
Lower Bounds for the Energy

of (Bipartite) Graphs
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Abstract

The energy of a graph is defined as the sum of absolute values of its eigenvalues.
In this paper, we establish some lower bounds for the energy of (bipartite) graphs
involving the number of vertices (n), the number edges (m) and the determinant
of the adjacency matrix (detA). Our lower bound for graphs improves the lower
bound in [2] for a class of graphs.

1 Introduction

Let G be a simple graph with the vertex set V (G) = {v1, v2, . . . , vn} and edge set E (G),

where |V (G)| = n and |E (G)| = m. The adjacency matrix A = A (G) of G is the n× n
matrix whose (i, j)-entry is 1 if the vertices vi and vj are adjacent and zero otherwise.

Let λ1 ≥ λ2 ≥ · · · ≥ λn denotes the eigenvalues of A. These eigenvalues are called the

eigenvalues of G and to form its spectrum [3]. As well known, λ1 is the spectral radius

of G and

detA =
n∏
i=1

λi.

The terminology and the notations not defined here can be found in the book by Cvetković,

Doob and Sachs [3].

The energy of a graph G is defined as the following [6]

E = E (G) =
n∑
i=1

|λi| . (1)
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This concept was first introduced in chemistry and used to approximate the total π-

electron energy of a molecule [8–14, 18]. For details on E (G) including also its mathe-

matical properties, see the book [17] and the references cited therein.

McClelland obtained the first upper bound for the energy of graphs in terms of n and

m as [18]

E (G) ≤
√

2mn (2)

The upper bound (2) has been well studied in the chemical literature [7, 10–12, 14].

After this upper bound, various upper and lower bounds on E (G) were obtained. Some

of these bounds can be found [1, 2, 4, 5, 15, 16].

We now list some of lower bounds on E (G).

Caporossi et al. gave the following lower bound based on the number of edges m as [2]

E (G) ≥ 2
√
m (3)

with equality in (3) if and only if G consist of a complete bipartite graph Ka,b, where

ab = m and arbitrarily many isolated vertices.

McClelland established the following lower bound in terms of n,m and detA as [18]

E (G) ≥
√

2m+ n (n− 1) |detA|2/n (4)

Das et al. derived the following lower bound for connected non-singular graphs in-

volving the parameters n,m and detA as [4]

E (G) ≥ 2m

n
+ n− 1 + ln |detA| − ln

2m

n
(5)

with equality in (5) if and only if G is isomorphic to the complete graph Kn.

Das and Gutman obtained the following lower bound in terms of n,m and detA as [5]

E (G) ≥

√√√√2m+ n (n− 1) |detA|2/n +
4

(n+ 1) (n− 2)

[√
2m

n
−
(

2m

n

)1/4
]2

(6)

with equality in (6) if and only if G is isomorphic to n
2
K2 ( n is even) or edgeless graph

Kn.

In [4] Das et al. showed that the lower bound (5) is better than the lower bounds in

(3) and (4) under certain conditions. Das and Gutman [5] stated that the lower bound

(6) is better than lower bound in (4).

In this paper, we establish some lower bounds for the energy of (bipartite) graphs

involving the same parameters, namely n,m and detA, with the lower bounds (4), (5)

and (6). We also showed that our lower bound for graphs improves the lower bound in

(3) for a class of graphs.
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2 Lower Bounds for E (G)

In this section, we present some lower bounds for the energy of (bipartite) graphs. At

first, we state the following useful lemma.

Lemma 2.1. [3] G has only one distinct eigenvalue if and only if G is empty graph. G

has two distict eigenvalues λ1 > λ2 with multiplicities m1 and m2 if and only if G is the

direct sum of m1 complete graphs of order λ1 + 1. In this case, λ2 = −1 and m2 = m1λ1.

Theorem 2.2. Let G be a graph of order n with m edges such that 2m ≥ n. Then

E (G) ≥ 2m

n
+ (n− 1)

(
n |detA|

2m

)1/(n−1)

(7)

Moreover, equality holding in (7) if and only if G is either isomorphic to n
2
K2, Kn or a

non-complete connected strongly regular graph with two non-trivial eigenvalues both with

absolute value
E(G)− 2m

n

n−1
.

Proof. Starting with the arithmetic-geometric mean inequality, we have

E (G) = λ1 +
n∑
i=2

|λi| ≥ λ1 + (n− 1)

(
n∏
i=2

|λi|

)1/(n−1)

= λ1 + (n− 1)

(
|detA|
λ1

)1/(n−1)

Now we consider the function

f (x) = x+ (n− 1)

(
|detA|
x

)1/(n−1)

.

Note that f is increasing for x ≥ (|detA|)1/n . As well known from [3],

λ1 ≥
2m

n

Moreover, from (2) and the arithmetic geometric mean inequality, we have

λ1 ≥
2m

n
≥
√

2m

n
≥ E (G)

n
=

n∑
i=1

|λi|

n
≥ (|detA|)1/n .

Therefore

E (G) ≥ 2m

n
+ (n− 1)

(
n |detA|

2m

)1/(n−1)

Hence the inequality (7) holds. Now we assume that the equality holds in (7). Then all

inequalities in the above proof must be equalities. Then, from λ1 = 2m
n

we have that G is

2m
n

-regular graph [3]. By arithmetic-geometric mean inequality, we have |λi| = E(G)−λ1
n−1

for 2 ≤ i ≤ n. Thus we arrive at three possibilities. We note that the similar way in

Theorem 1 of [15] will be followed in each possibilities.
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If G has two eigenvalues with same absolute value, then λ1 = |λi| = E(G)−λ1
n−1

(2 ≤ i ≤ n). Then by Lemma 2.1, we conclude that |λi| = E(G)−λ1
n−1

= 1 and E (G) =

2m = n which implies that G ∼= n
2
K2. If G has two eigenvalues with different absolute

value, then by Lemma 2.1, λi = −1 (2 ≤ i ≤ n). In this case, G ∼= Kn. If G has three

eigenvalues with different absolute values equal to 2m
n

and
E(G)− 2m

n

n−1
, then from [3], we

conclude that G is non-complete connected strongly regular graph. This completes the

proof.

Let Γ be the class of graphs of order n with the following condition:

|detA| ≥ 2m

n
(8)

Note that Kn, Kn,n−1 ∈ Γ.

Remark 2.3. From Eqs. (7) and (8) and the proof of Theorem 3 in [4], we have

2m

n
+ (n− 1)

(
n |detA|

2m

)1/(n−1)

≥ 2m

n
+ (n− 1) ≥

√(
2m

n
− 1

)2

+ n2 + 4m− 2n ≥ 2
√
m

Then the lower bound (7) is better than (3) for any graph of Γ. Further note that non-

complete connected strongly regular graph is an extremal graph for the lower bound (7).

Hence the lower bound (7) is better than the lower bounds (5) and (6) for these type of

graphs, when 2m ≥ n.

Theorem 2.4. Let G be a bipartite graph of order n > 2 with m edges such that 2m ≥ n.

Then

E (G) ≥ 4m

n
+ (n− 2)

(
n2 |detA|

4m2

)1/(n−2)

(9)

Moreover, equality holding in (9) if and only if G is either isomorphic to n
2
K2, Kn

2
,n
2

(n = 2
√
m) or incidence graph of symmetric 2-(v, k, λ)-design with n = 2v, k = 2m

n
and

λ = k(k−1)
v−1

.

Proof. Since λ1 = −λn, by the arithmetic-geometric mean inequality, we have

E (G) = 2λ1 +
n−1∑
i=2

|λi| ≥ 2λ1 + (n− 2)

(
n−1∏
i=2

|λi|

)1/(n−2)

= 2λ1 + (n− 2)

(
|detA|
λ21

)1/(n−2)

Now we consider the function

f (x) = 2x+ (n− 2)

(
|detA|
x2

)1/(n−2)

.

Note that f is increasing for x ≥ (|detA|)1/n . Moreover, from the proof of Theorem 2.2,

we have

λ1 ≥
2m

n
≥
√

2m

n
≥ E (G)

n
=

n∑
i=1

|λi|

n
≥ (|detA|)1/n .
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Therefore

E (G) ≥ 4m

n
+ (n− 2)

(
n2 |detA|

4m2

)1/(n−2)

.

Hence we get the inequality (9). Now we suppose that the equality holds in (9). Then,

from λ1 = 2m
n

we have that G is 2m
n

-regular graph [3]. By arithmetic-geometric mean

inequality, we have |λi| = E(G)−2λ1
n−2

for 2 ≤ i ≤ n − 1. Then we have the following

possibilities. Note that the similar idea in Theorem 1 of [16] will be considered in each

possibilities.

If G has two eigenvalues with same absolute value. Then λ1 = −λn = |λi| = E(G)−2λ1
n−2

(2 ≤ i ≤ n− 1). Therefore by Lemma 2.1, λn = −E(G)−2λ1
n−2

= −1, i.e. E (G) = 2m = n

which implies that G ∼= n
2
K2. If G has three distinct eigenvalues, then we have λ1 =

−λn = 2m
n

and |λi| = E(G)−2λ1
n−2

= 0 for 2 ≤ i ≤ n−1. This implies that E (G) = 2λ1 = 4m
n

,

i.e., G ∼= Kn
2
,n
2
, where n = 2

√
m. If G has four distinct eigenvalues, then G is connected

and 2m
n
> E(G)−2λ1

n−2
. Thus G is the incidence graph of a symmetric 2-

(
v, 2m

n
, λ
)
-design [3].

Remark 2.5. We finally point out that considering a lower bound sharper than λ1 ≥ 2m
n

in the proof of Theorem 2.2 and Theorem 2.4, we may improve and generalize Theorem

2.2 and Theorem 2.4 as in Theorem 2.6 and Theorem 2.7, respectively.

Theorem 2.6. Let G be a graph of order n with m edges such that 2m ≥ n. If λ1 has

any lower bound such that λ1 ≥ ξ ≥ 2m
n

, then

E (G) ≥ ξ + (n− 1)

(
|detA|
ξ

)1/(n−1)

(10)

Equality holding in (10) if and only if λ1 = ξ and |λ2| = |λ3| = · · · = |λn| = E(G)−ξ
n−1

.

Theorem 2.7. Let G be a bipartite graph of order n > 2 with m edges such that 2m ≥ n.

If λ1 has any lower bound such that λ1 ≥ ξ ≥ 2m
n

, then

E (G) ≥ 2ξ + (n− 2)

(
|detA|
ξ2

)1/(n−2)

(11)

Equality holding in (11) if and only if λ1 = −λn = ξ and |λ2| = |λ3| = · · · = |λn−1| =
E(G)−2ξ
n−2

.
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