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Abstract

The resolvent energy of an n-vertex graphG is a newly proposed graph-spectrum-based

invariant, which is defined as ER(G) =
∑n

i=1
1

n−λi , where λ1, λ2, . . . , λn are the eigenvalues

of G. A lot of properties for the resolvent energy of graphs have been established. In this

paper, we will focus on the resolvent energies of paths and cycles, and reveal that the

resolvent energies of the path Pn and the cycle Cn are, respectively, asymptotically equal

to n+1√
n2−4 and n√

n2−4 . Furthermore, we also show that for any tree or unicyclic graph G,

when its order is sufficiently large, ER(G) ≈ 1.

1 Introduction

Let G be a graph on n vertices, and A(G) be the adjacency matrix of G. Denote by

λ1, λ2, . . . , λn the eigenvalues of G (i.e., the eigenvalues of A(G)). In particular, the

eigenvalues of G form the spectrum of G.

The resolvent matrix of A(G) is defined as [13]

RG(z) = (zIn −A(G))−1 ,

∗Corresponding author.

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 77 (2017) 85-94
                         

                                          ISSN 0340 - 6253 



where z is a complex variable, and In represents the identity matrix of order n. Clearly,

R(z) is definable when z 6= λi for i = 1, 2, . . . , n, in that case, the eigenvalues of R(z) are

1

z − λ1
,

1

z − λ2
, . . . ,

1

z − λn
.

The energy of graphs is one of the most well-known and meaningful topological indices

in theoretical chemistry, which is defined as [5]

E(G) =
n∑
i=1

|λi| .

The energy of graphs is investigated extensively and intensively in the past several decades,

and result in a large number of results, e.g., see the monograph [12]. In the recent

one decade, based on the spectra (eigenvalues) of more matrices induced by graphs, not

confined to the adjacency matrix, other types of energies of graphs were emerged, e.g.,

Laplacian energy [10], skew energy [1], incidence energy [11]. More results on a variety of

energies of graphs can also be referred to the monograph [9].

Recently, Gutman et al. [6] proposed a new type of energy, called resolvent energy,

based on the spectrum (eigenvalues) of the resolvent matrix

RG(n) = (nIn −A(G))−1 .

Notices that the eigenvalues of RG(n) are

1

n− λ1
,

1

n− λ2
, . . . ,

1

n− λn
,

thus the resolvent energy of G is naturally defined as [6, 7]

ER(G) =
n∑
i=1

1

n− λi
.

As the pioneering paper for the resolvent energy of graphs, Gutman et al. [6] revealed

some interesting and remarkable properties for the resolvent energy of graphs, including

the relationship between the resolvent energy and spectral moments of graphs, some

bounds for the resolvent energy of graphs, the extremal resolvent energy of trees. Later,

the extremal resolvent energies of unicyclic graphs, bicyclic graphs, and tricyclic graphs

are determined in [2].

In the light of the spectra of paths and cycles are well-known, and motivated by [4,8],

we are aware of that the definition of definite integral is one of the feasible ways to
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estimate the graph-spectrum-based invariants for paths and cycles. Based on that, in this

paper we put our emphasis on the estimation of resolvent energies of paths and cycles,

and deduce that the resolvent energies of the path Pn and the cycle Cn are, respectively,

asymptotically equal to n+1√
n2−4 and n√

n2−4 . Furthermore, we also show that for any tree or

unicyclic graph G, when its order is sufficiently large, ER(G) ≈ 1.

2 Preliminaries

The spectra of paths and cycles are well-known, e.g., see [3, pp. 72–73].

Lemma 2.1 The eigenvalues of Pn are 2 cos kπ
n+1

for k = 1, 2, . . . , n, and the eigenvalues

of Cn are 2 cos 2kπ
n

for k = 1, 2, . . . , n.

The calculation of the following two integrals is easy, thus we omit the proof here.

Lemma 2.2 For fixed n, we have∫ π

0

1

n− 2 cosx
dx =

∫ 2π

π

1

n− 2 cosx
dx =

π√
n2 − 4

,

which implies that ∫ 2π

0

1

n− 2 cosx
dx =

2π√
n2 − 4

.

From the definition of definite integral, we can get the following lemma immediately.

Lemma 2.3 Let f(x) be an integrable function with respect to x over the interval [a, b],

and t be a fixed positive integer.

(i) If f(x) is an increasing function on x ∈ [a, b], then

b− a
t

t−1∑
k=0

f

(
a+

(b− a)k

t

)
6
∫ b

a

f(x)dx 6
b− a
t

t∑
k=1

f

(
a+

(b− a)k

t

)
.

(ii) If f(x) is a decreasing function on x ∈ [a, b], then

b− a
t

t∑
k=1

f

(
a+

(b− a)k

t

)
6
∫ b

a

f(x)dx 6
b− a
t

t−1∑
k=0

f

(
a+

(b− a)k

t

)
.

Let φ(G, λ) be the characteristic polynomial of G, i.e., the characteristic polynomial

of the adjacency matrix A(G).

In [6], Gutman et al. showed that one may calculate the resolvent energy of graphs by

using only the characteristic polynomial of that graph without knowing the spectrum.
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Lemma 2.4 [6, Theorem 8] Let G be a graph on n vertices. Then

ER(G) =
φ′(G, n)

φ(G, n)
,

where φ′(G, λ) is the derivative of φ(G, λ).

3 Asymptotic expression for resolvent energy of paths

In this section, we present the asymptotic expression for the resolvent energy of paths,

i.e.,

ER(Pn) ≈ n+ 1√
n2 − 4

when n is sufficiently large.

First we establish the lower and upper bounds for ER(Pn).

Lemma 3.1 For n > 3, we have

ER(Pn) >
n+ 1√
n2 − 4

− 1

n− 2
.

Proof: First, from Lemma 2.1, we know that the eigenvalues of Pn are 2 cos kπ
n+1

for

k = 1, 2, . . . , n, thus

ER(Pn) =
n∑
k=1

1

n− 2 cos kπ
n+1

.

From Lemma 2.2, we know that 1
n−2 cosx is an integrable function with respect to x

over the interval [0, π]. Moreover, note that the function 1
n−2 cosx is a decreasing function

on x ∈ [0, π], now from Lemma 2.3 (ii), by setting f(x) = 1
n−2 cosx , a = 0, b = π, and

t = n+ 1, we can get that∫ π

0

1

n− 2 cosx
dx 6

π

n+ 1

n∑
k=0

1

n− 2 cos kπ
n+1

=
π

n+ 1

(
n∑
k=1

1

n− 2 cos kπ
n+1

+
1

n− 2 cos 0

)

=
π

n+ 1

(
ER(Pn) +

1

n− 2

)
.

Finally, together with
∫ π
0

1
n−2 cosxdx = π√

n2−4 from Lemma 2.2, we have

ER(Pn) >
n+ 1√
n2 − 4

− 1

n− 2
,

as desired. �

Similar to the proof of Lemma 3.1, we can get a upper bound for ER(Pn).
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Lemma 3.2 For n > 3, we have

ER(Pn) 6
n+ 1√
n2 − 4

− 1

n+ 2
.

Combining Lemmas 3.1 and 3.2, we have

n+ 1√
n2 − 4

− 1

n− 2
6 ER(Pn) 6

n+ 1√
n2 − 4

− 1

n+ 2
,

which is equivalent to

1

n+ 2
6

n+ 1√
n2 − 4

− ER(Pn) 6
1

n− 2
.

Now we can deduce the asymptotic expression for ER(Pn) easily.

Proposition 3.1 The resolvent energy of the cycle Pn is asymptotically equal to n+1√
n2−4 ,

i.e.,

ER(Pn) =
n+ 1√
n2 − 4

+ o(1) .

So when n is sufficiently large,

ER(Pn) ≈ n+ 1√
n2 − 4

,

and the error is between 1
n+2

and 1
n−2 .

On the other hand, we also take into account the expression for ER(Sn), where Sn

represents the star on n vertices. It is easily verified that the characteristic polynomial of

Sn is

φ(Sn, λ) = λn−2(λ2 − n+ 1) .

From Lemma 2.4, we get

ER(Sn) =
n3 − n2 + 3n− 2

n3 − n2 + n
.

Now combining the resolvent energies of Pn and Sn, we can get the approximate values

for the resolvent energies of all trees.

Corollary 3.1 Let G be a tree on n vertices. If n is sufficiently large, then ER(G) ≈ 1.

Proof: Recall that Gutman et al. [6] showed that the maximum and minimum resolvent

energies of trees are, respectively, attained by Sn and Pn, i.e.,

ER(Pn) 6 ER(G) 6 ER(Sn) .
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Notice that

lim
n→∞

ER(Pn) = lim
n→∞

ER(Sn) = 1 ,

which implies that ER(Pn) ≈ 1 and ER(Sn) ≈ 1 when n is sufficiently large, thus

ER(G) ≈ 1 follows. �

Gutman et al. [6] have showed that for any graph G, ER(G) > 1 with equality if and

only if G is an edgeless graph. Now Corollary 3.1 reflects that the resolvent energy of

every tree is infinitely close to 1 if the order of that tree is sufficiently large.

4 Asymptotic expression for resolvent energy of cy-

cles

In this section, we turn to research the resolvent energy of cycles, and show that

ER(Cn) ≈ n√
n2 − 4

when n is sufficiently large.

First, we present the lower and upper bounds for ER(Cn).

Lemma 4.1 For n > 3,

(i) if n is even, then

ER(Cn) >
n√

n2 − 4
− 4

n2 − 4
;

(ii) if n is odd, then

ER(Cn) >
n√

n2 − 4
− 8

n2 − 4
.

Proof: We only prove (i), i.e., the case when n is even. The proof of (ii) (i.e., the case

when n is odd) is similar.

Suppose that n is even.

First, from Lemma 2.1, we know that the eigenvalues of Cn are 2 cos 2kπ
n

for k =

1, 2, . . . , n, thus

ER(Cn) =
n∑
k=1

1

n− 2 cos 2kπ
n

.

Next we consider the relationship between
∫ 2π

0
1

n−2 cosxdx and
∑n

k=1
1

n−2 cos 2kπ
n

(i.e.,

ER(Cn)). From Lemma 2.2, we know that 1
n−2 cosx is an integrable function with respect

to x over the intervals [0, π] and [π, 2π].
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On one hand, note that the function 1
n−2 cosx is a decreasing function on x ∈ [0, π],

from Lemma 2.3 (ii), by setting f(x) = 1
n−2 cosx , a = 0, b = π, and t = n

2
, we can get that∫ π

0

1

n− 2 cosx
dx 6

2π

n

n
2
−1∑

k=0

1

n− 2 cos 2kπ
n

. (1)

On the other hand, note that the function 1
n−2 cosx is an increasing function on x ∈

[π, 2π], from Lemma 2.3 (i), by setting f(x) = 1
n−2 cosx , a = π, b = 2π, and t = n

2
, we can

get that ∫ 2π

π

1

n− 2 cosx
dx 6

2π

n

n
2∑

k=1

1

n− 2 cos
(
π + 2kπ

n

)
=

2π

n

n
2∑

k=1

1

n− 2 cos 2π
n

(
k + n

2

)
=

2π

n

n∑
k=n

2
+1

1

n− 2 cos 2kπ
n

. (2)

Combining (1) and (2), we have∫ 2π

0

1

n− 2 cosx
dx =

∫ π

0

1

n− 2 cosx
dx+

∫ 2π

π

1

n− 2 cosx
dx

6
2π

n

n
2
−1∑

k=0

1

n− 2 cos 2kπ
n

+
n∑

k=n
2
+1

1

n− 2 cos 2kπ
n


6

2π

n

(
n∑
k=0

1

n− 2 cos 2kπ
n

− 1

n− 2 cosπ

)

=
2π

n

(
n∑
k=1

1

n− 2 cos 2kπ
n

+
1

n− 2 cos 0
− 1

n− 2 cosπ

)

=
2π

n

(
ER(Cn) +

1

n− 2
− 1

n+ 2

)
=

2π

n

(
ER(Cn) +

4

n2 − 4

)
.

Finally, together with
∫ 2π

0
1

n−2 cosxdx = 2π√
n2−4 from Lemma 2.2, we have

ER(Cn) >
n√

n2 − 4
− 4

n2 − 4
.

So (i) follows.

For the case when n is odd, similar to the arguments for the case when n is even as

above, we can deduce that

ER(Cn) >
n√

n2 − 4
+ 2

(
1

n+ 2 cos π
n

− 1

n− 2

)
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>
n√

n2 − 4
+ 2

(
1

n+ 2
− 1

n− 2

)
=

n√
n2 − 4

− 8

n2 − 4
.

So (ii) follows. �

Similar to the proof of Lemma 4.1, we can get a upper bound for ER(Cn).

Lemma 4.2 For n > 3,

(i) if n is even, then

ER(Cn) 6
n√

n2 − 4
+

4

n2 − 4
;

(ii) if n is odd, then

ER(Cn) 6
n√

n2 − 4
+

8

n2 − 4
.

Combining Lemmas 4.1 and 4.2, we have

n√
n2 − 4

− 8

n2 − 4
6 ER(Cn) 6

n√
n2 − 4

+
8

n2 − 4
,

which is equivalent to ∣∣∣∣ER(Cn)− n√
n2 − 4

∣∣∣∣ 6 8

n2 − 4
.

Now the asymptotic expression for ER(Cn) follows easily.

Proposition 4.1 The resolvent energy of the cycle Cn is asymptotically equal to n√
n2−4 ,

i.e.,

ER(Cn) =
n√

n2 − 4
+ o(1) .

So when n is sufficiently large,

ER(Cn) ≈ n√
n2 − 4

,

and the error is at most 8
n2−4 .

On the other hand, let us consider the resolvent energy of S+
n , where S+

n is the unicyclic

graph obtained from Sn by adding an edge between two terminal vertices. It is easily

verified that the characteristic polynomial of S+
n is

φ(S+
n , λ) = λn−4(λ4 − nλ2 − 2λ+ n− 3) .
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From Lemma 2.4, we get

ER(S+
n ) =

n5 − n4 + 2n3 − n2 − n+ 12

n5 − n4 − n2 − 3n
.

Finally combining the resolvent energies of Cn and S+
n , we get the approximate values

for the resolvent energies of all unicyclic graphs.

Corollary 4.1 Let G be a unicyclic graph on n vertices. If n is sufficiently large, then

ER(G) ≈ 1.

Proof: Recall that Allem et al. [2] showed that the maximum and minimum resolvent

energies of unicyclic graphs are, respectively, attained by S+
n and Cn, i.e.,

ER(Cn) 6 ER(G) 6 ER(S+
n ) .

Notice that

lim
n→∞

ER(Cn) = lim
n→∞

ER(S+
n ) = 1 ,

which implies that ER(Cn) ≈ 1 and ER(S+
n ) ≈ 1 when n is sufficiently large, thus

ER(G) ≈ 1 follows. �

As a consequence of Corollary 4.1, it follows that the resolvent energy of every unicyclic

graph is infinitely close to 1 if the order of that unicyclic graph is sufficiently large.
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