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Abstract 

The proposed method for the selection of the descriptors and QSPRs is a version of the 

heuristic Forward Stepwise procedure, using specific criteria to define the "significant" 

descriptors, the quality of QSPRs, the maximum number of predictors in QSPR, the "near 

constant" descriptors, the minimum value of the correlation descriptor/Property, the maximum 

value of the intercorrelation of the descriptors and including a specific criterion to stop the 

calculation. The method allows the selection of less than 1000 suitable descriptors included in 

a group of up to one hundred thousand significant descriptors. The method highlights the 

importance of the selection of the significant descriptors having a low correlation with the 

dependent property. If the number of selected significant descriptors is smaller than 1000, the 

heuristic Forward Stepwise procedure is a suitable method for the selection of the 

QSPR/QSAR equations. Two different QSARs obtained with the same database should be 

compared through the proposed function of leverages, calculated for the prediction set 

molecules. The presence or absence of "overfitting" depends on the number and type of 

descriptors in the initial set. The proposed method was applied with good results in QSAR 

studies regarding the anesthetic potency of 134 inhalation anesthetics (without 

validation/prediction set) and the toxicity of 50 phenol derivatives (including 
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validation/prediction set). The paper suggests testing some linear hydroxy-ketones, containing 

6-12 carbon atoms and various distances between the hydroxyl and carbonyl groups, as new 

inhalation anesthetics. In analysis of λmax for 66 derivatives of 9,10-anthraquinone the quality 

of PRECLAV prediction for the same calibration and validation sets is better than the quality 

of prediction made by ACO + MLR method. 

 

1. Introduction 

In QSP(A)R (Quantitative Structure-Property(Activity) Relationship) studies [45, 46] 

one uses a database which includes (mandatory) the calibration set (molecules having known 

values of the dependent property) and (optionally) the prediction set (molecules having 

unknown values of the dependent property and not used for building QSPRs). The calibration 

set is used to identify "the best" mathematical model, i.e. the QSPR which gives the minimum 

sum of square differences between the observed and the calculated values of the dependent 

property.  

To find the best QSPR one uses descriptors (calculable molecular characteristics with 

the value expressed by real numbers) and some statistical procedures. The best equation 

includes several descriptors, named predictors, and it is used to calculate (predict) the value 

of the dependent property for all molecules in the database. 

 There are many programs [1–3] which calculate, before QSPR computation, thousands 

of descriptors. However, the best QSPR should include a small number of descriptors, for 

statistical reasons. Therefore, there is a huge number, usually more than 1018, of sets of 

descriptors, which should be, as a rule, analyzed. The analysis of all sets would take 

millennia; a preliminary selection of descriptors (before QSPRs calculation) and a selection of 

descriptors sets (during calculation of QSPRs) are mandatory. 

 In addition, the selection of the descriptors should remove the "non-significant" 

descriptors having a very low correlation with the dependent property. Moreover, the 

selection of descriptor sets should remove the sets including too intercorrelated descriptors. In 

principle, these two rules increase the predictive power of the best QSPR. 

 One can quote various heuristic methods used in the selection of descriptors and 

QSPRs, such as Ant Colony Optimization [4, 47], Elastic Net [5], Forward/Backward  

Stepwise [6],   Genetic Algorithm [7],   Least Absolute Shrinkage and Selection Operator [8],   

Particle Swarm Optimization  [9],  Sequential Search [6], Variables Importance on PLS 

projections  [10], Chemically Aware Model Builder [42] and review papers [11, 12]. The 

great number and diversity of these methods suggests that the issue of descriptors and QSPRs 
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selection is not yet entirely solved. Moreover, some authors [43] are skeptical regarding the 

utility of any selection methods: "The results indicate that state-of-the-art learners (random 

forest, SVM, and neural networks) do not gain prediction accuracy from feature selection, 

and we found no evidence that a certain feature selection is particularly well-suited for use in 

combination with a certain learner." 

 Our paper presents the methods used, step by step, by the latest version (August 2016) 

of the PRECLAV (PRoperty Evaluation by CLAss Variables) software [2, 15], in the 

selection of descriptors and QSPR/QSAR equations. The reader can compare the presented 

methods and formulas with quoted procedures or other formulas and procedures in the field. 

The possibility of this comparison is the purpose of the text. 

 

2. Methods and Formulas 
 

The value of many descriptors depends on the molecular geometry. Identifying the 

molecular geometry with minimal potential energy is called "geometry optimization". The 

geometry optimization, after virtual building of the molecules, was done using the programs 

PCModel and MOPAC [13, 14].  

Based on the output files created by MOPAC, the PRECLAV software calculated, for 

each molecule, more than 450 WM (whole molecule) descriptors, specific to this program, 

and tens of thousands of sums and products of these descriptors. The sums are considered a 

measure of the synergy of descriptors [16]. If the analyzed molecules include a common 

skeleton, it is recommended to calculate 3D descriptors. In this case, PRECLAV calculates, 

for each molecule, more than 600 3D descriptors, specific to this program, and other tens of 

thousands of sums and products of these descriptors.  

In addition, we used more than 1300 descriptors calculated by the DRAGON software 

[1], a few descriptors calculated by the EPISuite software [17] and 40 aromaticity descriptors 

calculated by the DESCRIPT software [2].  

PRECLAV identifies the molecular fragments using the bond orders of the chemical 

bonds which link heavy atoms (different from hydrogen) [16, 18]. The percentages (in 

weight) of the molecular fragment are the values of a certain descriptor. The absolute size and 

the algebraic sign of the correlation r of the percentages of the fragment and the values of the 

dependent property highlight the influence of the fragment on the dependent property. A 

"plus" correlation sign means that a high mass percentage of this fragment increases the value 
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of the property. A "minus" correlation sign means that a high mass percent of this fragment 

decreases the value of the property. The molecular fragments are considered "significant" if r2 

≥ 4/(N+3); N is the number of molecules in the calibration set. 

The selection of the descriptors and QSPRs is made in several phases. 

 

Phase #1 eliminates the descriptors which fulfill the empirical criterion (1). 

 

                                                                       kr ≤2                                                           (1) 

 

where 

r2 is the square linear correlation descriptor – dependent property 

k = 1/N • ln (N) 

N is the number of molecules in the calibration set  

 

The value of k is corrected if necessary in the range [0.01, 0.25], i.e. if N > 647, the 

value of k is considered 0.01 and if N < 9 the value of k is considered 0.25. 

 

Phase #2 includes the following steps and loops. 

a) identification and recording of the non-recorded descriptors having the minimum  

value of r2 and r2 ≥ k (see phase #1) 

b) calculation of the weighting factors Ci of linear QSPR (2), by Ordinary Least  

Square Method (first value of p is 1) 

                                                          0

1

p

i i

i

P C C D
=

= + ⋅∑                                                    (2) 

where 

P is the computed value of the dependent property 

C0 is intercept 

Ci are weighting factors (coefficients) 

Di are (the values of some) descriptors which fulfill the criterion r2 ≥ k 

p is the number of descriptors 

 

       c) calculation of the value of the function Q by formula (3); Q is a measure of the quality 

of the QSPR (2), where r2 is the square linear correlation observed values / calculated values 

of the dependent property 

                                                            2 1
p

Q r
N

 = ⋅ − 
 

                                                     (3) 

By applying the Forward Stepwise procedure in the b) + c) loop, the program 

identifies the non-recorded descriptor which, added (i.e. p becomes p + 1) to the descriptor(s) 
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in calculated QSPR, makes the QSPR having the greatest value of Q; the descriptor is 

recorded. 

            When the value of p increases, the value of r2 increases, but the value of Q increases, 

reaches a maximum and then decreases. 

        d) if the value of Q decreases or p ≥ 2 • ln (N) + 2 the program leaves the loop b) + c) 

and the calculation returns to step a) 

e) if the number of recorded descriptors becomes greater than 950, the program leaves  

the loop a) – d) 

 

Phase #3 eliminates the "near constant descriptors". 

Using the minimum value Vmin and maximum value Vmax of a descriptor, the program 

divides the range [Vmin, Vmax] in N+K intervals (classes), where K is the number of molecules 

in the prediction set (if K = 0 the prediction set is missing). Some classes are empty, other 

classes include few values. The program computes the Shannon Entropy SEcal of values in the 

calibration set, using the Shannon’s discontinuous formula (4) [19]. 

                                                          
1

ln
C

i i

i

SE x x
=

= − ⋅∑                                                     (4) 

where 

xi = ni / N 

ni is number of values in class i; ni > 0 

C is the number of non-empty classes which include values in the calibration set 

 

The diversity D of the values in the calibration set is SEcal/ln (N) ratio. The value of D 

is in the range [0, 1]. The descriptors having a small value of D, i.e. D < 0.15, are eliminated 

as "near constant descriptors". 

 

Phase #4 includes the following steps. 

a) building all linear QSPRs including two descriptors, p = 2 in formula (2) 

          The maximum square intercorrelation r2 of descriptors in sets of two descriptors is N-0.5. 

           In this step, the program computes Q quality using formula (3), and sorts the equations 

by Q value; the best 1000 equations are recorded. 

b) by applying the Forward Stepwise procedure the program uses the recorded p  

descriptors and QSPRs and makes the QSPRs including p + 1 descriptors 

           The maximum square intercorrelation r2 of descriptors in sets of p > 2 descriptors is 

4•N-0.5, corrected if necessary in the range [0.1, 0.64]. 
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           In this step the program also computes Q quality and sorts the equations by Q value; in 

each loop the best 1000 equations are recorded. 

       c) the program leaves loop b) in three situations: 

- if p ≥ 2 • ln (N) + 2  

- the value of Q of the best QSPR decreased 

- no more descriptors can be added because the intercorrelations are too high, i.e. r2 > 4 • N-0.5  

  for all combinations 
 

Phase #5 calculates the "Prediction Set Leverage" function (5). 

                                                         ave

N
PSL L

p
= ⋅                                                           (5) 

where Lave is the average value of the leverages Li, calculated for the prediction set molecules.  

The latest version of PRECLAV computes the leverages Li using the values of 

predictors for all molecules in the database (calibration set + prediction set) and formula (6). 

                                                 ( ) 1
T T

i i iL x C C x
−

= ⋅ ⋅ ⋅                                                     (6) 

In formula (6) xi is a row vector for a particular molecule in the prediction set and C is 

the N • p matrix of p predictors for N calibration set molecules. If Li > 3 • p / N, the molecule 

in the prediction set is considered to be "outside of the Applicability Domain of the obtained 

QSAR" and the difference between the calculated value of the dependent property and the 

unknown observed value is, as a rule, big.  

The value of PSL is calculated only if the database includes a prediction set.  

 

3. Comments, Results and Discussions 

 

 Phase #1 is required because the "non-significant" descriptors having very low 

correlation with the dependent property should be eliminated before any other selection phase. 

The Forward Stepwise procedure is, actually, a suitable method for the selection of 

predictors and QSPRs.  If a certain descriptor is present, as predictor, in the best QSPR, it 

won the math competition with other descriptors and so one can consider the descriptor 

"suitable for description of the dependent property". However, the best description of the 

dependent property is not made by a certain predictor, but by the best set of predictors, as a 

whole.  

Some more sophisticated methods, such as PLS (Partial Least Square), PCA 

(Principal Component Analysis), bootstrap, k-NN (k-Nearest Neighbor), SVM (Support 
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Vector Machine) or ANN (Artificial Neural Network), have one big disadvantage: the 

physical meaning of predictors is difficult to understand and thus the usefulness (for drug-

design) of the equation obtained is small. In fact, these algorithms cannot be used for 

identification of the correlation between a specific molecular feature and the biochemical 

activity. This is why the program PRECLAV includes only the CODESSA-like BMLR (Best 

Multi-Linear Regression) procedure. 

The forward procedure [20-22] yields QSPRs including p descriptors that always have 

a higher value of r2 than any QSPR including a smaller number of descriptors. Actually, the 

important increase of the value of r2, with the increase of the value of p, highlights a low 

intercorrelation of the descriptors, not a high correlation of the descriptors with the dependent 

property. Consequently, the key-step in Phase #2 is step a) and the key-word is minimum. If 

this word would be replaced by maximum the group of the selected descriptors would not 

include descriptors with low correlation with the dependent property, the maximum value of 

Q in Phase #4 would be achieved at a lower value of p and the best QSPR would be worse 

from the point of view of the value of r2 and its predictive power. The results of this "worse" 

version of the algorithm are not presented here. If the initial number of analyzed descriptors is 

smaller this bias of the first selected descriptor is smaller, but the chance to identify a high 

quality equation (without overfitting) in Phase #4 is slim. 

 The value of r2 in formulas (3) and (8), the value of Standard Error of Equation SEE in 

formula (7) and the value of Fisher function F in formula (8) are good measures of the quality 

of QSPRs, at least for moderate values of N. In practice, there is a high (inverse) correlation 

between r2 and SEE. 

                                                
( )

2/1
2













−

−
= ∑

pN

VV
SEE

calcobs
                                               (7) 

                                                          
2

21

r N p
F

r p

−
= ⋅

−
                                                   (8) 

However, r2 and the statistical functions (7) and (8) cannot be used as criteria to stop 

the calculation because the value of r2 continues to increase with the increasing value of p, the 

value of SEE continues to decrease with the increasing value of p and the value of F increases 

and decreases irregularly with the increasing value of p. Consequently, PRECLAV uses the 

specific function Q in formula (3) as a quality criterion and a criterion to stop the calculation, 

because when the value of p increases the value of Q increases, reaches a maximum and then 

it decreases. Sometimes, Q reaches the maximum value at a very high value of p and it is 
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necessary to impose an empirical maximum value for p. Therefore, according to the 

PRECLAV criteria, "the best" QSPR is the multilinear equation having the highest value of Q 

and p in the range [pmin, pmax], where pmin = 2 and pmax = 2 • ln (N) + 2.  

The elimination of the "near constant descriptors" in Phase #3 is necessary because the 

presence of these descriptors causes some arithmetic problems. The use of Shannon Entropy, 

as a measure of the diversity of values and as a criterion for elimination, is specific for 

PRECLAV. This particular criterion is chosen because other module of the program uses the 

Shannon Entropy for various calculations regarding molecular diversity and similarity, 

without regard to selection of descriptors. 

Phase #2 and Phase #4 are similar enough because they both use the Forward Stepwise 

procedure. However, the first step of Phase #4 is missing in Phase #2. In addition, Phase #4 

includes the calculation of the intercorrelation of descriptors as criterion to build the sets of 

descriptors. In Phase #2 each descriptor is selected once. In Phase #4 the selected sets may 

include common descriptors. 

There is a fair similarity of the Phase #4 and the CODESSA Best Multi-Linear 

Regression (BMLR) procedure [3]. If Phase #2 is missing, it should be replaced by another 

selection procedure, because the heuristic algorithms of PRECLAV and CODESSA do not 

work well in presence of > 1000 descriptors and the computation time is too high. This is why 

we added Phase #2 to the other selection procedures #1, #3 and #4 that have been previously 

presented briefly, without comments [2, 15, 16, 18]. 

In brief, the values of the statistical parameters in Phase #4 are 

 

the maximum number of descriptors in QSARs   p = 2 • ln (N) + 2 

the minimum correlation r2 descriptor-dependent property   r2 = 1/N • ln (N) 

the maximum intercorrelation r2 of descriptors in sets of 2 descriptors   r2 = N-0.5 

the maximum intercorrelation r2 of descriptors in sets of > 2 descriptors   r2 = 4 • N-0.5 

 

The values of these statistical parameters have not been theoretically defined and were 

determined empirically by the author. The value of these parameters influences the final 

result. PRECLAV offers to the user the possibility to change the default values, but the 

"human action" in defining of these parameters seems to be dangerous.  

Formula (5) allows the comparison of different predictions for the same prediction set, 

made by different QSPRs that used the same calibration set but different sets of descriptors, 

selected in Phases #1 - #4. The best QSAR is the equation which has the lowest value for 

PSL.  
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For each QSAR, PRECLAV calculates r2
CV  using the Leave Half Out (LHO) method. 

However, this internal cross-validation method is applied after ordering the molecules in the 

calibration set according to the observed values of the dependent property. The function r2
CV 

is viewed as a measure of the homogeneity of the calibration set from the viewpoint of 

QSAR, not as a result of a very drastic internal validation [39]. If r2
CV > 0.4 the calibration set 

can be considered 'homogeneous enough'. The value of r2
CV is not a criterion for the selection 

of descriptors and QSARs. 

 Further we present the result of four QSPR/QSAR studies which used the presented 

selection algorithm. We used a single processor / Pentium 4 / 3.2 GHz / 2 GB RAM 

computer. 

 

Study #1 

 In this QSAR study the calibration set includes 134 organic inhalation anesthetics in 

Table 1. The dependent property is the Anesthetic Potency AP, defined as AP = log (1/MAC), 

where MAC  is the Minimum Alveolar Concentration, i.e. the partial pressure of the vapors in 

lungs that prevents movement in 50% of subjects in response to pain (surgical) stimulus [23]. 

The experimental values of MAC and AP (for rats), see Table 1, are from literature [24-29]. 
  

               Table 1             The observed/calculated values of Anesthetic Potency 

MolID Name APexp APcalc 

a001 Chloropentafluoroethane -0.89 -0.431 

a002 F2CH-O-CF2-CF3 -0.75 -0.186 

a003 1,1,1,2,2-pentafluoropropane -0.74 0.178 

a004 1-bromoheptafluoropropane -0.59 -0.043 

a005 2-bromoheptafluoropropane -0.57 -0.214 

a006 1,1,1,2,2,3,3,4,4-nonafluorobutane -0.53 -0.285 

a007 1,1,1,2,2,3-hexafluoropropane -0.38 -0.281 

a008 Bromopentafluoroethane -0.34 -0.224 

a009 F3C-O-CHF-CF3 -0.29 -0.360 

a010 1,1,1-trifluoroethane -0.25 -0.049 

a011 Pentafluoroethane -0.18 -0.170 

a012 1,2-dichlorotetrafluoroethane 0.01 0.088 

a013 1,1,1,2,3,3,3-heptafluoropropane 0.02 -0.332 

a014 Propane 0.03 0.28 

a015 F2CH-O-CF2-CClF2 0.22 0.446 

a016 1,1,1,2-tetrafluoroethane 0.25 0.118 

a017 1,1,1,3,3,3-hexafluoropropane 0.25 -0.112 

a018 1,1-difluroethane 0.48 0.668 

a019 F2CH-O-CClF-CF3 0.49 0.682 

a020 2,2-difluoropropane 0.52 0.623 

a021 ClF2C-O-CH2-CF3 0.54 0.883 
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a022 ClF2C-O-CHF-CF3 0.54 0.495 

a023 Butane 0.54 0.710 

a024 Fluoroethane 0.61 0.539 

a025 1,1,2,2-tetrafluoroethane 0.62 0.795 

a026 2-fluoropropane 0.69 0.874 

a027 trans-2-butene 0.70 0.745 

a028 ClF2C-O-CF2-CCl2F 0.73 0.821 

a029 Cl2FC-O-CF2-CClF2 0.74 0.582 

a030 cis-2-butene 0.77 0.746 

a031 Cyclopropane 0.80 0.356 

a032 ClF2C-O-CCl2-CF3 0.88 1.045 

a033 1,1,2,2,3,3-hexafluoropropane 0.89 0.362 

a034 n-pentane 0.90 1.128 

a035 1,1,2-trifluoroethane 0.94 1.371 

a036 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexane 0.95 0.984 

a037 F2CH-O-CH2-CF3 0.96 1.240 

a038 F2CH-O-CCl2-CF3 1.01 1.330 

a039 F2CH-O-CF2-CFCl2 1.05 1.035 

a040 1,4-pentadiene 1.06 1.015 

a041 F2CH-O-CHF-CF3 1.14 1.069 

a042 Sevoflurane    RN: 28523-86-6 1.22 1.529 

a043 1,1,2,2,3,3,4,4-octafluorobutane 1.23 0.596 

a044 trans-1,3-pentadiene 1.27 1.229 

a045 Cyclopentane 1.28 1.299 

a046 ClF2C-O-CHCl-CF3 1.31 1.337 

a047 FCH2-CHF-CF3 1.33 0.116 

a048 FCH2-O-CF2-CHF2 1.38 1.540 

a049 Cyclohexane 1.38 1.717 

a050 cis-1,3-pentadiene 1.41 1.229 

a051 1,5-hexadiene 1.46 1.443 

a052 Hexane 1.46 1.588 

a053 ClF2C-CF2-CHClF 1.52 1.196 

a054 trans-1,2-dichloroethylene 1.64 1.330 

a055 1,3,5-trifluorobenzene 1.65 1.765 

a056 Enflurane   RN: 13838-16-9 1.66 1.443 

a057 2,4-trans,trans-hexadiene 1.66 1.788 

a058 Heptane 1.70 2.002 

a059 1,1,2,4,4-pentafluorobutane 1.71 1.113 

a060 (S)-isoflurane   RN: 26675-46-7 1.77 1.836 

a061 octane 1.77 2.388 

a062 Hexafluorobenzene 1.79 1.365 

a063 H3C-O-CF2-CHClF 1.80 1.761 

a064 F2CH-O-CBrCl-CF3 1.82 2.048 

a065 F2CH-O-CF2-CBrClF 1.82 1.755 

a066 (R)-isoflurane   RN: 26675-46-7 1.84 1.837 

a067 Cycloheptane 1.86 2.246 

a068 1,1,2,3,4,4-hexafluorobutane 1.89 0.961 

a069 Pentafluorobenzene 1.90 1.631 

a070 Halothane  RN: 151-67-7 1.90 1.290 
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a071 1-hexyne 1.94 1.784 

a072 Fluorobenzene 1.95 2.088 

a073 n-nonane 1.95 2.736 

a074 cis-1,2-dichloroethylene 1.98 1.332 

a075 1-propanethiol 1.99 1.904 

a076 Benzene 2.00 1.876 

a077 1,2,4-trifluorobenzene 2.01 2.051 

a078 H3C-O-CF2-CHBrF 2.16 2.117 

a079 2,3,4,5,6-pentafluorotoluene 2.19 2.375 

a080 1,4-difluorobenzene 2.19 2.152 

a081 1,2-difluorobenzene 2.21 2.371 

a082 3-hexyne 2.24 1.884 

a083 F2CH-O-CHBr-CF3 2.28 1.797 

a084 Toluene 2.35 2.315 

a085 1-butanethiol 2.38 2.374 

a086 2-butanone 2.55 2.491 

a087 Methoxyflurane   RN: 76-38-0 2.57 2.651 

a088 1-pentanethiol 2.75 2.806 

a089 2-pentanone 2.80 2.819 

a090 1,4-dimethylbenzene 2.82 2.704 

a091 1,3-dimethylbenzene 2.86 2.714 

a092 Ethylbenzene 2.92 2.700 

a093 1,2-dimethylbenzene 2.93 2.707 

a094 Ethanol 3.00 3.018 

a095 3-hexanone 3.07 3.152 

a096 2,2,2-trifluoroethanol 3.16 3.398 

a097 2-hexanone 3.21 3.186 

a098 1-hexanethiol 3.23 3.166 

a099 1,1,1-trifluro-2-propanol 3.28 3.907 

a100 2,2,3,3,3-pentafluoro-1-propanol 3.28 3.363 

a101 3,3,4,4,5,5,5-heptafluoro-2-pentanol 3.30 3.402 

a102 

2,2,3,3,4,4,5,5,6,6,6-undecafluoro-1-

hexanol    3.34 

3.313 

a103 4-heptanone 3.35 3.442 

a104 S-(+)-2-butanol 3.37 3.636 

a105 

2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-1-

heptanol 3.37 

3.450 

a106 1-propanol 3.39 3.431 

a107 2,2,3,3,4,4,4-heptafluoro-1-butanol 3.4 3.389 

a108 R-(-)-2-butanol 3.44 3.636 

a109 S-(+)-2-pentanol 3.62 4.062 

a110 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol 3.64 3.265 

a111 

3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-

octanol 3.65 

3.646 

a112 2-heptanone 3.68 3.512 

a113 4-octanone 3.71 3.693 

a114 R-(-)-2-pentanol 3.76 4.062 

a115 1-butanol 3.88 3.803 

a116 R-(-)-2-hexanol 4.06 4.328 

a117 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-1- 4.10 4.189 
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heptanol 

a118 S-(+)-2-hexanol 4.12 4.328 

a119 2,2,3,3-tetrafluoro-1-propanol 4.24 4.243 

a120 4-heptanol 4.34 4.606 

a121 2,2,3,4,4,4-hexafluoro-1-butanol 4.35 3.944 

a122 1,1,1,3,3,3-hexafluoro-2-propanol 4.35 3.938 

a123 S-(+)-2-heptanol 4.41 4.631 

a124 R-(-)-2-heptanol 4.43 4.631 

a125 1-pentanol 4.58 4.138 

a126 1-hexanol 4.67 4.391 

a127 2,2,3,3,4,4,5,5-octafluoro-1-pentanol 4.70 4.559 

a128 1-octanol 5.93 4.622 

a129 tetrafluoromethane -1.82 -1.392 

a130 Trifluoromethane -0.20 -0.127 

a131 Dichlorodifluoromethane -0.05 0.003 

a132 Difluoromethane 0.22 0.404 

a133 ClF2C-O-CF2-CF3 0.54 -0.351 

a134 Difluorodibromomethane 0.96 0.663 

 

If the best QSAR is obtained using all available molecules the equation cannot be  

validated by external validation because other molecules are not available to make a 

validation set. On the contrary, if the best QSAR is obtained using a training set extracted 

from the initial set of molecules, the equation can be validated (non-extracted molecules are 

included in the validation set), but the validated equation is very different from the point of 

view of predictors and weighting factors. The usefulness of the validated equation for 

identification of the significant molecular features and of the outliers for lead hopping [40, 

41] is smaller. This is why, in this QSAR study, the validation set does not exist and the 

validation is not applied.  

 

Number of calculated descriptors is 9,380 

Number of selected descriptors after Phase #1 is 8,555 

Number of selected descriptors after Phase #2 is 978 

Computation time in Phase #2 of selection was 50 hours 10 minutes. 

Number of selected descriptors after Phase #3 is 928 

The list of significant molecular fragments and their correlation with AP is 

 

HO         r = 0.6165  F            r = - 0.4154 

CH2        r = 0.3413  C           r = - 0.2667 

O           r = - 0.2290  CH3       r = 0.2177 

Cl          r = - 0.2004  CO        r = 0.1989 
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According to the sign and the absolute values of r, a high percentage in weight of OH 

(hydroxyl), CH2 (methylene), CH3 (methyl) and CO (carbonyl) molecular fragments increases 

the anesthetic potency.  

A high percent in weight of F (fluorine), O (ether), Cl (chlorine) and C (tetra-

substituted C atom) fragments decreases the anesthetic potency. This is an unexpected 

statistical result because many usual inhalation anesthetics are fluorinated/chlorinated ethers  

(see Table 1). 

The best type (2) QSAR: 

C0 = 3.2270 

C1 = - 0.3386 

D1 is the sum d1+d2 where 

     d1 is logP in octanol-water system [17] 

     d2 is ln (1+VP) where VP is the Selected Vapor Pressure [17] 

C2 = 45.1427 

D2 is the product d3•d4 where 

     d3 is Number of OH bonds 

     d4 is Minimum free valence of H atoms 

C3 = 0.0680 

D3 is Total information index of atomic composition [30] 

C4 = 0.0055 

D4 is the product d5•d6 where 

     d5 is Maximum net charge of atoms 

     d6 is Heat of formation (Kcal/mol) 

 

The minimum square correlation predictor / AP is r2 = 0.0390 for D4 predictor. 

The maximum intercorrelation of predictors is r2 = 0.2634 for D1/D2 pair. 

 

The physical/chemical meaning of the descriptors and the algebraic sign of the 

coefficients emphasize the favorable influence on AP of the presence of OH and CO 

fragments, high enough molecular mass and a diversity of atoms. According to the list of 

significant molecular fragments and QSAR's structure, we suggest testing some linear 

hydroxy-ketones, not included in Table 1, containing 6-12 carbon atoms and various distances 

between the OH and CO groups, as new inhalation anesthetics. 

The computation time in Phase #4 of selection was 2 hours. 

The quality of (the prediction by) the best QSAR: 

            p = 4   N = 134   r2 = 0.9489   Q = 0.9206   F = 603.3   SEE = 0.340 

 According to the value of r2
CV the homogeneity of the calibration set from the 

viewpoint of QSAR #1 is low, r2
CV = 0.2939. 
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The last column in Table 1 presents the calculated values of AP. According to the 

PRECLAV criterion Q • SEE / |APcalc – APexp| < 0.28 the molecules a047 and a128 are 

atypical (outliers) from the point of view of the obtained QSAR. 

Figure 1 presents the scatter-plot of the Observed/Calculated values of AP. The big 

black points indicate the two outlier values. 
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Fig. 1   Scatter-plot of the Observed/Calculated values of AP 

 

One can compare the obtained QSAR with the QSAR of the Abraham Model [24]. 

This model uses five predictors (p = 5), the calibration set used includes inorganic anesthetics, 

such as noble gases and nitrogen oxides (N = 148), and the prediction of AP values is very 

good (r2 = 0.9850   Q = 0.9517   F = 1878.1   SEE = 0.192). However, the predictors of the 

Abraham Model are "experimental descriptors", i.e. descriptors for which the value was not 

calculated, but measured experimentally, by chromatographic methods [31-33]. Thus, the 

Abraham Model requires synthesis and chromatographic analysis of the molecules for which 

the QSAR equation calculates the AP values. 

 

Study #2 

 In this QSAR study the calibration set includes 34 phenol derivatives, see the 

molecules P01 – P34 in Table 2. The dependent property is the toxicity T against protozoan 

Tetrahymena pyriformis, widely used in laboratory research due to its sensitivity to water 

pollution. The values of the toxicity T, weighted here within the range [0, 2.638], are from 

literature [34, 35]. 
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In this QSAR study the prediction set is present (molecules P35 – P50 in Table 2). To 

avoid subjectivity in choosing the prediction set we ordered the molecules in Table 2 

according to the observed values of toxicity. The molecules having rank 3, 6, 9, 12, etc. have 

been included in the prediction set.  
 

              Table 2 The structure and observed value of Toxicity of phenol's derivatives 

Mol

ID 

Substituent(s) Tobs Mol 

ID 

Substituent(s) Tobs 

P01 none 0.000 P26 2,4,6-trimethyl 2.126 

P02 2,6-difluoro 0.827 P27 3,5-dimethyl,  

4-chloro 

1.634 

P03 4-fluoro 0.448 P28 2,6-dichloro,  

4-bromo 

2.210 

P04 3-fluoro 0.904 P29 2-methyl, 4-bromo,          

6-chloro 

1.708 

P05 4-methyl 0.239 P30 2,4,6-tribromo 2.481 

P06 2-chloro 0.708 P31 2-tert-butyl,  

4-methyl 

1.728 

P07 4-chloro 0.976 P32 2-iso-propyl,  

4-chloro,  5-methyl 

2.293 

P08 3-ethyl 0.660 P33 2,6-diphenyl 2.544 

P09 2-ethyl 0.607 P34 2,4-dibromo,  

6-phenyl 

2.638 

P10 4-bromo 1.112 P35 2-fluoro 0.679 

P11 2,3-dimethyl 0.553 P36 3-methyl 0.369 

P12 2,5-dimethyl 0.440 P37 2-bromo 0.935 

P13 3,4-dimethyl 0.553 P38 2,4-dimethyl 0.559 

P14 4-iodo 1.285 P39 3,5-dimethyl 0.544 

P15 2-iso-propyl 1.234 P40 3-chloro, 4-fluoro 1.273 

P16 3-iso-propyl 1.040 P41 2-chloro, 5-methyl 1.071 

P17 4-iso-propyl 0.904 P42 3-iodo 1.549 

P18 2,5-dichloro 1.559 P43 3-tert-butyl 1.161 

P19 2,3-dichloro 1.702 P44 3,5-dichloro 1.993 

P20 2-methyl,  

4-chloro 

1.131 P45 2,3,6-trimethyl 0.849 

P21 3-methyl,  

4-chloro 

1.226 P46 3,4,5-trimethyl 1.361 

P22 2,4-dichloro 1.467 P47 2,4,5-trichloro 2.531 

P23 4-tert-butyl 1.344 P48 2,6-dimethyl, 4-

bromo 

1.709 

P24 2-phenyl 1.525 P49 2,4-dimethyl,                    

6-tert-butyl 

1.676 

P25 2,4-dibromo 1.834 P50 2,6-di- tert-butyl,             

4-methyl 

2.219 

  

This QSAR study did not analyze the huge number of sums and products of WM and 

3D descriptors. However, the number of descriptors analyzed is more than two thousand. 
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Number of calculated descriptors is 2,189 

Number of selected descriptors after Phase #1 is 1,214 

Number of selected descriptors after Phase #2 is 978 

Computation time in Phase #2 of selection was 1 hour 11 minutes. 

Number of selected descriptors after Phase #3 is 889 

The list of significant molecular fragments and correlation with T: 

 

HO               r = - 0.5787    

Br                 r = 0.4897          

C6H2OH       r = 0.4343      

C6H4             r = - 0.4067   

C6H2             r = 0.3319    

 

According to the sign and the absolute values of r, a high percentage in weight of Br 

(bromine), C6H2OH (tri-substituted cycle conjugated with OH) and C6H2 (tri-substituted 

cycle, weak conjugated with OH) fragments increases the toxicity.  

A high percentage in weight of OH (hydroxyl, weak conjugated with cycle) and C6H4 

(mono-substituted cycle, weak conjugated with OH) fragments decreases the toxicity. All 

molecules include just one OH group. Consequently, "a high percent in weight of OH 

decreases the toxicity" actually means "a high molecular mass increases the toxicity". 

The best type (2) QSAR: 

C0 = - 0.7363 

C1 = 0.2819 

D1 is solvation connectivity index χ0 [1, 37] 

C2 = - 0.0072 

D2 is the sum d1+d2 where  

     d1 is the percent in weight of C6H4 molecular fragment 

     d2 is the percent in weight of C6H3 molecular fragment 

 

The minimum square correlation predictor / T is r2 = 0.3237 for D2 predictor. 

The intercorrelation of predictors is r2 = 0.1112. 

 

The physical/chemical meaning of descriptors and the algebraic sign of coefficients 

emphasizes, in our opinion, the favorable influence on toxicity of a high molecular volume. 

Consequently, the presence of high-volume substituents should increase the toxicity, as 

revealed earlier Duchowicz et. al. [36] using different statistical methods, although I (iodine) 

and C6H5 were not identified here as "significant" molecular fragments. 

Computation time in Phase #4 of selection was 54 minutes. 
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The quality of (prediction by) the best QSAR: 

            p = 2   N = 34   r2 = 0.8615   Q = 0.8108   F = 99.5   SEE = 0.261 

According to PRECLAV criterion there are no outlier molecules in the calibration set, 

from the point of view of the QSAR obtained. 

The columns "by QSAR #2" in Table 3 present the calculated values of T in the 

calibration and prediction set.  

Figure 2 presents the scatter-plot of the Observed/Calculated values of T in the 

calibration set. 

As a rule, the molecules in the prediction set are new, not yet synthesized and the 

observed (experimental) values of the dependent property are unknown. However, here the 

experimental values of T for the prediction set molecules are known. Therefore, the prediction 

for molecules P35 – P50 in the prediction set, not used for QSAR building, is, actually, a 

validation test for the obtained QSAR. The quality of prediction for the molecules in the 

prediction set is acceptable (r2 = 0.6978   SEE = 0.379 PSL = 0.501 and figure 3).  

There are no molecules in the prediction set outside of the Applicability Domain of 

QSAR #2. 
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Fig. 2   Scatter-plot of the Observed/Calculated values of T in calibration set (QSAR #2) 
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Fig. 3   Scatter-plot of the Observed/Calculated values of T in validation set (QSAR #2) 

 

              Table 3            The calculated value of Toxicity of phenol's derivatives 

MolID by QSAR #2 by QSAR #3 No. by QSAR #2 by QSAR #3 

P01 0.705 -0.031 P26 1.441 1.625 

P02 0.705 0.641 P27 1.582 1.647 

P03 0.214 0.6 P28 2.005 2.083 

P04 0.705 0.864 P29 1.864 1.550 

P05 0.442 0.233 P30 2.287 2.402 

P06 1.091 0.822 P31 1.570 1.771 

P07 0.663 0.935 P32 2.026 2.207 

P08 0.699 0.8 P33 2.951 2.624 

P09 0.699 0.622 P34 2.882 2.769 

P10 1.232 1.102 P35 0.705 0.507 

P11 0.751 0.602 P36 0.442 0.414 

P12 0.751 0.463 P37 1.232 0.982 

P13 0.751 0.735 P38 0.751 0.627 

P14 1.373 1.265 P39 0.751 0.701 

P15 0.991 1.003 P40 1.091 1.543 

P16 0.991 1.11 P41 1.336 1.248 

P17 0.991 0.921 P42 1.373 1.290 

P18 1.477 1.56 P43 1.289 1.597 

P19 1.477 1.727 P44 1.477 1.853 

P20 0.956 1.083 P45 1.441 1.613 

P21 1.336 1.383 P46 1.441 0.987 

P22 1.477 1.64 P47 1.864 2.292 

P23 1.289 1.349 P48 1.723 2.623 

P24 1.505 1.442 P49 2.146 11.524 

P25 1.759 2.092 P50 2.850 13.096 
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If all molecules in Table 2 are included in the calibration set (and so, the validation is 

avoided) the results are very different. For instance, the list of the significant molecular 

fragments and correlation with toxicity is different: 

 

HO               r = - 0.5363    

C6H2OH       r =   0.4549      

C6H4             r = - 0.3858   

Br                 r =   0.3747 

C6H3             r =  - 0.3286    

Cl                 r =   0.3189 

 

Study #3 

 This QSAR study used the same database (calibration set + prediction set) as QSAR 

study #2, see Table 2. However, this QSAR study analyzed all descriptors used in QSAR 

study #2 plus the sums and products of WM and 3D descriptors. Consequently, the initial 

number of the analyzed descriptors is almost 94,000. 

 

Number of calculated descriptors is 93,888 

Number of selected descriptors after Phase #1 is 92,707 

Number of selected descriptors after Phase #2 is 979 

Computation time in Phase #2 of selection was 149 hours 43 minutes. 

Number of selected descriptors after Phase #3 is 975 

The best type (2) QSAR: 

C0 = - 3.3665 

C1 = - 1.3391 

D1 is Verhaar model of Fish base-line toxicity from MlogP,  

     i.e. D1 = -0.85 • MLogP - 1.39 [1, 38] 

C2 = - 1.1535 

D2 is the sum d1+d2 where  

     d1 is Maximum parallax for probe atom #80 

     d2 is Rejection force sum on probe atom #88 

C3 = 1233.3871 

D3 is the product d3 • d4 where  

     d3 is Rejection force sum on probe atom #104 

     d4 is Resultant electrostatic force on probe atom #5 

 

The minimum square correlation predictor / T is r2 = 0.2049 for D3 predictor. 

The maximum intercorrelation of predictors is r2 = 0.4350 for D1/D2 pair. 
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The physical/chemical meaning of descriptors and the algebraic sign of coefficients 

emphasizes the influence on toxicity of the 3D position of the atomic net charges ("electrical 

shape"). Computation time in Phase #4 of selection was 1 hour 56 minutes. 

The quality of (prediction by) the best QSAR #3: 

            p = 3   N = 34   r2 = 0.9585   Q = 0.8739   F = 238.7   SEE = 0.145 

The columns "by QSAR #3" in Table 3 present the calculated values of T in the 

calibration and prediction set.   

The figure 4 presents the scatter-plot of the Observed/Calculated values of T in the 

calibration set. According to the PRECLAV criterion, the molecule P26 is an outlier from the 

point of view of the obtained QSAR. The big black point indicates the outlier value. 
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Fig. 4   Scatter-plot of the Observed/Calculated values of T in calibration set (QSAR #3) 
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Fig. 5   Scatter-plot of the Observed/Calculated values of T in validation set (QSAR #3) 
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The leverages of the molecules P49 and P50 are much greater than the leverages of 

the other molecules in the prediction set. However, the molecules P49 and P50 are inside the 

Applicability Domain of QSAR #3. Therefore, there are no molecules in the prediction set 

outside the Applicability Domain of QSAR #3. 

The quality of prediction by the best QSAR #3, for molecules in the calibration set is 

much higher than the quality of prediction by the best QSAR #2. However, the quality of 

prediction for molecules in the prediction set is much lower from the point of view of r2 and 

SEE (r2 = 0.2889   SEE = 4.445 and figure 5). The calculated values of T for prediction set 

molecules are ordered quite right, despite a low agreement with the observed values. In the 

author's opinion the value of the difference r2
cal - r2

val in the last QSAR study emphasizes 

"overfitting", actually a very low similarity between calibration and validation sets from the 

point of view of QSAR #3. The presence or absence of "overfitting" depends on the number 

and type of descriptors in the initial set. 

If the observed values of T for the prediction set molecules are unknown, we should 

choose for prediction QSAR #2 (PSL = 0.501) and not QSAR #3 (PSL = 0.777). 

 

Study #4 

 This QSPR study allows a comparison with the ACO (Ant Colony Optimization) 

method [4, 47] combined with MLR (Multi Linear Regression), applied by Atabati et al. [44] 

in calculation of λmax (nm) for 66 derivatives of 9,10-anthraquinone. We used the same 

calibration set (first 36 molecules in Table 4) and validation set (last 30 molecules in Table 4) 

as quoted authors.  
 

              Table 4        Structure and λmax of analyzed anthraquinone derivatives 

MolID Substituents Obs. λmax           Calc. λmax 

   PRECLAV ACO + MLR 

lam01 none 327 306.9 323.3 

lam02 2,3-diBr 330 317.0 329.2 

lam03 1,8-diCl 344 341.5 348.7 

lam04 1,5-diCl 347 345.4 350.6 

lam05 1,4-diCl 350 367.3 358.8 

lam06 2-OH 365 354.6 350.6 

lam07 1,8-diOCH3 385 390.9 457.3 

lam08 2-NH2, 3-Br 406 415.2 416.1 

lam09 1-NHCOCH3 410 409.0 410.3 

lam10 1-NHCOC6H5 415 419.7 448.4 

lam11 2-NH2, 3-NO2 420 464.1 421.1 

lam12 1,5-diOH 428 420.1 420.9 

lam13 1,8-diOH 430 437.3 422.4 
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lam14 1-SCH3 438 458.5 441.6 

lam15 2,3-diNH2 442 461.5 471.5 

lam16 1-NH2, 4-NO2 460 449.8 484.2 

lam17 1-NH2, 2-CH3 465 476.7 463.8 

lam18 1-NH2 465 460.6 465.7 

lam19 1-NH2, 4-Cl 466 481.4 472.9 

lam20 1-NH2, 6-Cl 470 472.0 448.8 

lam21 1,4-diOH 476 494.1 442.5 

lam22 1-NH2, 6,7-diCl 477 476.3 432.0 

lam23 1,8-diNH2 492 485.1 527.3 

lam24 1-NH2, 4-OCH3 500 519.0 499.2 

lam25 1-N(CH3)2 504 462.7 482.3 

lam26 1-NHC6H5 508 487.7 509.4 

lam27 1-NO2, 4,5,8-triOH 510 504.4 490.8 

lam28 1-NHCH3, 4-Br 510 499.8 503.4 

lam29 1-OH, 4-NH2 520 521.4 503.0 

lam30 1-NH2, 4-NHCOC6H5 532 536.3 526.4 

lam31 1-NHCH3, 4-OCH3 540 541.9 534.8 

lam32 1,4-diNH2 550 555.0 571.9 

lam33 1-NH2 4-NHCH3 590 583.0 558.3 

lam34 1-NH2, 4-NHC6H5 590 563.9 611.1 

lam35 1,4,5,8-tetraNH2 610 605.9 604.1 

lam36 1,4-diNHCH3 620 606.1 588.5 

lam37 1,4-diNH2, 2-NO2 645 546.6 563.7 

lam38 1-NHCH3, 4-NHC6H5 625 586.7 613.2 

lam39 1,4-diNHC6H5 620 573.7 620.0 

lam40 1,5-diNH2, 4,8-diOH 590 581.2 585.4 

lam41 1-OH, 4-NHC6H5 566 542.9 535.0 

lam42 1,4-diNH2, 2-OCH3 550 539.8 566.1 

lam43 1-OH, 2,4-diNH2 530 507.3 529.9 

lam44 1-NHCH3 508 490.2 491.0 

lam45 1,4-diNHCOC6H5 490 486.1 505.7 

lam46 1,5-diNH2 480 459.3 480.0 

lam47 1,2-diNH2 480 502.9 478.2 

lam48 1-NH2, 2-NHCOC6H5 475 471.1 464.6 

lam49 1-NH2, 2-CH3, 4-Br 473 487.0 481.5 

lam50 2-NHCH3 470 441.3 476.7 

lam51 1-NH2, 5-OCH3 460 452.1 499.5 

lam52 1,2-diOH 416 410.9 383.1 

lam53 2-NH2, 3-Cl 414 417.1 405.2 

lam54 2-NH2 410 417.0 431.7 

lam55 1-NO2, 2-NH2 410 435.0 415.5 

lam56 1-Cl, 2-NH2 405 413.4 423.2 

lam57 1-OH 405 402.0 386.0 

lam58 1-OCH3 380 385.4 410.3 

lam59 2-OCH3 363 377.2 380.2 

lam60 1-Cl 337 345.1 346.5 

lam61 1-NO2, 4-Cl 335 325.7 423.0 

lam62 2,7-diCl 330 323.6 307.0 

lam63 2,6-diCl 330 320.2 305.3 
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lam64 2,3-diCl 330 332.9 309.8 

lam65 2-Cl 330 323.0 320.0 

lam66 2-F 325 299.5 321.6 

 

Number of calculated descriptors is 47,612 

Number of selected descriptors after Phase #1 is 46,594 

Number of selected descriptors after Phase #2 is 976 

Computation time in Phase #2 of selection was 130 hours 23 minutes. 

Number of selected descriptors after Phase #3 is 974 

 

The best PRECLAV equation: 

C0 = - 223.5456 

C1 = + 0.5659 

D1 is the empirical non-linear descriptor 7800 / (ELUMO – EHOMO) - 600 

C2 = + 249.6675 

D2 is the sum d1+d2 where  

     d1 is Maximum bond order (C-C bonds) 

     d2 is Maximum free valence (O atoms) 

C3 = + 41114.1133 

D3 is Resultant electrostatic force on probe atom #79 (3D descriptor)  

 

The calculated values of λmax are presented in fourth column of Table 4. 

 The quality of prediction for calibration set: 

            p = 3   N = 36   r2 = 0.9609   Q = 0.8808   F = 270.3   SEE = 16.0 

 The quality of prediction for validation set: 

            p = 3   N = 30   r2 = 0.9506   Q = 0.8555   F = 173.2   SEE = 26.4   PSL = 0.767 

 

 The best ACO + MLR equation [44] includes four DRAGON descriptors and the 

energy of HOMO molecular orbital: 

λmax = 1003.4 + 154.4 •  MATS4e + 654.5 •  RDF020v – 485.0 •  RDF020p –  

         80.3 •  RTe+  + 64.4 •  EH O M O  

 

The calculated values of λmax are presented in fifth column of Table 4. 

 The quality of prediction for calibration set: 

            p = 5   N = 36   r2 = 0.9195   Q = 0.7918   F = 70.8   SEE = 23.7 

 The quality of prediction for validation set: 

            p = 5   N = 30   r2 = 0.9150   Q = 0.7625   F = 53.8   SEE = 30.8   PSL = 1.055 

 

-267-



              

4. Conclusions 

 

 The proposed method for the selection of the descriptors and QSPRs is a version of 

the heuristic Forward Stepwise procedure, using specific criteria to define the "significant" 

descriptors, the quality of QSPRs, the maximum number of predictors in QSPR, the "near 

constant" descriptors, the minimum value of the correlation descriptor/Property, the maximum 

value of the intercorrelation of the descriptors and a specific criterion for stopping the 

calculation. 

 The computation time in the selection of the descriptors is directly proportional to the 

number of significant descriptors. 

 The method allows the selection of less than 1000 suitable descriptors from a group of 

tens of thousands significant descriptors. The method highlights the importance of the 

selection of the significant descriptors having a low correlation with the dependent property. 

 If the number of the selected significant descriptors is smaller than 1000, the heuristic 

Forward Stepwise procedure is a suitable method for the selection of the QSPR/QSAR 

equations. 

Two different QSARs obtained with the same database should be compared through 

the proposed function of leverages, calculated for the prediction set molecules. The presence 

or absence of "overfitting" depends on the number and type of descriptors in the initial set. 

According to the result of QSAR study #1 the paper suggests testing some linear 

hydroxy-ketones, containing 6-12 carbon atoms and various distances between the OH and 

CO groups, as new inhalation anesthetics. 

 In analysis of λmax for 66 derivatives of 9,10-anthraquinone the quality of PRECLAV 

prediction for the same calibration and validation sets is better than the quality of prediction 

made by ACO + MLR method. 
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