σh(1) (1 6)(2)(3)(4)(5) (7 8) a41c2

C3(1) (1 3 2)(4 6 5) (7)(8) b23 S5
6(1) (1 4 3 6 2 5) (7 8) c6

C3(3) (1 4 5)(2 3 6) (7)(8) b23 S5
6(3) (1 3 4 6 5 2) (7 8) c6

C3(2) (1 4 3)(2 5 6) (7)(8) b23 S5
6(2) (1 5 4 6 3 2) (7 8) c6

C3(4) (1 2 5)(3 6 4) (7)(8) b23 S5
6(4) (1 3 2 6 5 4) (7 8) c6

C2
3(1) (1 2 3)(4 5 6) (7)(8) b23 S6(1) (1 5 2 6 3 4) (7 8) c6

C2
3(3) (1 5 4)(2 6 3) (7)(8) b23 S6(4) (1 4 5 6 2 3) (7 8) c6

C2
3(2) (1 3 4)(2 6 5) (7)(8) b23 S6(3) (1 2 5 6 4 3) (7 8) c6

O C2
3(4) (1 5 2)(3 4 6) (7)(8) b23 Oi S6(2) (1 2 3 6 4 5) (7 8) c6

C ′
2(6) (1 6)(2 5)(3 4) (7)(8) b32 σd(1) (1)(2 3)(4 5)(6) (7 8) a21c

2
2

C ′
2(1) (1 6)(2 3)(4 5) (7)(8) b32 σd(6) (1)(2 5)(3 4)(6) (7 8) a21c

2
2

C ′
2(4) (1 2)(3 5)(4 6) (7)(8) b32 σd(2) (1 3)(2)(4)(5 6) (7 8) a21c

2
2

C ′
2(2) (1 5)(2 4)(3 6) (7)(8) b32 σd(4) (1 5)(2)(4)(3 6) (7 8) a21c

2
2

C ′
2(5) (1 4)(2 6)(3 5) (7)(8) b32 σd(3) (1 4)(2 6)(3)(5) (7 8) a21c

2
2

C ′
2(3) (1 3)(2 4)(5 6) (7)(8) b32 σd(5) (1 2)(4 6)(3)(5) (7 8) a21c

2
2

C3
4(3) (1)(2 3 4 5)(6) (7)(8) b21b4 S4(3) (1 6)(2 3 4 5) (7 8) c2c4

C4(3) (1)(2 5 4 3)(6) (7)(8) b21b4 S3
4(3) (1 6)(2 5 4 3) (7 8) c2c4

C3
4(1) (1 5 6 3)(2)(4) (7)(8) b21b4 S4(1) (1 3 6 5)(2 4) (7 8) c2c4

C4(1) (1 3 6 5)(2)(4) (7)(8) b21b4 S3
4(1) (1 5 6 3)(2 4) (7 8) c2c4

C4(2) (1 4 6 2)(3)(5) (7)(8) b21b4 S4(2) (1 2 6 4)(3 5) (7 8) c2c4

C3
4(2) (1 2 6 4)(3)(5) (7)(8) b21b4 S3

4(2) (1 4 6 2)(3 5) (7 8) c2c4

Figure 2. Operations of the point group Oh, a coset representation Oh(/C4v) as
a set of products of cycles, and the corresponding set of products of
sphericity indices (PSIs).

coset representation Oh(/C4v). The degree of Oh(/C4v) indicates the size of the orbit

(|Oh|/|C4v| = 48/8 = 6), which shows the number of equivalent positions in 1. The

symbol Oh(/C4v) indicates that the global symmetry of 1 is the point group Oh and that

the local symmetry assigned to each position of the Oh(/C4v)-orbit of 1 is the subgroup

C4v. The local symmetry C4v (or its conjugate subgroup in Oh) is the stabilizer of one

of the six positions, so that the action of C4v fixes (stabilizes) the position at issue.

For example, suppose that the four-fold axis is selected to run through the positions

1 and 6 of 1. Then, the point group C4v is determined to be:

C4v = {I, C2(3), C4(3), C
3
4(3), σd(1), σd(6), σh(2), σh(3)}, (1)
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where the corresponding products of cycles are shown in the Oh(/C4v)-column of Figure

2. The point group C4v (Eq. 1) fixes the position 1 (and 6) of 1. In fact, the elements

corresponding to C4v (Eq. 1) commonly contain two 1-cycles, i.e., (1)(6) (or (1)(6)), as

listed in the Oh(/C4v)-column of Figure 2. These two 1-cycles show that the positions 1

and 6 are fixed under the action of C4v (Eq. 1).

Each operation of Oh(/C4v) is classified into a proper operation (a rotation) or an

improper operation (a reflection or a rotoreflection) according to the following coset de-

composition:

Oh = O + Oi = O + Oσh(1), (2)

where the first coset O (= OI) contains rotations (the left part of Figure 2), while the

second coset Oi (= Oσh(1)) contains reflections and rotoreflections (the right part of Figure

2). Because each (roto)reflection is accompanied by a ligand reflection, the corresponding

product of cycles is overlined in order to treat the sphericities of cycles, as shown in the

right part of Figure 2.

The properties mentioned above by using an octahedral skeleton 1 can be discussed

also in case of the other Oh-skeletons listed in Figure 1. The eight positions of a cubic

skeleton 2 construct an orbit governed by the coset representation Oh(/C3v). The concrete

form of Oh(/C3v) has been reported in a previous report in this journal [21]. The degree

of the coset representation Oh(/C3v) is calculated to be |Oh|/|C3v| = 48/6 = 8. The

coset representation Oh(/C3v) also governs the eight triangular faces of an octahedral

skeleton 1.

Suppose that the three-fold axis is selected to run through the positions 1 and 7 of 2.

Then, the subgroup C3v is determined to be:

C3v = {I, C3(1), C
2
3(1), σd(1), σd(2), σd(5)}. (3)

The subgroup C3v fixes the position 1 (or 7) of 2, so that the local symmetry of the

position 1 (or 7) is determined to be C3v. For the product of cycles for the three-fold

rotation C3(1), i.e., (2, 5, 4)(3, 6, 8) (implicitly, two 1-cycles, (1)(7)), see the correspondence

listed in Table 2 described later.

The twelve positions of a cuboctahedral skeleton 3 construct an orbit governed by

the coset representation Oh(/C
′′
2v). The degree of the coset representation Oh(/C

′′
2v) is

calculated to be |Oh|/|C ′′
2v| = 48/4 = 12. The coset representation Oh(/C

′′
2v) also governs
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the twelve edges of an octahedral skeleton 1 [22] as well as the the twelve edges of a cubic

skeleton 2. Note that there are the following three kinds of subgroups:

C2v = {I, C2(3), σh(2), σh(3)} (4)

C ′
2v = {I, C2(3), σd(1), σd(6)} (5)

C ′′
2v = {I, C ′

2(1), σh(1), σd(1)}, (6)

which are not conjugate to one another under the action of Oh. Among them, the last

one C ′′
2v (Eq. 6) is selected as the local symmetry of the cuboctahedral skeleton 3, because

C ′′
2v (Eq. 6) fixes the position 6 (or 8) of 3. For the product of cycles for the two-fold

rotation C ′
2(1), i.e., (1, 12)(2, 11)(3, 10)(4, 9)(5, 7) (implicitly, two 1-cycles, (6)(8)), see the

correspondence listed in Table 2 described later.

The twenty-four positions of a truncated octahedral skeleton 4 construct an orbit

governed by the coset representation Oh(/Cs). The degree of the coset representation

Oh(/Cs) is calculated to be |Oh|/|Cs| = 48/2 = 24. The σh(2)-mirror plane of 4 is

selected to contain the positions 2, 6, 18, 22, 24, 20, 8, and 4, so as to generate the

following subgroup:

Cs = {I, σh(2)}. (7)

This subgroup can be adopted as the local symmetry of the Oh(/Cs)-orbit, because anyone

of the positions contained in the the σh(2)-mirror plane (2, 6, 18, 22, 24, 20, 8, and 4) is

fixed under the action of Cs.

The twenty-four positions of a truncated hexahedral skeleton 5 construct an orbit

governed by the coset representation Oh(/C
′
s). The degree of the coset representation

Oh(/C
′
s) is calculated to be |Oh|/|C ′

s| = 48/2 = 24. The σd(1)-mirror plane of 5 is

selected to contain the positions 9, 13, 15, and 11. Thereby, the local symmetry of the

Oh(/C
′
s)-orbit is determined as follows:

C ′
s = {I, σd(1)}, (8)

which fixes anyone of the positions contained in the the σd(1)-mirror plane (9, 13, 15, and

11).

According to Fujita’s unit-subduced-cycle-index (USCI) approach [18], the derivation

of a coset representation G(/Gi) is based on a coset decomposition of a given group

G by its subgroup Gi, where the group G is algebraically constructed by starting from
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the multiplication table of G. As a result, the subgroup Gi runs to cover all of the

subgroups of G, so that the resulting coset representations G(/Gi) are linked with one

another in accord with the group-subgroup relationship of G. Thus, the coset represen-

tations for characterizing Oh-skeletons, i.e., Oh(/C4v) for 1, Oh(/C3v) for 2, Oh(/C
′′
2v)

for 3, Oh(/Cs) for 4, and Oh(/C
′
s) for 5, are linked with one another in accord with the

group-subgroup relationship of Oh, so long as we obey the methodology of Fujita’s USCI

approach [18].

It should be noted that the subgroups represented by Eqs. 1, 3, 6, 7, and 8 can be

commonly applied to all of the Oh-skeletons listed in Figure 1, because they are the

subgroups of the point group Oh. For example, the subgroup C4v (Eq. 1 or its conjugate

subgroup) fixes one object (vertex or face) selected from the 6 vertices of 1, the 6 square

faces of 2, the 6 square faces of 3, the 8 square faces of 4, or the 8 octagonal faces of 5, so

that the respective orbits are governed commonly by the coset representation Oh(/C4v)

(degree: |Oh| = |C4v| = 48/8 = 6). Similarly, the subgroup C3v (Eq. 3 or its conjugate

subgroup) fixes one object (vertex or face) selected from the 8 triangular faces of 1, the

8 vertices of 2, the 8 triangular faces of 3, the 8 hexagonal faces of 4, or the 8 triangular

faces of 5, so that the respective orbits are governed commonly by the coset representation

Oh(/C3v) (degree: |Oh| = |C3v| = 48/6 = 8).

On the other hand, the present approach described below adopts a different way on

the basis of the GAP function Group, where each coset representation is regarded as a

permutation group generated from an appropriate set of generators. So long as a permu-

tation group is constructed by using the GAP function Group, such a permutation group

as corresponding to a coset representation G(/Gi) (e.g., Oh(/C4v)) is not linked initially

with another permutation group corresponding to G(/G ′
i) (e.g., Oh(/C3v)). Conceptu-

ally speaking, the two permutation groups constructed by using the GAP function Group

are independent of each other. Hence, it is necessary to clarify the correspondence be-

tween one permutation group for G(/Gi) and the other for G(/G ′
i) in a subsequent step

(cf. Tables 2 and 3).

2.2 Mirror-Permutation Representations

Figure 3 illustrates the effects of the reflection σh(1) (∼ P(XX)
σh(1)

= (1 6)(2)(3)(4)(5)), where

an octahedral skeleton 1 is converted into its enantiomer 1 and vice versa. When we focus
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⑤1
⑤2 ✉✉5 ⑤4⑤3 ⑤6

P (XX)

σh(1)
= (1 6)(2)(3)(4)(5)

P (Xχ)

σh(1)
= (1 6)(2)(3)(4)(5)(7 8)

⑤6
⑤2 ✉✉5 ⑤4⑤3 ⑤1

1 (X) 1 (X)⑤6
⑤2 ✉✉5 ⑤4⑤3 ⑤1

P (XX)

σh(1)
= (1 6)(2)(3)(4)(5)

P (Xχ)

σh(1)
= (1 6)(2)(3)(4)(5)(7 8)

⑤1
⑤2 ✉✉5 ⑤4⑤3 ⑤6

1 (X) 1 (X)

Figure 3. Reflections for an Octahedral Skeleton

our attention on the six positions numbered sequentially, such a (roto)reflection as σh(1)

implies a mirror transformation, which converts a numbered set of positions:

X = {1, 2, . . . , 6} (9)

into a mirror-numbered set of positions:

X = {1, 2, . . . , 6} (10)

and vice versa. It follows that X (or X) represents local chirality.

In order to formulate the effects of ligand reflections implied by (roto)reflections, we

consider a set of local chiralities:

χ = {X,X} = {7, 8}, (11)

where the selection of the numbers (7 and 8) depends on the size of X. The action of Oh

on the set χ is determined by a permutation representation P
(χ)
Oh

, the elements of which

are represented as follows:

P(χ)
G =

(
X X

X X

)
=

(
7 8

7 8

)
= (7)(8) for G ∈ O: rotations (12)

P(χ)
G =

(
X X

X X

)
=

(
7 8

8 7

)
= (7 8) for G ∈ Oi: (roto)reflections (13)

The permutation representation P
(χ)
Oh

is called a mirror-permutation representation [17],

which can be used to evaluate the effects of ligand reflections. Note that such a mirror-

permutation representation corresponds to a coset representation Oh(/O) of degree 2.
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2.3 Groups Corresponding to Combined Representations

By omitting overline symbols from the respective permutations of P
(XX)
Oh

(= Oh(/C4v)),

we construct another permutation representation P
(X)
Oh

. Then, the resulting permutation

representation P
(X)
Oh

is combined with the mirror-permutation representation P
(χ)
Oh

to give

a combined-permutation representation:

P (Xχ)

Oh
= P (X)

Oh
⊕P (χ)

Oh
= {P (X)

G ⊕P (χ)

G | ∀G ∈ Oh}, (14)

where the symbol P (X)

G ⊕ P (χ)

G is a combination of the two permutations at issue, e.g.,

(1 6)(2)(3)(4)(5) ⊕ (7 8) = (1 6)(2)(3)(4)(5)(7 8). The representation P (Xχ)

Oh
(Eq. 14) can

be used in place of the permutation representation P (XX)

Oh
[17].

If a given skeleton (e.g., 1) is faithfully characterized by a permutation representation

(e.g., P
(XX)
Oh

), the permutation representation is presumed to be a permutation group.

Thereby, the corresponding combined representation (e.g., P (Xχ)

Oh
) is regarded as a permu-

tation group isomorphic to the original point group (e.g., Oh).

To construct a permutation group corresponding to P (Xχ)

Oh
, for example, the following

set of generators is taken into consideration:

C3
4(3) ∼ (1)(2 3 4 5)(6)(7)(8) = (2 3 4 5) (15)

C2
3(1) ∼ (1 2 3)(4 5 6)(7)(8) = (1 2 3)(4 5 6) (16)

σh(1) ∼ (1 6)(2)(3)(4)(5)(7 8) = (1 6)(7 8), (17)

where a four-fold rotation (C3
4(3)), a three-fold rotation (C2

3(1)), and a reflection (σh(1))

are appropriately selected as generators. These generators are selected from Figure 2 by

referring to the numbering of 1 (Figure 1). Note that every 1-cycles are omitted according

to the convention of the GAP system. These generators are stored as a list gen1, which

is placed as an argument of the GAP function Group as follows:
gap> gen1 := [(2,3,4,5), (1,2,3)(4,5,6), (1,6)(7,8)];; #generators

gap> Oh_octa := Group(gen1); #octahedral skeleton

Group([ (2,3,4,5), (1,2,3)(4,5,6), (1,6)(7,8) ])

gap> Size(Oh_octa);

48

gap> Elements(Oh_octa);

[ (), (3,5)(7,8), (2,3)(4,5)(7,8), (2,3,4,5), (2,4)(7,8), (2,4)(3,5), (2,5,4,3), (2,5)(3,4)(7,8),

(1,2)(4,6)(7,8),

(omitted)

(1,6)(2,5,4,3)(7,8), (1,6)(2,5)(3,4) ]

Thereby, the permutation group named Oh_octa (order 48) is generated in accord with

the combined-permutation representation P (Xχ)

Oh
, where its order is calculated by the GAP

function Size and its elements are obtained by means of the GAP function Elements.

-417-



2.4 Partition into Conjugacy Classes

To calculate CI-CFs, we should determine cycle structures of permutations. Because such

a cycle structure is common to permutations of the same conjugacy class, it is necessary

to develop a function for calculating the partition of permutations into conjugacy classes.

To do this task, the GAP function ConjugacyClasses and related functions are used

as follows, where the permutation group Oh_octa has been obtained from the above-

mentioned set of generators (gen1).

gap> conj_class := ConjugacyClasses(Oh_octa);;

gap> Size(conj_class); #number of conjugacy classes

10

gap> Elements(conj_class[2]);

[ (3,5)(7,8), (2,4)(7,8), (1,6)(7,8) ]

gap> r_conj_class := Representative(conj_class[2]);

(3,5)(7,8)

gap> CycleLengths(r_conj_class, [1..8]); #full degree

[ 1, 1, 2, 1, 1, 2 ]

gap> CycleLengths(r_conj_class, [1..6]); #net degree

[ 1, 1, 2, 1, 1 ]

As a result, the list of conjugacy classes (conj_class) obtained by the GAP function

ConjugacyClasses contains 10 inner lists of permutations. Among the inner lists of

permutations, the 2nd inner list of permutations, for example, is obtained by inputting

Elements(conj_class[2]) so as to show three permutations for specifying horizontal

reflection operations (σh(2), σh(3), and σh(1)), which is referred to as a conjugacy class

Cl(σh(2)). The representative (r_conj_class) of the 2nd inner list of permutations is

determined to be (3, 5)(7, 8) (∼ σh(2)), which has a cycle structure 1422 as found in the

data [ 1, 1, 2, 1, 1, 2 ]. The net cycle structure for calculating a CI-CF is 142, as

found in the data [ 1, 1, 2, 1, 1 ]. Note that anyone of the permutations (for σh(2),

σh(3), and σh(1)) can be selected as a representative, so that Cl(σh(1)) or Cl(σh(3)) denotes

the same conjugacy class as Cl(σh(2)).

To calculate CI-CFs, the list of conjugacy classes (conj_class) should be interme-

diately divided into the list of rotations and the list of (roto)reflections. By comparing

[ 1, 1, 2, 1, 1, 2 ] with [ 1, 1, 2, 1, 1 ], the last digit 2 of the former indi-

cates the presence of the permutation (7 8), which shows that the permutations of the

2nd inner list correspond to (roto)reflections. On the basis of this information, a function

divideConjClasses for obtaining such an intermediately divided list of conjugacy classes

is developed:

divideConjClasses(group, degree, degreefull)

where the first argument group denotes a given group G (as a combined-permutation
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representation P (Xχ)

G ), the second argument degree denotes the degree of P (X)

G , and the

third argument degreefull denotes the degree of P (Xχ)

G . The source list of this function is

stored in a file named CICFgenCC.gapfunc, which is attached as Appendix A. The return

value of the function divideConjClasses is a doubly nested list having the following

format:

[ [ [ () ], ..., [...] ],

[ [...], ..., [...] ] ]

where the first row indicates the intermediate list containing conjugacy classes of rota-

tions and the second row indicates the intermediate list containing conjugacy classes of

(roto)reflections. Each of the most inner pairs of square brackets indicates a conjugacy

class Cl(G) for an appropriate representative G (∈ Cl(G) ⊂ G).

For example, the intermediately divided list of conjugacy classes for characterizing the

group Oh_octa is obtained as follows after reading the file CICFgenCC.gapfunc stored in

an appropriate work directory (e.g., c:/fujita0/calcCICF/). Note that this output has

been realigned in order to ensure visibility.

gap> Read("c:/fujita0/calcCICF/CICFgenCC.gapfunc");

gap> l_conjclass := divideConjClasses(Oh_octa, 6, 8);

[ [ [ () ], [ (2,3,4,5), (2,5,4,3), (1,2,6,4), (1,3,6,5), (1,4,6,2), (1,5,6,3) ],

[ (2,4)(3,5), (1,6)(3,5), (1,6)(2,4) ], [ (1,2)(3,5)(4,6), (1,3)(2,4)(5,6), (1,4)(2,6)(3,5),

(1,5)(2,4)(3,6), (1,6)(2,3)(4,5), (1,6)(2,5)(3,4) ], [ (1,2,3)(4,5,6), (1,2,5)(3,6,4),

(1,3,2)(4,6,5), (1,3,4)(2,6,5), (1,4,5)(2,3,6), (1,4,3)(2,5,6),

(1,5,2)(3,4,6), (1,5,4)(2,6,3) ] ],

[ [ (3,5)(7,8), (2,4)(7,8), (1,6)(7,8) ], [ (2,3)(4,5)(7,8), (2,5)(3,4)(7,8), (1,2)(4,6)(7,8),

(1,3)(5,6)(7,8), (1,4)(2,6)(7,8), (1,5)(3,6)(7,8) ],

[ (1,2,3,6,4,5)(7,8), (1,2,5,6,4,3)(7,8), (1,3,4,6,5,2)(7,8), (1,3,2,6,5,4)(7,8), (1,4,5,6,2,3)(7,8),

(1,4,3,6,2,5)(7,8), (1,5,4,6,3,2)(7,8), (1,5,2,6,3,4)(7,8) ],

[ (1,2,6,4)(3,5)(7,8), (1,3,6,5)(2,4)(7,8), (1,4,6,2)(3,5)(7,8), (1,5,6,3)(2,4)(7,8),

(1,6)(2,3,4,5)(7,8), (1,6)(2,5,4,3)(7,8) ], [ (1,6)(2,4)(3,5)(7,8) ] ] ]

The resulting list l_conjclass contains the first nested list of five conjugacy classes

of rotations and the second nested list of five conjugacy classes of (roto)reflections. The

latter list is characterized by the presence of the mirror-permutation representation (7 8).

This result is consistent with the data collected in Figure 2.

3 Correspondence Between Oh-Skeletons

3.1 Permutation Groups for Oh-Skeletons

The above-mentioned procedure for an octahedral skeleton 1 can be applied to the other

Oh-skeletons 2–5 listed in Figure 1. The sets of of generators for these skeletons are

listed in Table 1, where the generators of each set correspond to C3
4(3) (cf. Eq. 15 for 1),

C2
3(1) (cf. Eq. 16 for 1), and σh(1) (cf. Eq. 17 for 1). In particular, the last generator of
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each set corresponds to the reflection σh(1), where a mirror-permutation representation is

represented by (9 10) for a cube 2, (13 14) for a cuboctahedron 3, as well as (25 26) for

a truncated octahedron 4 and for a truncated hexahedron (a truncated cube) 5.

Table 1. Group Generators for Specifying Oh-Skeletons

Oh-skeleton Generators: gen1 — gen5, Groups: Group(gen1) — Group(gen5)

octahedron
1

gen1 := [(2,3,4,5), (1,2,3)(4,5,6), (1,6)(7,8)];

Oh_octa := Group(gen1); #octahedron

cube
2

gen2 := [(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8)(9,10)];

Oh_cube := Group(gen2); #cube

cuboctahedron
3

gen3 := [(1,2,3,4)(5,6,7,8)(9,10,11,12), (1,5,2)(3,8,10)(4,9,6)(7,12,11),

(1,9)(2,10)(3,11)(4,12)(13,14)];

Oh_cuboct := Group(gen3); #cuboctahedron

truncated
octahedron

4

gen4 := [(1,2,3,4)(5,6,7,8)(9,11,13,15)(10,12,14,16)(17,18,19,20)(21,22,23,24),

(1,8,9)(4,16,5)(2,15,17)(3,20,10)(6,14,21)(7,24,11)(12,19,22)(13,23,18),

(1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(25,26)];

Oh_troct := Group(gen4); #truncated octahedron

truncated
hexahedron

5

gen5 := [(1,3,5,7)(2,4,6,8)(9,10,11,12)(13,14,15,16)(17,19,21,23)(18,20,22,24),

(1,9,2)(8,13,3)(4,12,18)(5,16,19)(6,24,14)(7,17,10)(11,23,20)(15,22,21),

(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,13)(10,14)(11,15)(12,16)(25,26)];

Oh_trhex := Group(gen5); #truncated hexahedron

3.2 Isomorphism between Permutation Groups for Oh-Skeletons

The resulting permutation groups, i.e., Oh_octa for 1, Oh_cube for 2, Oh_cuboct for

3, Oh_troct for 4, and Oh_trhex for 5, are isomorphic to the point group Oh, which

is originally generated by a multiplication table of 48 operations. These permutation

groups are independently constructed, so that the correspondence between them should

be determined. For the sake of convenience, the permutation group Oh_octa for 1 is

selected as a standard group in place of the original point group Oh.

The following source list written in a file named Oh-Polyons4.gap evaluates the cor-

respondence between Oh_octa (1) and Oh_cube (2) as well as between Oh_octa (1)

and Oh_cuboct (3). The file Oh-Polyons4.gap is stored in the work directory named

c:/fujita0/calcCICF/, so that the first line commented out by the symbol # is copied

and pasted after the command prompt gap> to start the execution of the evaluation pro-

cess. The result is written down in a log file named Oh-Polyons4log.txt, which is stored

in the work directory c:/fujita0/calcCICF/.

Sample Program (Oh-Polyons4.gap) for Group Homomorphism:
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#Read("c:/fujita0/calcCICF/Oh-Polyons4.gap");

LogTo("c:/fujita0/calcCICF/Oh-Polyons4log.txt");

Read("c:/fujita0/calcCICF/CICFgenCC.gapfunc");

gen1 := [(2,3,4,5), (1,2,3)(4,5,6), (1,6)(7,8)];

Oh_octa := Group(gen1); #octahedron

gen2 := [(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8)(9,10)];

Oh_cube := Group(gen2); #cube

gen3 := [(1,2,3,4)(5,6,7,8)(9,10,11,12), (1,5,2)(3,8,10)(4,9,6)(7,12,11),

(1,9)(2,10)(3,11)(4,12)(13,14)];

Oh_cuboct := Group(gen3); #cuboctahedron

l_conjclass := divideConjClasses(Oh_octa, 6, 8);

hom1 := GroupHomomorphismByImages(Oh_octa, Oh_cube, gen1, gen2);

hom2 := GroupHomomorphismByImages(Oh_octa, Oh_cuboct, gen1, gen3);

l1_conjclass := l_conjclass[1];

l2_conjclass := l_conjclass[2];

for j in [1..Size(l1_conjclass)] do

ll1 := l1_conjclass[j];

for i in [1..Size(ll1)] do

Print(ll1[i], "&", Image(hom1, ll1[i]), "&", Image(hom2, ll1[i]), "\\\\ \n");

od;

Print("\\hline \n");

od;

Print("\\hline \n");

for j in [1..Size(l2_conjclass)] do

ll2 := l2_conjclass[j];

for i in [1..Size(ll2)] do

Print(ll2[i], "&", Image(hom1, ll2[i]), "&", Image(hom2, ll2[i]), "\\\\ \n");

od;

Print("\\hline \n");

od;

LogTo();

During the execution, the file CICFgenCC.gapfunc (Appendix A) is first loaded to

use the function divideConjClasses defined above. Then, the homomorphism (in this

case, isomorphism) between Oh_octa (1) and Oh_cube (2) as well as between Oh_octa (1)

and Oh_cuboct (3) is obtained by using the GAP function GroupHomomorphismByImages.

The resulting homomorphism is stored in a list named homo1 (or homo2), which is written

down into the log file by using the GAP function Image. The result written in the log file

Oh-Polyons4log.txt is converted into a tabular form, as shown in Table 2.

In Table 2, the sets of conjugacy classes are divided by horizontal lines. This mode of

division is based on the list l_conjclass (for Oh_octa), which has been determined by

the function divideConjClasses, as described above. For example, the rows concerning

(2, 3, 4, 5), (1, 2, 3)(4, 5, 6), and (1, 6)(7, 8) (appearing at the first column for 1 in Table 2)

demonstrate the correspondence concerning the sets of generators (gen1, gen2, and gen3),

where they are accompanied by respective conjugacy classes. The upper part over a hor-

izontal double line lists the permutations of rotations (stored in the list l_conjclass[1]

for Oh_octa) while the lower part below the horizontal double line lists the permutations

-421-



Table 2. Correspondence between an octahedron 1, a cube 2, and a cuboctahedron
3 as Oh-skeletons

octahedron 1 cube 2 cuboctahedron 3

Oh octa := Group(gen1) Oh cube := Group(gen2) Oh cuboct := Group(gen3)

P (Xχ)

Oh-octa P (Xχ)

Oh-cube P (Xχ)

Oh-cuboct

() () ()

(2,3,4,5) ( 1, 2, 3, 4)( 5, 6, 7, 8) ( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10,11,12)

(2,5,4,3) ( 1, 4, 3, 2)( 5, 8, 7, 6) ( 1, 4, 3, 2)( 5, 8, 7, 6)( 9,12,11,10)

(1,2,6,4) ( 1, 5, 6, 2)( 3, 4, 8, 7) ( 1, 9,11, 3)( 2, 5,10, 6)( 4, 8,12, 7)

(1,3,6,5) ( 1, 5, 8, 4)( 2, 6, 7, 3) ( 1, 5, 9, 8)( 2,10,12, 4)( 3, 6,11, 7)

(1,4,6,2) ( 1, 2, 6, 5)( 3, 7, 8, 4) ( 1, 3,11, 9)( 2, 6,10, 5)( 4, 7,12, 8)

(1,5,6,3) ( 1, 4, 8, 5)( 2, 3, 7, 6) ( 1, 8, 9, 5)( 2, 4,12,10)( 3, 7,11, 6)

(2,4)(3,5) ( 1, 3)( 2, 4)( 5, 7)( 6, 8) ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)

(1,6)(3,5) ( 1, 8)( 2, 7)( 3, 6)( 4, 5) ( 1, 9)( 2,12)( 3,11)( 4,10)( 5, 8)( 6, 7)

(1,6)(2,4) ( 1, 6)( 2, 5)( 3, 8)( 4, 7) ( 1,11)( 2,10)( 3, 9)( 4,12)( 5, 6)( 7, 8)

(1,2)(3,5)(4,6) ( 1, 4)( 2, 8)( 3, 5)( 6, 7) ( 2, 8)( 3, 9)( 4, 5)( 6,12)( 7,10)

(1,3)(2,4)(5,6) ( 1, 2)( 3, 5)( 4, 6)( 7, 8) ( 1, 6)( 3, 5)( 4,10)( 7, 9)( 8,11)

(1,4)(2,6)(3,5) ( 1, 7)( 2, 3)( 4, 6)( 5, 8) ( 1,11)( 2, 7)( 4, 6)( 5,12)( 8,10)

(1,5)(2,4)(3,6) ( 1, 7)( 2, 8)( 3, 4)( 5, 6) ( 1, 7)( 2,12)( 3, 8)( 5,11)( 6, 9)

(1,6)(2,3)(4,5) ( 1, 5)( 2, 8)( 3, 7)( 4, 6) ( 1,10)( 2, 9)( 3,12)( 4,11)( 6, 8)

(1,6)(2,5)(3,4) ( 1, 7)( 2, 6)( 3, 5)( 4, 8) ( 1,12)( 2,11)( 3,10)( 4, 9)( 5, 7)

(1,2,3)(4,5,6) ( 2, 4, 5)( 3, 8, 6) ( 1, 5, 2)( 3, 8,10)( 4, 9, 6)( 7,12,11)

(1,2,5)(3,6,4) ( 1, 8, 3)( 2, 5, 7) ( 1, 8, 4)( 2, 9, 7)( 3, 5,12)( 6,10,11)

(1,3,2)(4,6,5) ( 2, 5, 4)( 3, 6, 8) ( 1, 2, 5)( 3,10, 8)( 4, 6, 9)( 7,11,12)

(1,3,4)(2,6,5) ( 1, 6, 3)( 4, 5, 7) ( 1,10, 7)( 2, 6, 3)( 4, 5,11)( 8, 9,12)

(1,4,5)(2,3,6) ( 1, 6, 8)( 2, 7, 4) ( 1, 6,12)( 2,11, 8)( 3, 7, 4)( 5,10, 9)

(1,4,3)(2,5,6) ( 1, 3, 6)( 4, 7, 5) ( 1, 7,10)( 2, 3, 6)( 4,11, 5)( 8,12, 9)

(1,5,2)(3,4,6) ( 1, 3, 8)( 2, 7, 5) ( 1, 4, 8)( 2, 7, 9)( 3,12, 5)( 6,11,10)

(1,5,4)(2,6,3) ( 1, 8, 6)( 2, 4, 7) ( 1,12, 6)( 2, 8,11)( 3, 4, 7)( 5, 9,10)

(3,5)(7,8) ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,10) ( 2, 4)( 5, 8)( 6, 7)(10,12)(13,14)

(2,4)(7,8) ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10) ( 1, 3)( 5, 6)( 7, 8)( 9,11)(13,14)

(1,6)(7,8) ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,10) ( 1, 9)( 2,10)( 3,11)( 4,12)(13,14)

(2,3)(4,5)(7,8) ( 2, 4)( 6, 8)( 9,10) ( 1, 2)( 3, 4)( 6, 8)( 9,10)(11,12)(13,14)

(2,5)(3,4)(7,8) ( 1, 3)( 5, 7)( 9,10) ( 1, 4)( 2, 3)( 5, 7)( 9,12)(10,11)(13,14)

(1,2)(4,6)(7,8) ( 2, 5)( 3, 8)( 9,10) ( 2, 5)( 3, 9)( 4, 8)( 6,10)( 7,12)(13,14)

(1,3)(5,6)(7,8) ( 3, 6)( 4, 5)( 9,10) ( 1, 5)( 3, 6)( 4,10)( 7,11)( 8, 9)(13,14)

(1,4)(2,6)(7,8) ( 1, 6)( 4, 7)( 9,10) ( 1,11)( 2, 6)( 4, 7)( 5,10)( 8,12)(13,14)

(1,5)(3,6)(7,8) ( 1, 8)( 2, 7)( 9,10) ( 1, 8)( 2,12)( 3, 7)( 5, 9)( 6,11)(13,14)

(1,2,3,6,4,5)(7,8) ( 1, 5, 6, 7, 3, 4)( 2, 8)( 9,10) ( 1, 5,10,11, 7, 4)( 2, 9, 6,12, 3, 8)(13,14)

(1,2,5,6,4,3)(7,8) ( 1, 4, 8, 7, 6, 2)( 3, 5)( 9,10) ( 1, 8,12,11, 6, 2)( 3, 5, 4, 9, 7,10)(13,14)

(1,3,4,6,5,2)(7,8) ( 1, 2, 6, 7, 8, 4)( 3, 5)( 9,10) ( 1, 2, 6,11,12, 8)( 3,10, 7, 9, 4, 5)(13,14)

(1,3,2,6,5,4)(7,8) ( 1, 5, 8, 7, 3, 2)( 4, 6)( 9,10) ( 1,10, 8,11, 4, 6)( 2, 5, 9,12, 7, 3)(13,14)

(1,4,5,6,2,3)(7,8) ( 1, 2, 3, 7, 8, 5)( 4, 6)( 9,10) ( 1, 6, 4,11, 8,10)( 2, 3, 7,12, 9, 5)(13,14)

(1,4,3,6,2,5)(7,8) ( 1, 7)( 2, 6, 5, 8, 4, 3)( 9,10) ( 1, 7, 2,11, 5,12)( 3, 6,10, 9, 8, 4)(13,14)

(1,5,4,6,3,2)(7,8) ( 1, 4, 3, 7, 6, 5)( 2, 8)( 9,10) ( 1, 4, 7,11,10, 5)( 2, 8, 3,12, 6, 9)(13,14)

(1,5,2,6,3,4)(7,8) ( 1, 7)( 2, 3, 4, 8, 5, 6)( 9,10) ( 1,12, 5,11, 2, 7)( 3, 4, 8, 9,10, 6)(13,14)

(1,2,6,4)(3,5)(7,8) ( 1, 8, 6, 3)( 2, 4, 5, 7)( 9,10) ( 1, 9,11, 3)( 2, 8,10, 7)( 4, 5,12, 6)(13,14)

(1,3,6,5)(2,4)(7,8) ( 1, 6, 8, 3)( 2, 5, 7, 4)( 9,10) ( 1, 6, 9, 7)( 2,10,12, 4)( 3, 5,11, 8)(13,14)

(1,4,6,2)(3,5)(7,8) ( 1, 3, 6, 8)( 2, 7, 5, 4)( 9,10) ( 1, 3,11, 9)( 2, 7,10, 8)( 4, 6,12, 5)(13,14)

(1,5,6,3)(2,4)(7,8) ( 1, 3, 8, 6)( 2, 4, 7, 5)( 9,10) ( 1, 7, 9, 6)( 2, 4,12,10)( 3, 8,11, 5)(13,14)

(1,6)(2,3,4,5)(7,8) ( 1, 6, 3, 8)( 2, 7, 4, 5)( 9,10) ( 1,10, 3,12)( 2,11, 4, 9)( 5, 6, 7, 8)(13,14)

(1,6)(2,5,4,3)(7,8) ( 1, 8, 3, 6)( 2, 5, 4, 7)( 9,10) ( 1,12, 3,10)( 2, 9, 4,11)( 5, 8, 7, 6)(13,14)

(1,6)(2,4)(3,5)(7,8) ( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,10) ( 1,11)( 2,12)( 3, 9)( 4,10)( 5, 7)( 6, 8)(13,14)
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Table 3. Correspondence between an octahedron 1, a truncated octahedron 4, and
a truncated hexahedron 5 as Oh-skeletons

octahedron 1 truncated octahedron 4 truncated hexahedron 5
Oh octa := Group(gen1) Oh troct := Group(gen4) Oh trhex := Group(gen5)

P
(Xχ)
Oh-octa

P
(Xχ)
Oh-troct

P
(Xχ)
Oh-trhex

() () ()

(2,3,4,5) ( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,11,13,15)(10,12,14,16)(17,18,19,20)(21,22,23,24) ( 1, 3, 5, 7)( 2, 4, 6, 8) ( 9,10,11,12)(13,14,15,16)(17,19,21,23)(18,20,22,24)

(2,5,4,3) ( 1, 4, 3, 2)( 5, 8, 7, 6)( 9,15,13,11)(10,16,14,12)(17,20,19,18)(21,24,23,22) ( 1, 7, 5, 3)( 2, 8, 6, 4) ( 9,12,11,10)(13,16,15,14)(17,23,21,19)(18,24,22,20)

(1,2,6,4) ( 1,16,21,11)( 2, 8,24,18)( 3,15,23,12)( 4,20,22, 6)( 5, 9,17,10)( 7,14,19,13) ( 1,17,20, 4)( 2,13,19,10) ( 3, 9,18,14)( 5, 8,24,21)( 6,12,23,15)( 7,16,22,11)

(1,3,6,5) ( 1,17,23, 7)( 2,10,22,13)( 3, 5,21,19)( 4, 9,24,14)( 6,11,18,12)( 8,16,20,15) ( 1,13,24,12)( 2,18,23, 7) ( 3,19,22, 6)( 4,14,21,11)( 5,10,20,15)( 8, 9,17,16)

(1,4,6,2) ( 1,11,21,16)( 2,18,24, 8)( 3,12,23,15)( 4, 6,22,20)( 5,10,17, 9)( 7,13,19,14) ( 1, 4,20,17)( 2,10,19,13) ( 3,14,18, 9)( 5,21,24, 8)( 6,15,23,12)( 7,11,22,16)

(1,5,6,3) ( 1, 7,23,17)( 2,13,22,10)( 3,19,21, 5)( 4,14,24, 9)( 6,12,18,11)( 8,15,20,16) ( 1,12,24,13)( 2, 7,23,18) ( 3, 6,22,19)( 4,11,21,14)( 5,15,20,10)( 8,16,17, 9)

(2,4)(3,5) ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,13)(10,14)(11,15)(12,16)(17,19)(18,20)(21,23)(22,24) ( 1, 5)( 2, 6)( 3, 7) ( 4, 8)( 9,11)(10,12)(13,15)(14,16)(17,21)(18,22)(19,23)(20,24)

(1,6)(3,5) ( 1,23)( 2,22)( 3,21)( 4,24)( 5,19)( 6,18)( 7,17)( 8,20)( 9,14)(10,13)(11,12)(15,16) ( 1,24)( 2,23)( 3,22) ( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,14)(12,13)

(1,6)(2,4) ( 1,21)( 2,24)( 3,23)( 4,22)( 5,17)( 6,20)( 7,19)( 8,18)( 9,10)(11,16)(12,15)(13,14) ( 1,20)( 2,19)( 3,18) ( 4,17)( 5,24)( 6,23)( 7,22)( 8,21)( 9,14)(10,13)(11,16)(12,15)

(1,2)(3,5)(4,6) ( 1,15)( 2,20)( 3,16)( 4, 8)( 5,14)( 6,24)( 7, 9)(10,19)(11,23)(12,21)(13,17)(18,22) ( 1, 8)( 2,12) ( 3,16)( 4,24)( 5,17)( 6,13)( 7, 9)(10,23)(11,18)(14,22)(15,19)(20,21)

(1,3)(2,4)(5,6) ( 1, 5)( 2, 9)( 3,17)( 4,10)( 6,16)( 7,21)( 8,11)(12,20)(13,24)(14,22)(15,18)(19,23) ( 1,10)( 2, 3) ( 4, 9)( 5,13)( 6,18)( 7,19)( 8,14)(11,17)(12,20)(15,24)(16,21)(22,23)

(1,4)(2,6)(3,5) ( 1,12)( 2, 6)( 3,11)( 4,18)( 5,13)( 7,10)( 8,22)( 9,19)(14,17)(15,21)(16,23)(20,24) ( 1,21)( 2,15) ( 3,11)( 4, 5)( 6,10)( 7,14)( 8,20)( 9,22)(12,19)(13,23)(16,18)(17,24)

(1,5)(2,4)(3,6) ( 1,19)( 2,14)( 3, 7)( 4,13)( 5,23)( 6,15)( 8,12)( 9,22)(10,24)(11,20)(16,18)(17,21) ( 1,15)( 2,22) ( 3,23)( 4,16)( 5,12)( 6, 7)( 8,11)( 9,21)(10,24)(13,20)(14,17)(18,19)

(1,6)(2,3)(4,5) ( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,14)(12,13) ( 1,18)( 2,17) ( 3,24)( 4,23)( 5,22)( 6,21)( 7,20)( 8,19)( 9,13)(10,16)(11,15)(12,14)

(1,6)(2,5)(3,4) ( 1,22)( 2,21)( 3,24)( 4,23)( 5,18)( 6,17)( 7,20)( 8,19)( 9,12)(10,11)(13,16)(14,15) ( 1,22)( 2,21) ( 3,20)( 4,19)( 5,18)( 6,17)( 7,24)( 8,23)( 9,15)(10,14)(11,13)(12,16)

(1,2,3)(4,5,6) ( 1, 8, 9)( 2,15,17)( 3,20,10)( 4,16, 5)( 6,14,21)( 7,24,11)(12,19,22)(13,23,18) ( 1, 9, 2)( 3, 8,13) ( 4,12,18)( 5,16,19)( 6,24,14)( 7,17,10)(11,23,20)(15,22,21)

(1,2,5)(3,6,4) ( 1,20,13)( 2,16,19)( 3, 8,14)( 4,15, 7)( 5,24,12)( 6, 9,23)(10,21,18)(11,17,22) ( 1,16, 6)( 2,24,11) ( 3,17,15)( 4,13,22)( 5, 9,23)( 7, 8,12)(10,18,21)(14,19,20)

(1,3,2)(4,6,5) ( 1, 9, 8)( 2,17,15)( 3,10,20)( 4, 5,16)( 6,21,14)( 7,11,24)(12,22,19)(13,18,23) ( 1, 2, 9)( 3,13, 8) ( 4,18,12)( 5,19,16)( 6,14,24)( 7,10,17)(11,20,23)(15,21,22)

(1,3,4)(2,6,5) ( 1,10, 6)( 2, 5,11)( 3, 9,18)( 4,17,12)( 7,16,22)( 8,21,13)(14,20,23)(15,24,19) ( 1,19,11)( 2,14, 5) ( 3,10, 4)( 6, 9,20)( 7,13,21)( 8,18,15)(12,17,22)(16,24,23)

(1,4,5)(2,3,6) ( 1,18,14)( 2,12, 7)( 3, 6,13)( 4,11,19)( 5,22,15)( 8,10,23)( 9,21,20)(16,17,24) ( 1,14,23)( 2,20,16) ( 3,21,12)( 4,15, 7)( 5,11, 6)( 8,10,22)( 9,19,24)(13,18,17)

(1,4,3)(2,5,6) ( 1, 6,10)( 2,11, 5)( 3,18, 9)( 4,12,17)( 7,22,16)( 8,13,21)(14,23,20)(15,19,24) ( 1,11,19)( 2, 5,14) ( 3, 4,10)( 6,20, 9)( 7,21,13)( 8,15,18)(12,22,17)(16,23,24)

(1,5,2)(3,4,6) ( 1,13,20)( 2,19,16)( 3,14, 8)( 4, 7,15)( 5,12,24)( 6,23, 9)(10,18,21)(11,22,17) ( 1, 6,16)( 2,11,24) ( 3,15,17)( 4,22,13)( 5,23, 9)( 7,12, 8)(10,21,18)(14,20,19)

(1,5,4)(2,6,3) ( 1,14,18)( 2, 7,12)( 3,13, 6)( 4,19,11)( 5,15,22)( 8,23,10)( 9,20,21)(16,24,17) ( 1,23,14)( 2,16,20) ( 3,12,21)( 4, 7,15)( 5, 6,11)( 8,22,10)( 9,24,19)(13,17,18)

(3,5)(7,8) ( 1, 3)( 5, 7)( 9,14)(10,13)(11,12)(15,16)(17,19)(21,23)(25,26) ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,12)(10,11) (13,16)(14,15)(17,24)(18,23)(19,22)(20,21)(25,26)

(2,4)(7,8) ( 2, 4)( 6, 8)( 9,10)(11,16)(12,15)(13,14)(18,20)(22,24)(25,26) ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,10)(11,12) (13,14)(15,16)(17,20)(18,19)(21,24)(22,23)(25,26)

(1,6)(7,8) ( 1,21)( 2,22)( 3,23)( 4,24)( 5,17)( 6,18)( 7,19)( 8,20)(25,26) ( 1,17)( 2,18)( 3,19)( 4,20)( 5,21)( 6,22) ( 7,23)( 8,24)( 9,13)(10,14)(11,15)(12,16)(25,26)

(2,3)(4,5)(7,8) ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,16)(10,15)(11,14)(12,13)(17,20)(18,19)(21,24)(22,23)(25,26) ( 1, 2) ( 3, 8)( 4, 7)( 5, 6)(10,12)(14,16)(17,18)(19,24)(20,23)(21,22)(25,26)

(2,5)(3,4)(7,8) ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,16)(14,15)(17,18)(19,20)(21,22)(23,24)(25,26) ( 1, 6) ( 2, 5)( 3, 4)( 7, 8)( 9,11)(13,15)(17,22)(18,21)(19,20)(23,24)(25,26)

(1,2)(4,6)(7,8) ( 1,16)( 2,20)( 3,15)( 4, 8)( 5, 9)( 6,24)( 7,14)(10,17)(11,21)(12,23)(13,19)(18,22)(25,26) ( 2, 9) ( 3,13)( 4,17)( 5,24)( 6,16)( 7,12)(10,18)(11,23)(14,19)(15,22)(25,26)

(1,3)(5,6)(7,8) ( 1, 5)( 2,10)( 3,17)( 4, 9)( 6,11)( 7,21)( 8,16)(12,18)(13,22)(14,24)(15,20)(19,23)(25,26) ( 1, 9) ( 4,10)( 5,14)( 6,19)( 7,18)( 8,13)(11,20)(12,17)(15,21)(16,24)(25,26)

(1,4)(2,6)(7,8) ( 1,11)( 2, 6)( 3,12)( 4,18)( 5,10)( 7,13)( 8,22)( 9,17)(14,19)(15,23)(16,21)(20,24)(25,26) ( 1,20) ( 2,14)( 3,10)( 6,11)( 7,15)( 8,21)( 9,19)(12,22)(13,18)(16,23)(25,26)

(1,5)(3,6)(7,8) ( 1,19)( 2,13)( 3, 7)( 4,14)( 5,23)( 6,12)( 8,15)( 9,24)(10,22)(11,18)(16,20)(17,21)(25,26) ( 1,16) ( 2,23)( 3,22)( 4,15)( 5,11)( 8,12)( 9,24)(10,21)(13,17)(14,20)(25,26)

(1,2,3,6,4,5)(7,8) ( 1,20,10,23, 6,14)( 2,15, 5,24,11,19)( 3, 8, 9,21,18,13)( 4,16,17,22,12, 7)(25,26) ( 1,13,19,21,11, 7)( 2,17,14,22, 5,12)( 3,24,10,23, 4,16)( 6, 8, 9,18,20,15)(25,26)

(1,2,5,6,4,3)(7,8) ( 1, 8,14,23,18,10)( 2,16, 7,24,12,17)( 3,20,13,21, 6, 9)( 4,15,19,22,11, 5)(25,26) ( 1,12,23,21,14, 3)( 2, 8,16,22,20,10)( 4, 9, 7,24,15,19)( 5,13, 6,17,11,18)(25,26)

(1,3,4,6,5,2)(7,8) ( 1,10,18,23,14, 8)( 2,17,12,24, 7,16)( 3, 9, 6,21,13,20)( 4, 5,11,22,19,15)(25,26) ( 1, 3,14,21,23,12)( 2,10,20,22,16, 8)( 4,19,15,24, 7, 9)( 5,18,11,17, 6,13)(25,26)

(1,3,2,6,5,4)(7,8) ( 1, 9,20,23,13, 6)( 2, 5,16,24,19,12)( 3,10, 8,21,14,18)( 4,17,15,22, 7,11)(25,26) ( 1,18,16,21, 6,10)( 2,13,24,22,11, 4)( 3, 9,17,23,15, 5)( 7,14, 8,19,12,20)(25,26)

(1,4,5,6,2,3)(7,8) ( 1, 6,13,23,20, 9)( 2,12,19,24,16, 5)( 3,18,14,21, 8,10)( 4,11, 7,22,15,17)(25,26) ( 1,10, 6,21,16,18)( 2, 4,11,22,24,13)( 3, 5,15,23,17, 9)( 7,20,12,19, 8,14)(25,26)

(1,4,3,6,2,5)(7,8) ( 1,18, 9,23, 8,13)( 2,11,17,24,15, 7)( 3, 6,10,21,20,14)( 4,12, 5,22,16,19)(25,26) ( 1,15, 2,21, 9,22)( 3,20,13,23, 8,11)( 4,14,18,24,12, 6)( 5,10,19,17,16, 7)(25,26)

(1,5,4,6,3,2)(7,8) ( 1,14, 6,23,10,20)( 2,19,11,24, 5,15)( 3,13,18,21, 9, 8)( 4, 7,12,22,17,16)(25,26) ( 1, 7,11,21,19,13)( 2,12, 5,22,14,17)( 3,16, 4,23,10,24)( 6,15,20,18, 9, 8)(25,26)

(1,5,2,6,3,4)(7,8) ( 1,13, 8,23, 9,18)( 2, 7,15,24,17,11)( 3,14,20,21,10, 6)( 4,19,16,22, 5,12)(25,26) ( 1,22, 9,21, 2,15)( 3,11, 8,23,13,20)( 4, 6,12,24,18,14)( 5, 7,16,17,19,10)(25,26)

(1,2,6,4)(3,5)(7,8) ( 1,15,21,12)( 2, 8,24,18)( 3,16,23,11)( 4,20,22, 6)( 5,14,17,13)( 7, 9,19,10)(25,26) ( 1,24,20, 5)( 2,16,19,11)( 3,12,18,15)( 4, 8,17,21)( 6, 9,23,14)( 7,13,22,10)(25,26)

(1,3,6,5)(2,4)(7,8) ( 1,17,23, 7)( 2, 9,22,14)( 3, 5,21,19)( 4,10,24,13)( 6,16,18,15)( 8,11,20,12)(25,26) ( 1,14,24,11)( 2,19,23, 6)( 3,18,22, 7)( 4,13,21,12)( 5, 9,20,16)( 8,10,17,15)(25,26)

(1,4,6,2)(3,5)(7,8) ( 1,12,21,15)( 2,18,24, 8)( 3,11,23,16)( 4, 6,22,20)( 5,13,17,14)( 7,10,19, 9)(25,26) ( 1, 5,20,24)( 2,11,19,16)( 3,15,18,12)( 4,21,17, 8)( 6,14,23, 9)( 7,10,22,13)(25,26)

(1,5,6,3)(2,4)(7,8) ( 1, 7,23,17)( 2,14,22, 9)( 3,19,21, 5)( 4,13,24,10)( 6,15,18,16)( 8,12,20,11)(25,26) ( 1,11,24,14)( 2, 6,23,19)( 3, 7,22,18)( 4,12,21,13)( 5,16,20, 9)( 8,15,17,10)(25,26)

(1,6)(2,3,4,5)(7,8) ( 1,22, 3,24)( 2,23, 4,21)( 5,18, 7,20)( 6,19, 8,17)( 9,11,13,15)(10,12,14,16)(25,26) ( 1,19, 5,23)( 2,20, 6,24)( 3,21, 7,17)( 4,22, 8,18)( 9,14,11,16)(10,15,12,13)(25,26)

(1,6)(2,5,4,3)(7,8) ( 1,24, 3,22)( 2,21, 4,23)( 5,20, 7,18)( 6,17, 8,19)( 9,15,13,11)(10,16,14,12)(25,26) ( 1,23, 5,19)( 2,24, 6,20)( 3,17, 7,21)( 4,18, 8,22)( 9,16,11,14)(10,13,12,15)(25,26)

(1,6)(2,4)(3,5)(7,8) ( 1,23)( 2,24)( 3,21)( 4,22)( 5,19)( 6,20)( 7,17)( 8,18)( 9,13)(10,14)(11,15)(12,16)(25,26) ( 1,21)( 2,22)( 3,23)( 4,24)( 5,17)( 6,18)( 7,19)( 8,20)( 9,15)(10,16)(11,13)(12,14)(25,26)

of (roto)reflections (stored in the list l_conjclass[2] for Oh_octa).

Th correspondence between Oh_octa (1) and Oh_troct (4) or between Oh_octa (1)

and Oh_trhex (5) can be obtained in a similar way, where the set of generators (gen2 or

gen3) in the above source list is replaced by the set of generators (gen4 or gen5) listed

in Table 1. The resulting correspondence is listed in Table 3.

4 Calculation of CI-CFs

4.1 Products of Sphericity Indices

When an element G (∈ G or Oh in particular) belongs to a conjugacy class Cl(G), let the

symbol P (X)

Cl(G) represent a representative permutation (degree n) of the conjugacy class.

Suppose that the representative permutation P (X)

Cl(G) is represented by a cycle decompo-

sition involving the number νk(P
(X)

Cl(G)) of k-cycles (n =
∑n

k=1 kνk(P
(X)

Cl(G))), so that the
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corresponding cycle structure is represented as follows:

1ν1(P
(X)
Cl(G)

)2ν2(P
(X)
Cl(G)

) · · ·nνn(P
(X)
Cl(G)

). (18)

Note that any permutation of the conjugacy class Cl(G) has the same mode of cycle

decomposition, or equivalently the same cycle structure. Then, the element P (Xχ)

Cl(G) corre-

sponding to P (X)

Cl(G) is specified by a product of sphericity indices (PSI):

PSI
P

(Xχ)
Cl(G)

= $
ν1(P

(X)
Cl(G)

)

1 $
ν2(P

(X)
Cl(G)

)

2 · · · $
νn(P

(X)
Cl(G)

)

n , (19)

where $k is ak if P (χ)

Cl(G) = (n + 1 n + 2) (one 2-cycle) and k is odd; $k is ck if P (χ)

Cl(G)

= (n + 1 n + 2) (one 2-cycle) and k is even; and $k is bk if P (χ)

Cl(G) = (n + 1)(n + 2)

(two 1-cycles). The PSI (Eq. 19) is common to all of the permutations belonging to the

conjugacy class Cl(G).

For example, the list l_conjclass, which has been calculated above to reveal the

sets of conjugacy classes for the group Oh_octa for 1, is used to calculate the cycle

decomposition of the permutation (2,3,4,5), i.e., (1)(2 3 4 5)(6)(7)(8) for a rotation

C3
4(3) (Eq. 15), by means of the GAP system:

gap> gen1 := [(2,3,4,5), (1,2,3)(4,5,6), (1,6)(7,8)];; #generators

gap> Oh_octa := Group(gen1); #octahedral skeleton

Group([ (2,3,4,5), (1,2,3)(4,5,6), (1,6)(7,8) ])

gap> Read("c:/fujita0/calcCICF/CICFgenCC.gapfunc");

gap> l_conjclass := divideConjClasses(Oh_octa, 6, 8);;

gap> l_1_2_1 := l_conjclass[1][2][1]; #rotation

(2,3,4,5)

gap> CycleLengths(l_1_2_1, [1..8]); #full degree

[ 1, 4, 1, 1, 1 ]

gap> CycleLengths(l_1_2_1, [1..6]); #net degree

[ 1, 4, 1 ]

The output of #net degree indicates that the corresponding cycle structure of the

permutation P (X)

Cl(C3
4(3))

for the conjugacy class Cl(C3
4(3)) is calculated to be 1241. The last

two digits ... 1, 1 ] of the output of #full degree indicates a mirror-permutation

representation (7)(8), which shows that this permutation is a rotation. Thereby, the

corresponding PSI is calculated to be b21b4 by means of Eq. 19.

On the other hand, the cycle decomposition of the permutation (1,6)(7,8), i.e.,

(1 6)(2)(3)(4)(5)(7 8) for a reflection σh(1) (Eq. 17), is calculated as follows:

gap> l_2_1_3 := l_conjclass[2][1][3]; #reflection

(1,6)(7,8)

gap> CycleLengths(l_2_1_3, [1..8]); #full degree

[ 2, 1, 1, 1, 1, 2 ]

gap> CycleLengths(l_2_1_3, [1..6]); #net degree

[ 2, 1, 1, 1, 1 ]
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The output of #net degree indicates that the corresponding cycle structure of the

permutation P (X)

Cl(σh(1))
for the conjugacy class Cl(σh(1)) is calculated to be 1421. The

last digit ... 2 ] of the output of #full degree indicates a mirror-permutation rep-

resentation (7 8), which shows that this permutation is a (roto)reflection. Thereby, the

corresponding PSI is calculated to be a41c2 by means of Eq. 19.

4.2 Definition of CI-CFs

According to Def. 7.20 of [12], the cycle index with chirality fittingness (CI-CF) for P (Xχ)

G

is calculated as follows by using the PSIs (Eq. 19):

CI-CF(P (Xχ)

G ; $k) =
1

|G|
∑
Cl(G)

|Cl(G)|$
ν1(P

(X)
Cl(G)

)

1 $
ν2(P

(X)
Cl(G)

)

2 · · · $
νn(P

(X)
Cl(G)

)

n , (20)

where the summation concerning Cl(G) runs to cover the representatives of the conjugacy

classes contained in G and the symbol |Cl(G)| represents the size of the corresponding

conjugacy class Cl(G). The CI-CF (Eq. 20) is a modification of Eq. 9 of [17].

For example, the data of Figure 2 give the respective PCIs collected in the PSI-column.

Thereby, we obtain the following CI-CF for characterizing the octahedral skeleton 1:

CI-CF(P (Xχ)

Oh-octa; $k)

=
1

48

{
b61 + 3b21b

2
2 + 8b23 + 6b32 + 6b21b4 + c32 + 3a41c2 + 8c6 + 6a21c

2
2 + 6c2c4

}
. (21)

According to Def. 7.25 of [12], the gross enumeration of achiral 3D structures is con-

ducted by using the following CI-CF:

CI-CF(a)(P (Xχ)

G-octa; $k) =
2

|G|
∑

Cl(a)(G)

|Cl(a)(G)|$
ν1(P

(X)

Cl(a)(G)
)

1 $
ν2(P

(X)

Cl(a)(G)
)

2 · · · $
νn(P

(X)

Cl(a)(G)
)

n , (22)

where the summation concerning Cl(a)(G) runs to cover the representatives of the con-

jugacy classes contained in G(a), which denotes the coset which contains all of the

(roto)reflections of G. Note that the coset G(a) satisfies the following coset decompo-

sition:

G = G(m) + G(a), (23)

where the symbol G(m) denotes the maximum chiral subgroup of G. If the element G is

contained in Cl(a)(G) (⊂ G(a)), it exhibits P (χ)

Cl(a)(G)
= (n+ 1 n+ 2). The CI-CF (Eq. 22)

is a modification of Eq. 11 of [17].
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For example, the right part of Figure 2 is concerned with O
(a)
h (= Oi). The correspond-

ing PCIs are summed up and the resulting sum is multiplied by 2/|Oh| (= 2/48 = 1/24)

according to Eq. 22. Thereby, we obtain the following CI-CF:

CI-CF(a)(P (Xχ)

Oh-octa; $k) =
1

24

{
c32 + 3a41c2 + 8c6 + 6a21c

2
2 + 6c2c4

}
. (24)

According to Def. 7.28 of [12], the gross enumeration of enantiomeric pairs of chiral

3D structures is conducted by using the following CI-CF:

CI-CF(e)(P (Xχ)

G-octa; $k) =

1

|G|

 ∑
Cl(m)(G)

|Cl(m)(G)|b
ν1(P

(X)

Cl(m)(G)
)

1 b
ν2(P

(X)

Cl(m)(G)
)

2 · · · b
νn(P

(X)

Cl(m)(G)
)

n

−
∑

Cl(a)(G)

|Cl(a)(G)|$
ν1(P

(X)

Cl(a)(G)
)

1 $
ν2(P

(X)

Cl(a)(G)
)

2 · · · $
νn(P

(X)

Cl(a)(G)
)

n

 , (25)

where the summation concerning Cl(m)(G) runs to cover the representatives of the conju-

gacy classes contained in G(m), which denotes the coset which contains all of the rotations

of G (cf. Eq. 23). The CI-CF (Eq. 25) is a modification of Eq. 14 of [17].

For example, the data of Figure 2 give the respective PCIs collected in the PSI-column.

Thereby, we obtain the following CI-CF(e) for characterizing the octahedral skeleton 1:

CI-CF(e)(P (Xχ)

Oh-octa; $k)

=
1

48

{
b61 + 3b21b

2
2 + 8b23 + 6b32 + 6b21b4 − c32 − 3a41c2 − 8c6 − 6a21c

2
2 − 6c2c4

}
. (26)

4.3 Functions for Calculating CI-CFs

The next step is the development of GAP functions for calculating CI-CFs by starting from

the combined-permutation representation of a point group. On the basis of the unit pro-

cedures mentioned above, the function CalcConjClassCICF is developed to calculate the

CI-CF of a given group G (Eq. 20). In a similar way, the function CalcConjClassCICF_A

for calculating the achiral part CI-CF(a) (Eq. 22) and the function CalcConjClassCICF_E

for calculating the chiral part CI-CF(e) (Eq. 25) are also developed:

CalcConjClassCICF(group, degree, degreefull)

CalcConjClassCICF_A(group, degree, degreefull)

CalcConjClassCICF_E(group, degree, degreefull)

where the first argument group denotes a given group G (as a combined-permutation

representation P (Xχ)

G ), the second argument degree denotes the degree of P (X)

G , and the
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third argument degreefull denotes the degree of P (Xχ)

G . The source lists of these functions

are stored in a file named CICFgenCC.gapfunc, which is attached as Appendix A.

4.4 Practices of Calculation of CI-CFs

A typical procedure for executing the above-developed functions (CalcConjClassCICF,

CalcConjClassCICF_A, and CalcConjClassCICF_E) is illustrated by using an octahedral

skeleton 1 of Oh (Oh_octa). The file CICFgenCC.gapfunc containing the functions for

generating CI-CFs (cf. Appendix A) is beforehand placed in an appropriate work direc-

tory named c:/fujita0/calcCICF/. This directory also contains a work file with an

appropriate name (e.g., Oh-octa-CICF1.gap), which contains the following codes:

Sample Program (Oh-octa-CICF1.gap) for Calculating CI-CFs:

#Read("c:/fujita0/calcCICF/Oh-octa-CICF1.gap");

LogTo("c:/fujita0/calcCICF/Oh-octa-CICF1log.txt");

Read("c:/fujita0/calcCICF/CICFgenCC.gapfunc"); #Loading of CICFgenCC.gapfunc

gen1 := [(2,3,4,5), (1,2,3)(4,5,6), (1,6)(7,8)];; #generators

Oh_octa := Group(gen1); #octahedral skeleton

Print("CICF_Oh_octa := ", CalcConjClassCICF(Oh_octa, 6, 8), "\n");

Print("CICF_Oh_octa_A := ", CalcConjClassCICF_A(Oh_octa, 6, 8), "\n");

Print("CICF_Oh_octa_E := ", CalcConjClassCICF_E(Oh_octa, 6, 8), "\n");

LogTo();

To execute these codes, the first line commented out by the top symbol # is copied and

pasted after the gap> prompt of the command-prompt window of the Windows system.

Thereby, the above commands contained in the file Oh-octa-CICF1.gap are successively

executed after the loading of CICFgenCC.gapfunc. The calculated CI-CFs are written

down into a log file named Oh-octa-CICF1log.txt (an appropriate name) as follows:

CICF_Oh_octa := 1/48*b_1^6+1/16*a_1^4*c_2+1/16*b_1^2*b_2^2+1/8*a_1^2*c_2^2+1/8*b_1^2*b_4

+1/48*c_2^3+1/8*b_2^3+1/8*c_2*c_4+1/6*b_3^2+1/6*c_6

CICF_Oh_octa_A := 1/8*a_1^4*c_2+1/4*a_1^2*c_2^2+1/24*c_2^3+1/4*c_2*c_4+1/3*c_6

CICF_Oh_octa_E := 1/48*b_1^6-1/16*a_1^4*c_2+1/16*b_1^2*b_2^2-1/8*a_1^2*c_2^2+1/8*b_1^2*b_4

-1/48*c_2^3+1/8*b_2^3-1/8*c_2*c_4+1/6*b_3^2-1/6*c_6

Each multiplication appearing in these CI-CFs is represented by an asterisk and

sphericity indices are represented by b_1 (for b1), a_1 (for a1), c_2 (for c2), and so on. The

CI-CFs are consistent with Eqs. 21, 24, and 26. The CI-CF CICF_Oh_octa is identical

with Eqs. 8 and 9 of [23].

In a similar way, the respective groups for the combined-permutation representations

listed in Table 1 (or Tables 2 and 3) generate the corresponding CI-CFs, which are col-

lected in Table 4.

The CI-CFs of the cube 2 have been calculated during the enumeration by Fujita’s
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Table 4. CI-CFs for Characterizing Oh-Skeletons

Oh-skeleton CICFs for total as well as for achiral ( A) and chiral ( C) parts

1, P
(Xχ)

Oh-octa

Oh octa
:= Group(gen1)

CICF_Oh_octa := 1/48*b_1^6+1/16*a_1^4*c_2+1/16*b_1^2*b_2^2+1/8*a_1^2*c_2^2

+1/8*b_1^2*b_4+1/48*c_2^3+1/8*b_2^3+1/8*c_2*c_4+1/6*b_3^2+1/6*c_6

CICF_Oh_octa_A := 1/8*a_1^4*c_2+1/4*a_1^2*c_2^2+1/24*c_2^3+1/4*c_2*c_4+1/3*c_6

CICF_Oh_octa_E := 1/48*b_1^6-1/16*a_1^4*c_2+1/16*b_1^2*b_2^2-1/8*a_1^2*c_2^2

+1/8*b_1^2*b_4-1/48*c_2^3+1/8*b_2^3-1/8*c_2*c_4+1/6*b_3^2-1/6*c_6

2, P
(Xχ)

Oh-cube

Oh cube
:= Group(gen2)

CICF_Oh_cube := 1/48*b_1^8+1/8*a_1^4*c_2^2+1/6*b_1^2*b_3^2+1/12*c_2^4+3/16*b_2^4

+1/6*c_2*c_6+1/8*b_4^2+1/8*c_4^2

CICF_Oh_cube_A := 1/4*a_1^4*c_2^2+1/6*c_2^4+1/3*c_2*c_6+1/4*c_4^2

CICF_Oh_cube_E := 1/48*b_1^8-1/8*a_1^4*c_2^2+1/6*b_1^2*b_3^2-1/12*c_2^4+3/16*b_2^4

-1/6*c_2*c_6+1/8*b_4^2-1/8*c_4^2

3, P
(Xχ)

Oh-cuboct

Oh cuboct
:= Group(gen3)

CICF_Oh_cuboct := 1/48*b_1^12+1/16*a_1^4*c_2^4+1/8*b_1^2*b_2^5+1/8*a_1^2*c_2^5

+1/48*c_2^6+1/16*b_2^6+1/6*b_3^4+1/8*b_4^3+1/8*c_4^3+1/6*c_6^2

CICF_Oh_cuboct_A := 1/8*a_1^4*c_2^4+1/4*a_1^2*c_2^5+1/24*c_2^6+1/4*c_4^3+1/3*c_6^2

CICF_Oh_cuboct_E := 1/48*b_1^12-1/16*a_1^4*c_2^4+1/8*b_1^2*b_2^5-1/8*a_1^2*c_2^5

-1/48*c_2^6+1/16*b_2^6+1/6*b_3^4+1/8*b_4^3-1/8*c_4^3-1/6*c_6^2

4, P
(Xχ)

Oh-troct

Oh troct
:= Group(gen4)

CICF_Oh_troct := 1/48*b_1^24+1/16*a_1^8*c_2^8+7/48*c_2^12+3/16*b_2^12+1/6*b_3^8

+1/8*b_4^6+1/8*c_4^6+1/6*c_6^4

CICF_Oh_troct_A := 1/8*a_1^8*c_2^8+7/24*c_2^12+1/4*c_4^6+1/3*c_6^4

CICF_Oh_troct_E := 1/48*b_1^24-1/16*a_1^8*c_2^8-7/48*c_2^12+3/16*b_2^12+1/6*b_3^8

+1/8*b_4^6-1/8*c_4^6-1/6*c_6^4

5, P
(Xχ)

Oh-trhex

Oh trhex
:= Group(gen5)

CICF_Oh_trhex := 1/48*b_1^24+1/8*a_1^4*c_2^10+1/12*c_2^12+3/16*b_2^12+1/6*b_3^8

+1/8*b_4^6+1/8*c_4^6+1/6*c_6^4

CICF_Oh_trhex_A := 1/4*a_1^4*c_2^10+1/6*c_2^12+1/4*c_4^6+1/3*c_6^4

CICF_Oh_trhex_E := 1/48*b_1^24-1/8*a_1^4*c_2^10-1/12*c_2^12+3/16*b_2^12+1/6*b_3^8

+1/8*b_4^6-1/8*c_4^6-1/6*c_6^4

proligand method [12]. Thus, the CI-CF CICF_Oh_cube is identical with Eq. 2 of [21], the

CI-CF CICF_Oh_cube_A is identical with Eq. 17 of [21], and the CI-CF CICF_Oh_cube_E

is identical with Eq. 20 of [21]. They are also identical with the corresponding CI-CFs cal-

culated by the markaracter method (Eqs. 40, 49, and 50 of [24]) and with those calculated

by the characteristic-monomial method (Eqs. 24, 32, and 33 of [25]).

5 Combinatorial Enumeration

5.1 Generating Functions Derived From CI-CFs

According to Theorem 7.14 of [12], the sphericity indices ($k: ak, ck, and bk) control

the modes of proligand packing in the form of ligand-inventory functions. As a typical

example, let us calculate the numbers of octahedral 3D structures by using the following
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ligand inventory:

L = {H,A,B,C,D,W; p, p, q, q}, (27)

where the uppercase letters represent achiral proligands, while a pair of lowercase letters

without and with an overbar (p/p or q/q) represents a pair of enantiomeric proligands.

The corresponding ligand-inventory functions (aa_1, bb_1, etc.) are obtained from this

inventory, where a pair of an lowercase letter and the corresponding uppercase letter (e.g.,

p/P) is used in place of a pair of lowercase letters without and with an overbar (e.g., p/p),

as found in the following source list:

Sample Program (Oh-Enum-octa2.gap) for Calculating Generating Functions:

#Read("c:/fujita0/calcCICF/Oh-Enum-octa2.gap");

LogTo("c:/fujita0/calcCICF/Oh-Enum-octa2log.txt");

Read("c:/fujita0/fujita2016/RSstereoOcta/calcOh/CICFgenCC.gapfunc"); #Loading of CICFgenCC.gapfunc

gen1 := [(2,3,4,5), (1,2,3)(4,5,6), (1,6)(7,8)];; #generators

Oh_octa := Group(gen1); #octahedral skeleton

CICF_Oh_octa := CalcConjClassCICF(Oh_octa, 6, 8);

H := Indeterminate(Rationals, "H"); A := Indeterminate(Rationals, "A");

B := Indeterminate(Rationals, "B"); C := Indeterminate(Rationals, "C");

D := Indeterminate(Rationals, "D"); W := Indeterminate(Rationals, "W");

p := Indeterminate(Rationals, "p"); P := Indeterminate(Rationals, "P");

q := Indeterminate(Rationals, "q"); Q := Indeterminate(Rationals, "Q");

b_1 := Indeterminate(Rationals, "b_1"); b_2 := Indeterminate(Rationals, "b_2");

b_3 := Indeterminate(Rationals, "b_3"); b_4 := Indeterminate(Rationals, "b_4");

a_1 := Indeterminate(Rationals, "a_1"); c_2 := Indeterminate(Rationals, "c_2");

c_4 := Indeterminate(Rationals, "c_4"); c_6 := Indeterminate(Rationals, "c_6");

aa_1 := H + A + B + C + D + W;

bb_1 := H + A + B + C + D + W + p + q + P + Q;

bb_2 := H^2 + A^2 + B^2 + C^2 + D^2 + W^2 + p^2 + q^2 + P^2 + Q^2;

bb_3 := H^3 + A^3 + B^3 + C^3 + D^3 + W^3 + p^3 + q^3 + P^3 + Q^3;

bb_4 := H^4 + A^4 + B^4 + C^4 + D^4 + W^4 + p^4 + q^4 + P^4 + Q^4;

cc_2 := H^2 + A^2 + B^2 + C^2 + D^2 + W^2 + 2*p*P + 2*q*Q;

cc_4 := H^4 + A^4 + B^4 + C^4 + D^4 + W^4 + 2*p^2*P^2 + 2*q^2*Q^2;

cc_6 := H^6 + A^6 + B^6 + C^6 + D^6 + W^6 + 2*p^3*P^3 + 2*q^3*Q^3;

f_Oh_octa := Value(CICF_Oh_octa,

[a_1, b_1, b_2, b_3, b_4, c_2, c_4, c_6],

[aa_1, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4, cc_6]);;

Print("f_Oh_octa := ", f_Oh_octa, "\n");

LogTo();

This source list is stored in a work file named Oh-Enum-octa2.gap, which is placed

in the above-mentioned directory c:/fujita0/calcCICF. To execute the codes stored

in the file Oh-Enum-octa2.gap, the first line commented out by the top symbol # is

copied and pasted after the gap> prompt of the command-prompt window of the Windows

system. Thereby, the above commands contained in the file Oh-Enum-octa2.gap are

successively executed after the loading of CICFgenCC.gapfunc. The ligand-inventory

functions (aa_1, bb_1, etc.) are introduced into the indeterminates (a_1, b_1, etc.)

-429-



contained in the CI-CF CICF_Oh_octa (Table 4, Eq. 21) according to Theorem 7.21 of

[12]. The resulting generating function f_Oh_octa is written down into a log file named

Oh-Enum-octa2log.txt (an appropriate name) as follows:

f_Oh_octa := H^6+H^5*A+H^5*B+H^5*C+H^5*D+H^5*W+1/2*H^5*p+1/2*H^5*P+1/2*H^5*q+1/2*H^5*Q+2*H^4*A^2

+2*H^4*A*B+2*H^4*A*C+2*H^4*A*D+2*H^4*A*W+H^4*A*p+H^4*A*P+H^4*A*q+H^4*A*Q+2*H^4*B^2+2*H^4*B*C

+2*H^4*B*D+2*H^4*B*W+H^4*B*p+H^4*B*P+H^4*B*q

(omitted)

+15*H*A*B*C*D*W+15*H*A*B*C*D*p+15*H*A*B*C*D*P+15*H*A*B*C*D*q+15*H*A*B*C*D*Q+9*H*A*B*C*W^2

+15*H*A*B*C*W*p+15*H*A*B*C*W*P+15*H*A*B*C*W*q+15*H*A*B*C*W*Q+15/2*H*A*B*C*p^2+18*H*A*B*C*p*P

+15*H*A*B*C*p*q+15*H*A*B*C*p*Q+15/2*H*A*B*C*P^2+15*H*A*B*C*P*q+15*H*A*B*C*P*Q+15/2*H*A*B*C*q^2

+18*H*A*B*C*q*Q+15/2*H*A*B*C*Q^2+4*H*A*B*D^3+9*H*A*B*D^2*W+15/2*H*A*B*D^2\

(omitted)

+3/2*P*q^2*Q^3+P*q*Q^4+1/2*P*Q^5+1/2*q^6+1/2*q^5*Q+q^4*Q^2+2*q^3*Q^3+q^2*Q^4+1/2*q*Q^5+1/2*Q^6

The coefficient of each term HhAaBbCcDdWwppppqqqq (h + a + b + c + d + w +

p + p + q + q = 6) represents the number of pairs of (self-)enantiomeric octahedral

derivatives with the respective composition, where a pair of enantiomers is counted once

and a pair of self-enantiomers represents one achiral derivative. For example, the term

15*H*A*B*C*D*W indicates the presence of 15 pairs of enantiomers with the composition

HABCDW. On the other hand, the term 18*H*A*B*C*p*P indicates the presence of 18

pairs of (self-)enantiomers with the composition HABCpp, which are found to be com-

posed of 6 achiral derivatives and 12 pairs of enantiomers. This is confirmed by the fact

that the generating function calculated from Oh_octa_A (Table 4, Eq. 24) is determined to

contain 6*H*A*B*C*p*P, while the generating function calculated from Oh_octa_E (Table

4, Eq. 26) is determined to contain 12*H*A*B*C*p*P. It is to be noted that a pair of frac-

tional coefficients such as 1/2*H^5*p+1/2*H^5*P should be regarded as 1× 1
2
(H5p+H5p),

which indicates the presence of one pair of enantiomers.

5.2 Selective Calculation of Coefficients of Generating Func-
tions

Because such generating functions as calculated above contain huge numbers of terms, it

is convenient to calculate the coefficient of a specific term which is necessary to our

discussions. For example, the coefficient 15 of the term 15*H*A*B*C*D*W appearing

in the generating function f_Oh_octa is obtained selectively, where the GAP function

PolynomialCoefficientsOfPolynomial is used in a nested fashion as follows:
gap> coeff_H := PolynomialCoefficientsOfPolynomial(f_Oh_octa, H);;

gap> coeff_HA := PolynomialCoefficientsOfPolynomial(coeff_H[2], A);;

gap> coeff_HAB := PolynomialCoefficientsOfPolynomial(coeff_HA[2], B);;

gap> coeff_HABC := PolynomialCoefficientsOfPolynomial(coeff_HAB[2], C);;

gap> coeff_HABCD := PolynomialCoefficientsOfPolynomial(coeff_HABC[2], D);;

gap> coeff_HABCDW := PolynomialCoefficientsOfPolynomial(coeff_HABCD[2], W);

[ 15*p+15*P+15*q+15*Q, 15 ]

gap> Print("coeff HABCDW :=", coeff_HABCDW[2], "\n");

coeff HABCDW :=15
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The GAP function PolynomialCoefficientsOfPolynomial is applied to the gen-

erating function f_Oh_octa in a similar way, so that the coefficient 18 of the term

18*H*A*B*C*p*P is obtained selectively as follows:

gap> coeff_HABCp := PolynomialCoefficientsOfPolynomial(coeff_HABC[2], p);;

gap> coeff_HABCpP := PolynomialCoefficientsOfPolynomial(coeff_HABCp[2], P);

[ 15*D+15*W+15*q+15*Q, 18 ]

gap> Print("coeff HABCpP :=", coeff_HABCpP[2], "\n");

coeff HABCpP :=18

A function calcCoeffGen is developed in order to simplify the above-mentioned pro-

cess of calculating coefficients of a generating function genfunc:

calcCoeffGen(genfunc, list_ligand, list_partition)

For the sake of convenience, such a mode of substitution as HhAaBbCcDdWwppppqqqq is

represented by a substitution pattern [h, a, b, c, d, w; p, p, q, q] (h+a+b+c+d+w+p+p+

q + q = 6), where we can presume h ≥ a ≥ b ≥ c ≥ d ≥ w; p ≥ q, p ≥ p, and q ≥ q with-

out losing generality. For example, the substitution pattern [1, 1, 1, 1, 1, 1; 0, 0, 0, 0] corre-

sponds to the term represented by HABCDW, while [1, 1, 1, 1, 0, 0; 1, 1, 0, 0] corresponds

to the terms represented by HABCpp, HABDpp, and so on. Such a substitution pattern is

stored in a list list_partition, which collects respective exponents according to the ap-

pearance of proligands in a ligand inventory list_ligand, e.g., [H,A,B,C,D,W,p,P,q,Q]

(cf. Eq. 27).

The source list of the function calcCoeffGen is stored in the above-mentioned file

CICFgenCC.gapfunc, which is attached as Appendix A. Respective coefficients are cal-

culated by using the function calcCoeffGen after loading the file CICFgenCC.gapfunc.

For example, the coefficients of the terms 15*H*A*B*C*D*W and 18*H*A*B*C*p*P in the

generating function f_Oh_octa (cf. the above-mentioned program Oh-Enum-octa2.gap)

are calculated as follows:

gap> calcCoeffGen(f_Oh_octa, [H,A,B,C,D,W,p,P,q,Q], [1,1,1,1,1,1,0,0,0,0]);

15

gap> calcCoeffGen(f_Oh_octa, [H,A,B,C,D,W,p,P,q,Q], [1,1,1,1,0,0,1,1,0,0]);

18

The function calcCoeffGen is designed to be also applicable to generating functions

for calculating achiral promolecules (e.g., f_Oh_octa_A) and for calculating pairs of enan-

tiomers (e.g., f_Oh_octa_E) as follows:

gap> calcCoeffGen(f_Oh_octa, [H,A,B,C,D,W,p,P,q,Q], [1,1,1,1,1,1,0,0,0,0]);

15

gap> calcCoeffGen(f_Oh_octa_A, [H,A,B,C,D,W,p,P,q,Q], [1,1,1,1,1,1,0,0,0,0]);

0

gap> calcCoeffGen(f_Oh_octa_E, [H,A,B,C,D,W,p,P,q,Q], [1,1,1,1,1,1,0,0,0,0]);

15
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Table 5. Numbers of Octahedral Derivatives with Achiral Proligands

partition 3D A E partition 3D A E

[6, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 0 [5, 1, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 0

[4, 2, 0, 0, 0, 0, 0, 0, 0, 0] 2 2 0 [4, 1, 1, 0, 0, 0, 0, 0, 0, 0] 2 2 0

[3, 3, 0, 0, 0, 0, 0, 0, 0, 0] 2 2 0 [3, 2, 1, 0, 0, 0, 0, 0, 0, 0] 3 3 0

[3, 1, 1, 1, 0, 0, 0, 0, 0, 0] 4 3 1 [2, 2, 2, 0, 0, 0, 0, 0, 0, 0] 5 4 1

[2, 2, 1, 1, 0, 0, 0, 0, 0, 0] 6 4 2 [2, 1, 1, 1, 1, 0, 0, 0, 0, 0] 9 3 6

[1, 1, 1, 1, 1, 1, 0, 0, 0, 0] 15 0 15

The function calcCoeffGen is convenient to transform generating functions into the

corresponding tabular forms of coefficients, as shown in Table 5. Table 5 collects the

numbers of octahedral derivatives with achiral proligands. The 3D-column of Table 5 lists

the coefficients of the generating function f_Oh_octa, the A-column lists the coefficients

of the generating function f_Oh_octa_A, and the E-column lists the coefficients of the

generating function f_Oh_octa_E.

The data of Table 5 are consistent with Table 5 of [19], which reported the symmetry-

itemized enumeration of octahedral derivatives on the basis of Fujita’s USCI approach [18].

For example, the values 9, 3, and 6 appearing in the [2, 1, 1, 1, 1, 0, 0, 0, 0, 0]-row of Table

5 (the composition H2ABCD) correspond to the value 9 of the Total-column, the value 3

of the Cs-column (achiral), and the value 6 of the C1-column (chiral), which appear at

the [21111]-row of Table 5 of [19].

Table 6 collects the numbers of octahedral derivatives with achiral and chiral pro-

ligands. The coefficients listed in each partition with an asterisk should be duplicated

to obtain the numbers of promolecules. For example, the fraction 1/2 appearing in

the [5, 0, 0, 0, 0, 0, 1, 0, 0, 0]*-row corresponds to the term 1 × 1
2
(H5p + H5p), because the

partition is implicitly accompanied by the [5, 0, 0, 0, 0, 0, 0, 1, 0, 0]*. It follows that this

value indicates the presence of one pair of enantiomers. The value 1 appearing in the

[4, 1, 0, 0, 0, 0, 1, 0, 0, 0]*-row corresponds to the term 2 × 1
2
(H4Ap + H4Ap), so that it

indicates the presence of two pairs of enantiomers (cis and trans).

The data of Table 6 are consistent with Table 7 of [19]. For example, the values 1/2, 0,

1/2 appearing in the [5, 0, 0, 0, 0, 0, 1, 0, 0, 0]*-row of Table 6 (1 for 3D (total promolecules),

0 for A (achiral promolecules), and 1 for E (enantiomeric pairs)) corresponds to the value

1 at the intersection of the [5; 1]-row and the C4-column (chiral) of Table 7 [19], where
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Table 6. Numbers of Octahedral Derivatives with Achiral and Chiral Proligands

partition 3D A E partition 3D A E

[5, 0, 0, 0, 0, 0, 1, 0, 0, 0]* 1/2 0 1/2 [4, 1, 0, 0, 0, 0, 1, 0, 0, 0]* 1 0 1

[4, 0, 0, 0, 0, 0, 2, 0, 0, 0]* 1 0 1 [4, 0, 0, 0, 0, 0, 1, 1, 0, 0] 2 2 0

[4, 0, 0, 0, 0, 0, 1, 0, 1, 0]* 1 0 1 [3, 2, 0, 0, 0, 0, 1, 0, 0, 0]* 3/2 0 3/2

[3, 1, 1, 0, 0, 0, 1, 0, 0, 0]* 5/2 0 5/2 [3, 1, 0, 0, 0, 0, 2, 0, 0, 0]* 3/2 0 3/2

[3, 1, 0, 0, 0, 0, 1, 1, 0, 0] 4 3 1 [3, 1, 0, 0, 0, 0, 1, 0, 1, 0]* 5/2 0 5/2

[3, 0, 0, 0, 0, 0, 3, 0, 0, 0]* 1 0 1 [3, 0, 0, 0, 0, 0, 2, 1, 0, 0]* 3/2 0 3/2

[3, 0, 0, 0, 0, 0, 2, 0, 1, 0]* 3/2 0 3/2 [3, 0, 0, 0, 0, 0, 1, 1, 1, 0]* 5/2 0 5/2

[2, 2, 1, 0, 0, 0, 1, 0, 0, 0]* 4 0 4 [2, 2, 0, 0, 0, 0, 2, 0, 0, 0]* 3 0 3

[2, 2, 0, 0, 0, 0, 1, 1, 0, 0] 6 4 2 [2, 2, 0, 0, 0, 0, 1, 0, 1, 0]* 4 0 4

[2, 1, 1, 0, 0, 0, 2, 0, 0, 0]* 4 0 4 [2, 1, 1, 0, 0, 0, 1, 1, 0, 0] 10 5 5

[2, 1, 1, 0, 0, 0, 1, 0, 1, 0]* 15/2 0 15/2 [2, 1, 0, 0, 0, 0, 3, 0, 0, 0]* 3/2 0 3/2

[2, 1, 0, 0, 0, 0, 2, 1, 0, 0]* 4 0 4 [2, 1, 0, 0, 0, 0, 2, 0, 1, 0]* 4 0 4

[2, 1, 0, 0, 0, 0, 1, 1, 1, 0]* 15/2 0 15/2 [2, 0, 0, 0, 0, 0, 4, 0, 0, 0]* 1 0 1

[2, 0, 0, 0, 0, 0, 3, 1, 0, 0]* 3/2 0 3/2 [2, 0, 0, 0, 0, 0, 3, 0, 1, 0]* 3/2 0 3/2

[2, 0, 0, 0, 0, 0, 2, 2, 0, 0] 4 2 2 [2, 0, 0, 0, 0, 0, 2, 1, 1, 0]* 4 0 4

[2, 0, 0, 0, 0, 0, 2, 0, 1, 1]* 4 0 4 [2, 0, 0, 0, 0, 0, 1, 1, 1, 1] 9 3 6

[1, 1, 1, 1, 1, 0, 1, 0, 0, 0]* 15 0 15 [1, 1, 1, 1, 0, 0, 2, 0, 0, 0]* 15/2 0 15/2

[1, 1, 1, 1, 0, 0, 1, 1, 0, 0] 18 6 12 [1, 1, 1, 1, 0, 0, 1, 0, 1, 0]* 15 0 15

[1, 1, 1, 0, 0, 0, 3, 0, 0, 0]* 5/2 0 5/2 [1, 1, 1, 0, 0, 0, 2, 1, 0, 0]* 15/2 0 15/2

[1, 1, 1, 0, 0, 0, 2, 0, 1, 0]* 15/2 0 15/2 [1, 1, 1, 0, 0, 0, 1, 1, 1, 0]* 15 0 15

[1, 1, 0, 0, 0, 0, 4, 0, 0, 0]* 1 0 1 [1, 1, 0, 0, 0, 0, 3, 1, 0, 0]* 5/2 0 5/2

[1, 1, 0, 0, 0, 0, 3, 0, 1, 0]* 5/2 0 5/2 [1, 1, 0, 0, 0, 0, 2, 2, 0, 0] 5 2 3

[1, 1, 0, 0, 0, 0, 2, 1, 1, 0]* 15/2 0 15/2 [1, 1, 0, 0, 0, 0, 2, 0, 1, 1]* 15/2 0 15/2

[1, 1, 0, 0, 0, 0, 1, 1, 1, 1] 17 4 13 [1, 0, 0, 0, 0, 0, 5, 0, 0, 0]* 1/2 0 1/2

[1, 0, 0, 0, 0, 0, 4, 1, 0, 0]* 1 0 1 [1, 0, 0, 0, 0, 0, 4, 0, 1, 0]* 1 0 1

[1, 0, 0, 0, 0, 0, 3, 2, 0, 0]* 3/2 0 3/2 [1, 0, 0, 0, 0, 0, 3, 0, 2, 0]* 3/2 0 3/2

[1, 0, 0, 0, 0, 0, 3, 1, 1, 0]* 5/2 0 5/2 [1, 0, 0, 0, 0, 0, 3, 0, 1, 1]* 5/2 0 5/2

[1, 0, 0, 0, 0, 0, 2, 2, 1, 0]* 4 0 4 [1, 0, 0, 0, 0, 0, 2, 1, 2, 0]* 4 0 4

[1, 0, 0, 0, 0, 0, 2, 1, 1, 1]* 15/2 0 15/2 [0, 0, 0, 0, 0, 0, 6, 0, 0, 0]* 1/2 0 1/2

[0, 0, 0, 0, 0, 0, 5, 1, 0, 0]* 1/2 0 1/2 [0, 0, 0, 0, 0, 0, 5, 0, 1, 0]* 1/2 0 1/2

[0, 0, 0, 0, 0, 0, 4, 2, 0, 0]* 1 0 1 [0, 0, 0, 0, 0, 0, 4, 1, 1, 0]* 1 0 1

[0, 0, 0, 0, 0, 0, 4, 0, 2, 0]* 1 0 1 [0, 0, 0, 0, 0, 0, 4, 0, 1, 1]* 1 0 1

[0, 0, 0, 0, 0, 0, 3, 3, 0, 0] 2 2 0 [0, 0, 0, 0, 0, 0, 3, 2, 1, 0]* 3/2 0 3/2

[0, 0, 0, 0, 0, 0, 3, 1, 1, 1] 5/2 0 5/2 [0, 0, 0, 0, 0, 0, 3, 0, 3, 0]* 1 0 1

[0, 0, 0, 0, 0, 0, 3, 0, 2, 1]* 3/2 0 3/2
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this value means 1 for 3D, 0 for A, and 1 for E in the present context. The set of values

4 for 3D (total), 3 for A (achiral), and 1 for E (enantiomeric pairs) appearing in the

[3, 1, 0, 0, 0, 0, 1, 1, 0, 0]-row of Table 6 corresponds to the set of values 1 for C1 (chiral),

1 for Cs (achiral), and 2 for C ′
s (achiral) appearing in the [31; 11]-row of Table 7 [19],

where this set of values means 4 (= 1 + 1 + 2) for 3D, 3 (= 1 + 2) for A, and 1 for E in

the present context.

5.3 Merits of the Present Procedure in Enumeration by Fujita’s
Proligand Method

In a previous procedure, the concrete form of a coset representation (e.g., Oh(/C4v) of

Figure 2) has been first calculated by applying a FORTRAN program (unpublished) to a

coset decomposition [18]. Then, it has been used to calculate the corresponding CI-CF,

which in turn has been applied to combinatorial enumeration by using such a computer

system as the Maple system [12]. The source list of a Maple program for calculating

the numbers of cubane derivatives, for example, has been reported as an appendix in an

article appearing in this journal [21].

On the other hand, the present procedure does not explicitly require the concrete

form of a coset representation during the calculation of a CI-CF, but instead, it treats a

permutation group defined from an appropriate set of generators. By using the newly-

defined GAP functions (CalcConjClassCICF, calcCoeffGen, and so on stored in the file

CICFgenCC.gapfunc of Appendix A), a straightforward procedure for enumeration can

be developed by using the GAP system.

As a typical example of such a straightforward procedure, Appendix B shows a source

list of calculating the numbers of cubane derivatives, which is stored in a work file

named Oh-Enum-cube.gap. In this procedure, the CI-CFs for 2, i.e., CICF_Oh_cube,

CICF_Oh_cube_A, and CICF_Oh_cube_E (Table 4), are calculated respectively by using

CalcConjClassCICF, CalcConjClassCICF_A, and CalcConjClassCICF_E after loading

the file CICFgenCC.gapfunc (Appendix A). Then, the coefficients of the corresponding

generating functions are calculated by means of calcCoeffGen, which is also effective to

this case of treating eight achiral proligands (and two pairs of enantiomeric proligands).

The data obtained by the execution of Oh-Enum-cube.gap are concerned with the numbers

of cubane derivatives with achiral proligands. They are formatted into a tabular form so

as to give Table 7. Note that the 8 digits of each partition are concerned with eight achi-
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Table 7. Numbers of Cubane Derivatives with Achiral Proligands

partition 3D A E partition 3D A E

[8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 0 [7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 1 0

[6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 3 3 0 [6, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 3 3 0

[5, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 3 3 0 [5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 6 5 1

[5, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 10 6 4 [4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 6 5 1

[4, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 10 7 3 [4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0] 16 10 6

[4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 22 9 13 [4, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] 38 6 32

[3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0] 17 10 7 [3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 30 12 18

[3, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0] 42 14 28 [3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] 76 12 64

[3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0] 140 0 140 [2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0] 68 22 46

[2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0] 114 18 96 [2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0] 216 12 204

[2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0] 420 0 420 [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0] 840 0 840

ral proligands and the remaining four digits are concerned with two pairs of enantiomeric

proligands. For example, the values 6, 5, and 1 in the [5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]-row cor-

responding to the composition H5A2B (without no chiral proligands) indicates the total

number 6, which consists of five achiral promolecules and one pair of enantiomers. The

data resulted by the GAP system (Table 7) are consistent with those collected in Table

2 of [21], which have been obtained by the combination of the FORTRAN program and

the Maple program.

The numbers of cubane derivatives with achiral and chiral proligands are obtained in a

similar way. Several selected data are collected in Table 8. The numbers of each row with

an asterisk should be duplicated to give the numbers of enantiomeric pairs. For example,

the values 1/2, 0, and 1/2 in the [7, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]*-row (corresponding to the

composition 1
2
(H7p + H7p)) indicates the total number 1, which consists of no achiral

promolecule and one pair of enantiomers. The data of Table 8 are consistent with those

collected in Table 3 of [21].

6 Conclusion

The GAP functions CalcConjClassCICF, ..._A, and ..._E have been developed to gen-

erate respective CI-CFs, which are used to calculate generating functions for giving the

total numbers of 3D structures, those of achiral 3D structures, and those of enantiomeric

pairs of chiral 3D structures. During the calculations of CI-CFs, conjugacy classes are
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Table 8. Numbers of Cubane Derivatives with Achiral and Chiral Proligands

partition 3D A E partition 3D A E

[7, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]* 1/2 0 1/2 [6, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]* 3/2 0 3/2

[6, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0]* 3/2 0 3/2 [6, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0] 3 3 0

[6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]* 3/2 0 3/2 [5, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]* 7/2 0 7/2

[5, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0]* 7/2 0 7/2 [5, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0] 9 4 5

[5, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]* 7 0 7 [5, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0]* 3/2 0 3/2

[5, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0]* 7/2 0 7/2 [5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0]* 7/2 0 7/2

[5, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0]* 7 0 7 [4, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]* 13/2 0 13/2

[4, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0]* 11 0 11 [4, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0] 23 11 12

[4, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]* 35/2 0 35/2 [4, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0]* 35/2 0 35/2

[4, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0] 41 12 29 [4, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0]* 35 0 35

[4, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0]* 13/2 0 13/2 [4, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0]* 35/2 0 35/2

[4, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0]* 35/2 0 35/2 [4, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0]* 35 0 35

[4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0]* 7/2 0 7/2 [4, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0]* 13/2 0 13/2

[4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0]* 13/2 0 13/2 [4, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0] 14 6 8

[4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0]* 11 0 11 [4, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0]* 35/2 0 35/2

[4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1]* 35/2 0 35/2 [4, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1] 40 10 30

taken into consideration after the elements of a point group are classified into rotations

and (roto)reflections by means of a mirror-permutation representation. The CI-CFs have

been calculated to characterize Oh-skeletons (an octahedron, a cube, a cuboctahedron,

a truncated octahedron, and a truncated hexahedron) and applied to combinatorial enu-

meration of promolecules derived from these skeletons.

Appendix A. Source List of CICFgenCC.gapfunc for Cal-

culating CI-CFs

The following codes are stored in the file named CICFgenCC.gapfunc, which is loaded

during the calculation of CI-CFs.

#CICFgenCC.gapfunc

###################################

# Division into Conjugacy Classes #

###################################

divideConjClasses := function(G, degree, degreefull)

local i, j, Orig_Grp, l_chiral_elements, l_achiral_elements, l_chiralachiral,

conj_class, e_conj_class, r_conj_class,

DegGr, DegCGr, temp_cycstrX, AchOrCh, l_conjelem, l_chiral_achiral;

Orig_Grp := G; #group to be examined

DegGr := degreefull; #degree of chiral and achiral parts, e.g. 6: [1,2,3,4,5,6]

DegCGr := degree; #degree of chiral parts, e.g. 4: [1,2,3,4]

conj_class := ConjugacyClasses(Orig_Grp);

l_chiral_elements := [];

l_achiral_elements := [];

l_chiralachiral := [];

for j in [1..Size(conj_class)] do
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e_conj_class := Elements(conj_class[j]);

r_conj_class := Representative(conj_class[j]);

temp_cycstrX := CycleLengths(r_conj_class, [1..DegGr]); #full degree

AchOrCh := temp_cycstrX[Size(temp_cycstrX)]; #chiral 1; achiral 2

if AchOrCh = 1 then

l_conjelem := [];

for i in [1..Size(e_conj_class)] do

Add(l_conjelem, e_conj_class[i]);

od;

Add(l_chiral_elements, l_conjelem);

else

l_conjelem := [];

for i in [1..Size(e_conj_class)] do

Add(l_conjelem, e_conj_class[i]);

od;

Add(l_achiral_elements, l_conjelem);

fi;

od;

#Display(l_chiral_elements); #for debug

#Display(l_achiral_elements); #for debug

l_chiral_achiral := [l_chiral_elements, l_achiral_elements];

return l_chiral_achiral;

end; #end of function divideConjClass

################################################

# Calaculation of CICF based Conjugacy Classes #

################################################

CalcConjClassCICF := function(G, degree, degreefull)

local i, j, k, Orig_Grp,

order_Orig_Grp, conj_class, n_conj_class, CICF,

r_conj_class, s_conj_class,

DegGr, DegCGr, temp_cycstr, temp_cycstrX, AchOrCh,

tempSI,tempSIX,tempSIY,tempCICF;

Orig_Grp := G; #group to be examined

DegGr := degreefull; #degree of chiral and achiral parts, e.g. 6: [1,2,3,4,5,6]

DegCGr := degree; #degree of chiral parts, e.g. 4: [1,2,3,4]

order_Orig_Grp := Size(Orig_Grp);

conj_class := ConjugacyClasses(Orig_Grp);

n_conj_class := Size(conj_class);

CICF := 0;

for j in [1..n_conj_class] do

r_conj_class := Representative(conj_class[j]);

s_conj_class := Size(conj_class[j]);

temp_cycstr := CycleLengths(r_conj_class, [1..DegCGr]); #degree

temp_cycstrX := CycleLengths(r_conj_class, [1..DegGr]); #full degree

AchOrCh := temp_cycstrX[Size(temp_cycstrX)]; #chiral 1; achiral 2

#Determination of sphericity indices (SIs) of cycles

tempCICF := s_conj_class; # initial value in place of 1

for k in [1..Size(temp_cycstr)] do

if DegGr = DegCGr then

tempSI := ["b_", temp_cycstr[k]]; #hemispheric cycle

else

if AchOrCh = 1 then

tempSI := ["b_", temp_cycstr[k]]; #hemispheric cycle

else

if IsOddInt(temp_cycstr[k]) then

tempSI := ["a_", temp_cycstr[k]]; #homospheric cycle

else

tempSI := ["c_", temp_cycstr[k]]; #enantiospheric cycle

fi;

fi;

fi;

#Calculation of products of sphericity indices (PSIs)

tempSIX := JoinStringsWithSeparator(tempSI, "");

tempSIY := Indeterminate(Rationals, tempSIX);

tempCICF := tempCICF*tempSIY;

od;

CICF := CICF + (1/order_Orig_Grp)*tempCICF;

od;

#Display(CICF); #for debug

return CICF;
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end; #end of the function CalcConjClassCICF

##############################

# Achiral Part of CICF for G #

##############################

CalcConjClassCICF_A := function(G, degree, degreefull)

local i, j, k, Orig_Grp,

order_Orig_Grp, conj_class, n_conj_class, CICF_A,

r_conj_class, s_conj_class,

DegGr, DegCGr, temp_cycstr, temp_cycstrX, AchOrCh,

tempSI,tempSIX,tempSIY,tempCICF;

Orig_Grp := G; #group to be examined

DegGr := degreefull; #degree of chiral and achiral parts, e.g. 6: [1,2,3,4,5,6]

DegCGr := degree; #degree of chiral parts, e.g. 4: [1,2,3,4]

order_Orig_Grp := Size(Orig_Grp);

conj_class := ConjugacyClasses(Orig_Grp);

n_conj_class := Size(conj_class);

CICF_A := 0;

for j in [1..n_conj_class] do

r_conj_class := Representative(conj_class[j]);

s_conj_class := Size(conj_class[j]);

temp_cycstr := CycleLengths(r_conj_class, [1..DegCGr]); #degree

temp_cycstrX := CycleLengths(r_conj_class, [1..DegGr]); #full degree

AchOrCh := temp_cycstrX[Size(temp_cycstrX)]; #chiral 1; achiral 2

#Determination of sphericity indices (SIs) of cycles

if AchOrCh = 1 then

tempCICF := 0;

else

tempCICF := s_conj_class; # initial value in place of 1

for k in [1..Size(temp_cycstr)] do

if DegGr = DegCGr then

else

if IsOddInt(temp_cycstr[k]) then

tempSI := ["a_", temp_cycstr[k]]; #homospheric cycle

else

tempSI := ["c_", temp_cycstr[k]]; #enantiospheric cycle

fi;

#Calculation of products of sphericity indices (PSIs)

tempSIX := JoinStringsWithSeparator(tempSI, "");

tempSIY := Indeterminate(Rationals, tempSIX);

tempCICF := tempCICF*tempSIY;

fi;

od;

fi;

CICF_A := CICF_A + (2/order_Orig_Grp)*tempCICF;

od;

#Display(CICF_A); #for debug

return CICF_A;

end; #end of the function CalcConjClassCICF_A

#############################

# Chiral Part of CICF for G #

#############################

CalcConjClassCICF_E := function(G, degree, degreefull)

local CICF, CICF_A, CICF_E;

if degree = degreefull then

return false;

break;

fi;

CICF := CalcConjClassCICF(G, degree, degreefull);

CICF_A := CalcConjClassCICF_A(G, degree, degreefull);

CICF_E := CICF - CICF_A;

return CICF_E;

end; # end of the function CalcCICF_E

##############################################################

# Coefficients of a Generating Function Derived from a CI-CF #

##############################################################

list_ligand := [];

list_partition := [];

calcCoeffGen := function(genfunc, list_ligand, list_partition)
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local i, j, l_p, l_l, temppt, coeff, tempcoeff;

l_l := list_ligand;

l_p := list_partition;

coeff := 99999999; #tentative assignment

if Size(l_l) = Size(l_p) then

temppt := PolynomialCoefficientsOfPolynomial(genfunc, l_l[1]);

for i in [1..Size(l_l)-1] do

if Size(temppt) < l_p[i]+1 then

coeff := 0;

break;

else

temppt := PolynomialCoefficientsOfPolynomial(temppt[l_p[i]+1], l_l[i+1]);

fi;

od;

if coeff = 0 then

else

coeff := temppt[l_p[Size(l_l)]+1];

fi;

return coeff;

else

return false;

fi;

end; #end of the function calcCoeffGen

Appendix B. Source List of Oh-Enum-cube.gap for Enu-

merating Cubane Derivatives

The following program for combinatorial enumeration of cubane derivatives is stored in a

file named Oh-Enum-cube.gap (an arbitrary name), which is placed in a work directory

named c:/fujita0/calcCICF/Oh-Enum-cube (an arbitrary name). To execute this file,

the first line commented out by the # symbol is copied and paste after the gap> prompt

in the command prompt of the Windows operating system. The output is stored in the

log file named Oh-Enum-cubelog.txt (an arbitrary name), which contains the data for

constructing Table 7.

#Read("c:/fujita0/calcCICF/Oh-Enum-cube.gap");

LogTo("c:/fujita0/calcCICF/Oh-Enum-cubelog.txt");

Read("c:/fujita0/fujita2016/RSstereoOcta/calcOh/CICFgenCC.gapfunc"); #Loading of CICFgenCC.gapfunc

gen2 := [(1,3)(2,4)(5,7)(6,8), (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6),

(1,5)(2,6)(3,7)(4,8)(9,10)];

Oh_cube := Group(gen2); #cube

CICF_Oh_cube := CalcConjClassCICF(Oh_cube, 8, 10);

CICF_Oh_cube_A := CalcConjClassCICF_A(Oh_cube, 8, 10);

CICF_Oh_cube_E := CalcConjClassCICF_E(Oh_cube, 8, 10);

H := Indeterminate(Rationals, "H"); A := Indeterminate(Rationals, "A");

B := Indeterminate(Rationals, "B"); C := Indeterminate(Rationals, "C");

D := Indeterminate(Rationals, "D"); U := Indeterminate(Rationals, "U");

V := Indeterminate(Rationals, "V"); W := Indeterminate(Rationals, "W");

p := Indeterminate(Rationals, "p"); P := Indeterminate(Rationals, "P");

q := Indeterminate(Rationals, "q"); Q := Indeterminate(Rationals, "Q");

b_1 := Indeterminate(Rationals, "b_1"); b_2 := Indeterminate(Rationals, "b_2");

b_3 := Indeterminate(Rationals, "b_3"); b_4 := Indeterminate(Rationals, "b_4");

a_1 := Indeterminate(Rationals, "a_1"); c_2 := Indeterminate(Rationals, "c_2");

c_4 := Indeterminate(Rationals, "c_4"); c_6 := Indeterminate(Rationals, "c_6");

aa_1 := H + A + B + C + D + U + V + W;
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bb_1 := H + A + B + C + D + U + V + W + p + q + P + Q;

bb_2 := H^2 + A^2 + B^2 + C^2 + D^2 + U^2 + V^2 + W^2 + p^2 + q^2 + P^2 + Q^2;

bb_3 := H^3 + A^3 + B^3 + C^3 + D^3 + U^3 + V^3 + W^3 + p^3 + q^3 + P^3 + Q^3;

bb_4 := H^4 + A^4 + B^4 + C^4 + D^4 + U^4 + V^4 + W^4 + p^4 + q^4 + P^4 + Q^4;

cc_2 := H^2 + A^2 + B^2 + C^2 + D^2 + U^2 + V^2 + W^2 + 2*p*P + 2*q*Q;

cc_4 := H^4 + A^4 + B^4 + C^4 + D^4 + U^4 + V^4 + W^4 + 2*p^2*P^2 + 2*q^2*Q^2;

cc_6 := H^6 + A^6 + B^6 + C^6 + D^6 + U^6 + V^6 + W^6 + 2*p^3*P^3 + 2*q^3*Q^3;

f_Oh_cube := Value(CICF_Oh_cube,

[a_1, b_1, b_2, b_3, b_4, c_2, c_4, c_6],

[aa_1, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4, cc_6]);;

f_Oh_cube_A := Value(CICF_Oh_cube_A,

[a_1, b_1, b_2, b_3, b_4, c_2, c_4, c_6],

[aa_1, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4, cc_6]);;

f_Oh_cube_E := Value(CICF_Oh_cube_E,

[a_1, b_1, b_2, b_3, b_4, c_2, c_4, c_6],

[aa_1, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4, cc_6]);;

list_partitions :=[];

calcCoeffGenTAE := function(list_partitions)

local list_ligand_L, l_pp;

list_ligand_L := [H,A,B,C,D,U,V,W,p,P,q,Q];

l_pp := list_partitions;

Print("$", l_pp, "$ & ",

calcCoeffGen(f_Oh_cube, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_Oh_cube_A, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_Oh_cube_E, list_ligand_L, list_partitions), " \\\\ \n");

end;

calcCoeffGenTAE([8,0,0,0,0,0,0,0,0,0,0,0]); calcCoeffGenTAE([7,1,0,0,0,0,0,0,0,0,0,0]);

calcCoeffGenTAE([6,2,0,0,0,0,0,0,0,0,0,0]); calcCoeffGenTAE([6,1,1,0,0,0,0,0,0,0,0,0]);

calcCoeffGenTAE([5,3,0,0,0,0,0,0,0,0,0,0]); calcCoeffGenTAE([5,2,1,0,0,0,0,0,0,0,0,0]);

calcCoeffGenTAE([5,1,1,1,0,0,0,0,0,0,0,0]); calcCoeffGenTAE([4,4,0,0,0,0,0,0,0,0,0,0]);

calcCoeffGenTAE([4,3,1,0,0,0,0,0,0,0,0,0]); calcCoeffGenTAE([4,2,2,0,0,0,0,0,0,0,0,0]);

calcCoeffGenTAE([4,2,1,1,0,0,0,0,0,0,0,0]); calcCoeffGenTAE([4,1,1,1,1,0,0,0,0,0,0,0]);

calcCoeffGenTAE([3,3,2,0,0,0,0,0,0,0,0,0]); calcCoeffGenTAE([3,3,1,1,0,0,0,0,0,0,0,0]);

calcCoeffGenTAE([3,2,2,1,0,0,0,0,0,0,0,0]); calcCoeffGenTAE([3,2,1,1,1,0,0,0,0,0,0,0]);

calcCoeffGenTAE([3,1,1,1,1,1,0,0,0,0,0,0]); calcCoeffGenTAE([2,2,2,2,0,0,0,0,0,0,0,0]);

calcCoeffGenTAE([2,2,2,1,1,0,0,0,0,0,0,0]); calcCoeffGenTAE([2,2,1,1,1,1,0,0,0,0,0,0]);

calcCoeffGenTAE([2,1,1,1,1,1,1,0,0,0,0,0]); calcCoeffGenTAE([1,1,1,1,1,1,1,1,0,0,0,0]);

LogTo();
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