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Abstract

The edge-Szeged index of a graph G is defined as Sze(G) =
∑

e=uv∈E(G) mu(e)mv(e), where

mu(e) denotes the number of edges of G whose distance to u is smaller than the distance
to v and mv(e) denotes the number of edges of G whose distance to v is smaller than the
distance to u. Similarly, the PI index is defined as PI(G) =

∑
e=uv∈E(G)(mu(e) +mv(e)).

In this paper it is shown how the problem of calculating the indices of a benzenoid system
can be reduced to the problem of calculating weighted indices of three different weighted
quotient trees. Furthermore, using these results, algorithms are established that, for a
given benzenoid system G with m edges, compute the edge-Szeged index and the PI index
of G in O(m) time. Moreover, it is shown that the results can also be applied to weighted
benzenoid systems.

1 Introduction

In the present paper we study some distance–based topological indices, which are closely

related to the Wiener index. Their history goes back to 1947, when H. Wiener used the

distances in the molecular graphs of alkanes to calculate their boiling points [23]. This

research has led to the Wiener index, which is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

and is one of the most popular molecular descriptors. The Wiener index, due to its

correlation with a large number of physico-chemical properties of organic molecules and

its interesting mathematical properties, has been extensively studied in both theoretical

and chemical literature. Nowadays this index is used for preliminary screening of drug
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molecules and for predicting binding energy of protein-ligand complex at a preliminary

stage. Furthermore, the same quantity has been studied by mathematicians as the gross

status, the distance of graphs and the transmission in graphs.

Later, the Szeged index and the PI index were introduced and it was shown that they

also have many applications, for example in drug modelling [12], in networks [19,21] and

in biological activities of a large number of diversified and complex compounds [11].

It is known that if T is a tree, then

W (T ) =
∑

e=uv∈E(T )

nu(e)nv(e),

where nu(e) denotes the number of vertices of T whose distance to u is smaller than the

distance to v and nv(e) denotes the number of vertices of T whose distance to v is smaller

than the distance to u. Therefore, a proper generalization was defined in [5] as

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e).

This structural descriptor was eventually named as the Szeged index. Motivated by the

success of the Szeged index, in [10] a seemingly similar molecular descriptor, that is called

the PI index (or the edge-PI index) was defined with

PIe(G) =
∑

e=uv∈E(G)

(
mu(e) +mv(e)

)
,

where the numbers mu(e) and mv(e) are the edge-variants of the numbers nu(e) and nv(e).

Later [13], a vertex version of the PI index, called the vertex-PI index was defined as

PIv(G) =
∑

e=uv∈E(G)

(
nu(e) + nv(e)

)
.

Obviously, for any bipartite graph it follows PIv(G) = |V (G)||E(G)| (see [13] and Lemma

4.3). Since benzenoid systems are bipartite graphs, the vertex-PI index can be easily

computed by multiplying the number of vertices and the number of edges.

Finally, the edge-version of the Szeged index, the edge-Szeged index, was defined in [6]

as

Sze(G) =
∑

e=uv∈E(G)

mu(e)mv(e).

It is also known that if T is a tree, then the edge-Szeged index Sze(T ) equals the edge-

Wiener index We(T ) (for the details see [24]). Therefore, the edge-Szeged index can be

viewed as a generalization of the edge-Wiener index. The Wiener index, the Szeged in-

dex, the edge-Szeged index and the PI index are some of the central and most commonly
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studied distance-based topological indices. For some recent research on the edge-Szeged

index see [1, 2, 14,15,24] and on the PI indices see [7, 8, 15,17,20].

In the present paper linear time algorithms for the edge-Szeged index and the PI index

of benzenoid systems are developed. Benzenoid systems form one of the most extensively

studied family of chemical graphs. Although similar results could also be obtained for the

vertex-PI index, they are not needed since the computation of this index in the case of

bipartite graphs is trivial. However, in [17] the formula to calculate the PI index using PI

partitions (orthogonal cuts in the case of benzenoid systems) was obtained and in [8] it

was shown how the cut method can be used to calculate the PI index. Therefore, following

these results, a fast algorithm that calculates the PI index of a benzenoid system could

be obtained. But the purpose of this paper is also to show the connection between the PI

index of a benzenoid system G and the weighted indices of corresponding weighted trees.

Also, a method for calculating the edge-Szeged index of benzenoid chains was obtained

in [22].

The algorithms are parallel to the linear time algorithms for the Wiener index, the

Szeged index and the edge-Wiener index developed in [4, 9]. We use the cut method to

reduce the problem of calculating the indices of benzenoid systems to the problem of

calculating weighted indices of three different weighted quotient trees (for more informa-

tion about the cut method see [16, 18]). Some of the corresponding weighted indices of

the edge-Szeged index, the PI index and the vertex-PI index have been defined in differ-

ent ways (for example, see [7, 14]). In this paper we carefully define the corresponding

weighted indices such that they are suitable for our purpose.

The paper is organized in 6 sections. In the next section we give definitions and

introduce some basic notation needed later. In Section 3 we use the cut method to prove

that the edge-Szeged index and the PI index of a benzenoid system can be expressed

as the sum of corresponding weighted indices of weighted trees. Using these results the

algorithms are presented in Section 4. In Section 5 it is shown how the results from

Section 3 can be used to calculate the indices by hand. In the last section a generalization

of the method to weighted graphs is described.

2 Preliminaries

Unless stated otherwise, the graphs considered in this paper are simple, finite and con-

nected. We define dG(u, v) to be the usual shortest-path distance between vertices

u, v ∈ V (G). In addition, for a vertex x ∈ V (G) and an edge e = ab ∈ E(G) we
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set

dG(x, e) = min{dG(x, a), dG(x, b)} .

Let G be a graph and e = uv an edge of G. Throughout the paper we will use the

following notation:

N1(e|G) = {x ∈ V (G) | dG(x, u) < dG(x, v)},

N2(e|G) = {x ∈ V (G) | dG(x, v) < dG(x, u)},

M1(e|G) = {f ∈ E(G) | dG(f, u) < dG(f, v)},

M2(e|G) = {f ∈ E(G) | dG(f, v) < dG(f, u)}.

The Szeged index of a graph G is defined as Sz(G) =
∑

e∈E(G) |N1(e|G)| · |N2(e|G)|. To

emphasize that it is the vertex-Szeged index, we will also write Szv(G) for Sz(G). The

edge-Szeged index is defined with the formula

Sze(G) =
∑

e∈E(G)

|M1(e|G)| · |M2(e|G)|.

The PI index and the vertex-PI index of a graph G are defined as

PIe(G) =
∑

e∈E(G)

(
|M1(e|G)|+ |M2(e|G)|

)
,

P Iv(G) =
∑

e∈E(G)

(
|N1(e|G)|+ |N2(e|G)|

)
.

We extend the above definitions of the indices to weighted graphs as follows. Let G be

a graph and let w : V (G) → R+ and w′ : E(G) → R+ be given functions. Then (G,w′)

and (G,w,w′) are an edge-weighted graph and a vertex-edge weighted graph, respectively.

Furthermore, if e = uv is an edge of G and i ∈ {1, 2}, set

ni(e|G) =
∑

x∈Ni(e|G)

w(x),

mi(e|G) =
∑

f∈Mi(e|G)

w′(f),

ri(e|G) =
∑

x∈Ni(e|G)

w(x) +
∑

f∈Mi(e|G)

w′(f).

Then the Szeged index, the edge-Szeged index, and the vertex-edge-Szeged index of these

weighted graphs are defined as

Szv(G,w,w′) =
∑

e∈E(G)

w′(e)n1(e|G)n2(e|G),
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Sze(G,w′) =
∑

e∈E(G)

w′(e)m1(e|G)m2(e|G),

Szve(G,w,w′) =
∑

e∈E(G)

w′(e)
(
n1(e|G)m2(e|G) + n2(e|G)m1(e|G)

)
.

The corresponding PI indices of these weighted graphs are defined as

PIe(G,w′) =
∑

e∈E(G)

w′(e)
(
m1(e|G) +m2(e|G)

)
PIv(G,w,w′) =

∑
e∈E(G)

w′(e)
(
n1(e|G) + n2(e|G)

)
.

Remark 2.1. Let (T,w,w′) be a weighted tree. For an edge e of T , let T1 and T2 be the

connected components of T \ e. Obviously, for i = 1, 2 it holds

ni(e|T ) =
∑

u∈V (Ti)

w(u),

mi(e|T ) =
∑

f∈E(Ti)

w′(f),

ri(e|T ) =
∑

u∈V (Ti)

w(u) +
∑

f∈E(Ti)

w′(f).

Let H be the hexagonal (graphite) lattice and let Z be a cycle on it. Then a benzenoid

system is induced by the vertices and edges of H, lying on Z and in its interior. The edge

set of a benzenoid system G can be naturally partitioned into sets E1, E2, and E3 of edges

of the same direction. For i ∈ {1, 2, 3}, set Gi = G−Ei. Then the connected components

of the graph Gi are paths. The quotient graph Ti, 1 ≤ i ≤ 3, has these paths as vertices,

two such paths (i.e. components of Gi) P1 and P2 being adjacent in Ti if some edge in Ei

joins a vertex of P1 to a vertex of P2. It is known that T1, T2 and T3 are trees (see [3]).

An elementary cut of a benzenoid system G is a line segment that starts at the center of a

peripheral edge of a benzenoid system G, goes orthogonal to it and ends at the first next

peripheral edge of G. Details on elementary cuts can be found elsewhere (for example,

see [6]). In what follows we denote by C the set of edges in an elementary cut. The

number of edges in C will be denoted in a standard way, by |C|.
The set of all elementary cuts of G will be denoted by C. Furthermore, if i ∈ {1, 2, 3}, the
set Ci denotes the set of all elementary cuts C of G such that C ⊆ Ei. Then {C1, C2, C3} is
a partition of the set C. It is obvious that there is a natural bijection between elementary

cuts in Ci and edges of Ti.
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3 Reduction to the quotient trees

Let G be a benzenoid system and let T1, T2, T3 be its quotient trees as defined in the

preliminaries. We next extend the quotient trees Ti, i ∈ {1, 2, 3}, to weighted trees (Ti, w
′
i)

and (Ti, wi, w
′
i) as follows:

• for x ∈ V (Ti), let wi(x) be the number of edges in the component (path) x of Gi;

• for e = xy ∈ E(Ti), let w
′
i(e) be the number of edges between components (paths)

x and y.

Obviously, if C is an elementary cut corresponding to the edge e ∈ E(Ti), then |C| = w′
i(e).

We start with the following lemma, which is used in the proof of Theorem 3.2 and Theorem

3.6. If C is an elementary cut of G, then it is clear that for every two edges f1 and f2 in C

it follows (without loss of generality) M1(f1|G) = M1(f2|G) and M2(f1|G) = M2(f2|G).

Therefore, we can define M1(C|G) = M1(f |G) and M2(C|G) = M2(f |G) for some f ∈ C.

Lemma 3.1. Let G be a benzenoid system and let C be an elementary cut of G connecting

paths P1 and P2 of G − Ei for i ∈ {1, 2, 3}. If P1 corresponds to vertex u ∈ V (Ti) and

P2 corresponds to vertex v ∈ V (Ti) and e = uv ∈ E(Ti), then it holds (without loss of

generality)

|M1(C|G)| = n1(e|Ti) +m1(e|Ti)

and

|M2(C|G)| = n2(e|Ti) +m2(e|Ti).

Proof. Let C be an elementary cut of G connecting paths P1 and P2 of G − Ei for

i ∈ {1, 2, 3}. Obviously, the number n1(e|Ti) represents the number of edges of G

corresponding to the vertices of Ti that are closer to u than to v. Analogously, the

number m1(e|Ti) represents the number of edges of G corresponding to the edges of

Ti that are closer to u than to v. Furthermore, the edges and vertices of Ti that are

closer to u than to v represent the paths and elementary cuts of G − Ei, the edges of

which are in the set M1(C|G). Hence, |M1(C|G)| = n1(e|Ti) + m1(e|Ti). To prove that

|M2(C|G)| = n2(e|Ti) + m2(e|Ti) we can use very similar reasoning. Therefore, we are

done.

3.1 The edge-Szeged index

The following theorem is the basis for the computation of the edge-Szeged index.
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Theorem 3.2. If G is a benzenoid system and (Ti, wi, w
′
i), 1 ≤ i ≤ 3, are the correspond-

ing weighted quotient trees, then

Sze(G) =
3∑

i=1

(Szv(Ti, wi, w
′
i) + Sze(Ti, w

′
i) + Szve(Ti, wi, w

′
i)) .

Proof. We have

Sze(G) =
∑

e∈E(G)

|M1(e|G)| · |M2(e|G)| =
∑
C∈C

|C| · |M1(C|G)| · |M2(C|G)|,

since for every two edges f1, f2 ∈ C it holds M1(f1|G) = M1(f2|G) and M2(f1|G) =

M2(f2|G) (see also [6]). Recall that the set {C1, C2, C3} is a partition of C and there exists

a bijection between elements of Ci and edges of Ti such that |C| = w′
i(e) if an elementary

cut C corresponds to the edge e of Ti. Using Lemma 3.1 we obtain

Sze(G) =
3∑

i=1

∑
C∈Ci

|C| · |M1(C|G)| · |M2(C|G)| =

=
3∑

i=1

∑
e∈E(Ti)

w′
i(e)

(
n1(e|Ti) +m1(e|Ti)

)(
n2(e|Ti) +m2(e|Ti)

)
=

=
3∑

i=1

∑
e∈E(Ti)

w′
i(e)n1(e|Ti)n2(e|Ti) +

3∑
i=1

∑
e∈E(Ti)

w′
i(e)m1(e|Ti)m2(e|Ti) +

+
3∑

i=1

∑
e∈E(Ti)

w′
i(e) (n1(e|Ti)m2(e|Ti) + n2(e|Ti)m1(e|Ti)) =

=
3∑

i=1

(Szv(Ti, wi, w
′
i) + Sze(Ti, w

′
i) + Szve(Ti, wi, w

′
i)) .

In order to simplify the notation and the algorithm for computing the edge-Szeged index

of a benzenoid system, we introduce a new concept - the weighted total-Szeged index.

Definition 3.3. Let (G,w,w′) be a weighted graph. The weighted total-Szeged index of

graph G is defined as

Szt(G,w,w′) =
∑

e∈E(G)

w′(e)r1(e|G)r2(e|G).

The following lemma follows easily.

Lemma 3.4. If (G,w,w′) is a weighted graph, then

Szt(G,w,w′) = Szv(G,w,w′) + Sze(G,w′) + Szve(G,w,w′).
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Proof. For any edge e ∈ E(G) it holds

r1(e|G)r2(e|G) = (n1(e|G) +m1(e|G))(n2(e|G) +m2(e|G)) =

= n1(e|G)n2(e|G) +m1(e|G)m2(e|G) +
(
n1(e|G)m2(e|G) + n2(e|G)m1(e|G)

)
and the proof is complete.

Using Theorem 3.2 and Lemma 3.4, we obtain the following corollary.

Corollary 3.5. If G is a benzenoid system and (Ti, wi, w
′
i), 1 ≤ i ≤ 3, are the corre-

sponding weighted quotient trees, then

Sze(G) = Szt(T1, w1, w
′
1) + Szt(T2, w2, w

′
2) + Szt(T3, w3, w

′
3).

3.2 The PI index

The following theorem shows how the problem of computing the PI index of a benzenoid

system can be reduced to the problem of calculating the weighted indices of the corre-

sponding weighted quotient trees.

Theorem 3.6. If G is a benzenoid system and (Ti, wi, w
′
i), 1 ≤ i ≤ 3, are the correspond-

ing weighted quotient trees, then

PIe(G) =
3∑

i=1

(
PIe(Ti, w

′
i) + PIv(Ti, wi, w

′
i)
)
.

Proof. We have

PIe(G) =
∑

e∈E(G)

(
|M1(e|G)|+ |M2(e|G)|

)
=

∑
C∈C

|C|
(
|M1(C|G)|+ |M2(C|G)|

)
,

since for every two edges f1, f2 ∈ C it holds M1(f1|G) = M1(f2|G) and M2(f1|G) =

M2(f2|G). Using very similar arguments as in the proof of Theorem 3.2, we obtain

PIe(G) =
3∑

i=1

∑
C∈Ci

|C|
(
|M1(C|G)|+ |M2(C|G)|

)
=

=
3∑

i=1

∑
e∈E(Ti)

w′
i(e)

(
n1(e|Ti) +m1(e|Ti) + n2(e|Ti) +m2(e|Ti)

)
=

=
3∑

i=1

∑
e∈E(Ti)

w′
i(e)

(
n1(e|Ti) + n2(e|Ti)

)
+

+
3∑

i=1

∑
e∈E(Ti)

w′
i(e)

(
m1(e|Ti) +m2(e|Ti)

)
=

=
3∑

i=1

(
PIv(Ti, wi, w

′
i) + PIe(Ti, w

′
i)
)
.
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4 The algorithms

In this section we describe the announced algorithms. For a given benzenoid system G

we first compute the quotient trees Ti using a procedure called QuotientTrees. For each

Ti we then compute the vertex weights w and the edge weights w′ using a procedure

Weights. It was proved in [3] that this can be done in linear time. The algorithms thus

read as follows:

Algorithm 1: Edge-Szeged Index of Benzenoid Systems

Input : Benzenoid system G with m edges
Output: Sze(G)

1 (T1, T2, T3)← QuotientTrees (G)
2 for i = 1 to 3 do
3 (wi, w

′
i)← Weights (Ti, G)

4 end
5 X1 ← Szt(T1, w1, w

′
1)

6 X2 ← Szt(T2, w2, w
′
2)

7 X3 ← Szt(T3, w3, w
′
3)

8 Sze(G)← X1 +X2 +X3

Algorithm 2: PI Index of Benzenoid Systems

Input : Benzenoid system G with m edges
Output: PIe(G)

1 (T1, T2, T3)← QuotientTrees (G)
2 for i = 1 to 3 do
3 (wi, w

′
i)← Weights (Ti, G)

4 Xi,1 ← PIv(Ti, wi, w
′
i)

5 Xi,2 ← PIe(Ti, w
′
i)

6 Yi ← Xi,1 +Xi,2

7 end
8 PIe(G)← Y1 + Y2 + Y3

The correctness of the algorithms obviously follows from Corollary 3.5 and Theorem 3.6.

Therefore, we have to check the time complexity. Recall that weighted quotient trees

(Ti, wi, w
′
i) can be computed in linear time. The following three lemmas show that the

corresponding weighted indices of weighted trees can be computed in linear time.

Lemma 4.1. Let (T,w,w′) be a weighted tree with m edges. Then the weighted total-

Szeged index Szt(T,w,w
′) can be computed in O(m) time.

Proof. We will use a method parallel to the method from [4] and [9]. Let T be a rooted

tree with a root x and label the vertices of T such that, if a vertex y is labelled `, then
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all vertices in the subtree rooted at y have labels smaller than `. Using the standard BFS

(breadth-first search) algorithm this can be done in linear time. Next we visit all the

vertices of T according to this labelling (we start with the smallest label). Furthermore,

for every vertex y, we will adopt weights w(y) and calculate new weights w′′(y) and s(y).

Assume that we are visiting vertex y ∈ V (T ). The new weight w(y) will be computed

as the sum of all the weights of vertices in the subtree rooted at y and w′′(y) will be

computed as the sum of all weights of the edges in the subtree rooted at y.

• If y is a leaf, then w(y) is left unchanged and w′′(y) = 0.

• If y is not a leaf, then update w(y) by adding to it w(z) for all down-neighbours z

of y, and compute w′′(y) as the sum of w′′(z) and w′(e) for all down-neighbors z of

y and all the corresponding edges e.

Obviously, for every vertex y of the tree T , we can consider the subtree rooted at y as a

connected component of the graph T−e, where e is the up-edge of y. Therefore, n1(e|T ) =
w(y) and m1(e|T ) = w′′(y). Let n(T ) =

∑
u∈V (T ) w(u) and m(T ) =

∑
e∈E(T ) w

′(e) (this

can be computed in linear time). It follows that n2(e|T ) = n(T ) − w(y) and m2(e|T ) =
m(T ) − w′′(y) − w′(e). Let X be the sum of numbers s(z) for all down-neighbours z of

y (and X = 0 if y is a leaf). Finally, set s(y) = X + w′(e)(n1(e|T ) +m1(e|T ))(n2(e|T ) +
m2(e|T )) if y 6= x and s(y) = X, if y = x. It is obvious that s(x) = Szt(T,w,w

′) and the

proof is complete.

Lemma 4.2. Let (T,w′) be a weighted tree with m edges. Then the weighted PI index

PIe(T,w
′) can be computed in O(m) time.

Proof. The proof is very similar to the proof of Lemma 4.1.

Lemma 4.3. Let (G,w,w′) be a weighted bipartite graph and let

n(G) =
∑

u∈V (G)

w(u), m(G) =
∑

e∈E(G)

w′(e).

Then the weighted vertex-PI index

PIv(G,w,w′) = n(G)m(G).

Proof. Since G is bipartite, for any edge e ∈ E(G) it holds V (G) = N1(e|G) ∪ N2(e|G).

Therefore, n1(e|G) + n2(e|G) = n(G) for any edge e. Then it is obvious that

PIv(G,w,w′) =
∑

e∈E(G)

w′(e)n(G) = n(G)m(G).
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Corollary 4.4. Let (T,w,w′) be a weighted tree. Then the weighted vertex-PI index

PIv(T,w,w
′) can be computed in O(m) time.

Finally, using Lemma 4.1, Lemma 4.2 and Corollary 4.4, we obtain the final result.

Theorem 4.5. If G is a benzenoid system with m edges, then Algorithm 1 and Algorithm

2 correctly compute Sze(G) and PIe(G), respectively, and can be implemented in O(m)

time.

5 An example

In this section we give an example that demonstrates how the results from Section 3 can

be used to calculate the indices by hand. Consider the benzenoid system G from Figure

1 with m = 25 edges.

Figure 1. Benzenoid system G.

First, we determine the graphs G− Ei for i ∈ {1, 2, 3}, where Ei is the set of edges of G

of the same direction. These graphs are represented in Figure 2. Next we determine the

weighted quotient trees (Ti, wi, w
′
i), 1 ≤ i ≤ 3, see Figure 3.

Figure 2. Graphs G− E1, G− E2, and G− E3.
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Figure 3. Weighted quotient trees.

Now we are ready to compute the edge-Szeged index. We start with the following quan-

tities:

Szt(T1, w1, w
′
1) = Szt(T3, w3, w

′
3) = 2 · 2 · 21 + 2 · 7 · 16 + 4 · 15 · 6 = 668,

Szt(T2, w2, w
′
2) = 2 · 2 · 21 + 3 · 8 · 14 + 2 · 21 · 2 + 2 · 21 · 2 = 588.

Therefore, by Corollary 3.5,

Sze(G) = 668 + 588 + 668 = 1924.

Next, we compute the PI index. We start with the following quantities:

PIe(T1, w
′
1) = PIe(T3, w

′
3) = 2 · (0 + 6) + 2 · (2 + 4) + 4 · (4 + 0) = 40,

P Ie(T2, w
′
2) = 2 · (0 + 7) + 3 · (2 + 4) + 2 · (7 + 0) + 2 · (7 + 0) = 60,

P Iv(T1, w1, w
′
1) = PIv(T3, w3, w

′
3) = (2 + 3 + 6 + 6) · (2 + 2 + 4) = 136,

P Iv(T2, w2, w
′
2) = (2 + 4 + 6 + 2 + 2) · (2 + 3 + 2 + 2) = 144.

Therefore, by Theorem 3.6,

PIe(G) = (40 + 136) + (60 + 144) + (40 + 136) = 556.

6 Generalization to weighted graphs

The method described in this paper can also be applied to calculate the edge-Szeged

index and the PI index of weighted benzenoid systems. More precisely, if (G,w′) is an

edge-weighted benzenoid system and T1, T2, T3 are its quotient trees, we can extend the

quotient trees Ti, i ∈ {1, 2, 3}, to weighted trees (Ti, u
′
i) and (Ti, ui, u

′
i) as follows:
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• for x ∈ V (Ti), let ui(x) be the sum of weights of edges in the component (path) x

of Gi;

• for e = xy ∈ E(Ti), let u′
i(e) be the sum of weights of edges between components

(paths) x and y.

With this notation we can prove the following theorem. The proof is omitted since the

ideas in the proof are similar as in Section 3.

Theorem 6.1. If (G,w′) is an edge-weighted benzenoid system and (Ti, ui, u
′
i), 1 ≤ i ≤ 3,

are the corresponding weighted quotient trees, then

Sze(G,w′) = Szt(T1, u1, u
′
1) + Szt(T2, u2, u

′
2) + Szt(T3, u3, u

′
3),

P Ie(G,w′) =
3∑

i=1

(
PIe(Ti, u

′
i) + PIv(Ti, ui, u

′
i)
)
.

Following this result, fast algorithms for the edge-Szeged index and the PI index of

edge-weighted benzenoid systems can be obtained as well.
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